

FCC Test Report (WLAN)
(Spot Check)

Report No.: RF180911E19D-1

FCC ID: 2APLE18300410

Original FCC ID: 2APLE18300392

Test Model: VMC5040

Received Date: Dec. 17, 2019

Test Date: Jan. 21 to Feb. 11, 2020

Issued Date: Feb. 27, 2020

Applicant: Arlo Technologies, Inc.

Address: 2200 Faraday Ave. Suite 150, Carlsbad, CA 92008, United States

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan

Test Location : E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration /

Designation Number: 723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or or mission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rel	Release Control Record 3			
1	Certificate of Conformity 4			
2	S	Summary of Test Results	5	
	.1 .2	Measurement Uncertainty Modification Record		
3	G	General Information	6	
3 3 3 3 3	.1 .2 .3 .4 .4.1 .5	General Description of EUT (WLAN) Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standard and References	8 9 11 . 12 . 13 . 14	
4	Т	est Types and Results		
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.1.2 1.3 1.4 1.5 1.6 1.7 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 3.1 3.2 3.3 3.4	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Instruments Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results Transmit Power Measurement Limits of Transmit Power Measurement Test Setup Eutr Operating Condition Test Results Transmit Power Measurement Limits of Transmit Power Measurement Deviation from Test Standard	. 15 . 16 . 17 . 17 . 18 . 20 . 28 . 28 . 29 . 29 . 29 . 29 . 29 . 32 . 32 . 33 . 33 . 33	
4	.3.6	EUT Operating Condition	. 33	
		Test Result Pictures of Test Arrangements		
5 4 m		A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)		
		A- Radiated Out of Band Emission (OOBE) Measurement (For O-Nii-3 band)		

Release Control Record				
Issue No.	Description		Date Issued	
RF180911E19D-1	Original release.		Feb. 27, 2020	
Report No · RE180911E	19D-1	Page No. 3/37	Report Format Version 6.1.2	

1Certificate of ConformityProduct:arlo ULTRABrand:ArloTest Model:VMC5040Sample Status:ENGINEERING SAMPLEApplicant:Arlo Technologies, Inc.Test Date:Jan. 21 to Feb. 11, 2020Standard:47 CFR FCC Part 15, Subpart E (Section 15.407)
ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Feb. 27, 2020 Prepared by : Date: Claire Kuan / Specialist

Date:

Approved by :

Clark Lin / Technical Manager

Feb. 27, 2020

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)				
FCC Clause	Remarks			
15.407(b)(6)	AC Power Conducted Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -8.54dB at 1.00512MHz	
15.407(b) (1/2/3/4(i/ii)/6)	.,		Meet the requirement of limit. Minimum passing margin is -0.5dB at 5150.00MHz	
15.407(a)(1/2/ 3)	Max Average Transmit Power	PASS	Meet the requirement of limit.	

*For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A. Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.0 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.9 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.9 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (WLAN)

Product	arlo ULTRA
Brand	Arlo
Test Model	VMC5040
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 5V from USB interface or DC 3.85V from battery
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only
Modulation Technology	DSSS,OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 72.2Mbps 802.11ac: up to 86.7Mbps
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18GHz ~ 5.24GHz, 5.745GHz ~ 5.825GHz
Number of Channel	2.4GHz: 802.11b, 802.11g, 802.11n (HT20): 11 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9
Output Power	2.4GHz: 306.196mW 5.18 ~ 5.24GHz: 76.736mW 5.745 ~ 5.825GHz: 66.834mW
Antenna Type Refer to Note	
Antenna Connector	Refer to Note
Accessory Device	Battery x 1
Cable Supplied	USB cable x 1 (Unshielded, 0.8m)

Note:

- 1. Exhibit prepared for FCC Spot Check Verification Report, the format, test items and amount of spot–check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit. (Original FCC ID: 2APLE18300392, report no.: RF180911E19-1)
- 2. The EUT could be supplied from a battery as following table:

Brand	Model No.	Spec.	
Arlo	A-4a	3.85Vdc, 18.48Wh, 4800mAh	

3. The antennas provided to the EUT, please refer to the following table:

Antenna No	Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Connector Type
Loft	1.3	2.4~2.4835	Monopole	NA
Left	3.4	5.15~5.85	Monopole	NA
Diabt	1.5	2.4~2.4835	Monopole	NA
Right	3.5	5.15~5.85	Monopole	NA

4. In the original report, the EUT was pre-tested under following test modes:

Pre-test Mode	Power		
Mode A	Power from USB adapter		
Mode B	Power from battery		

From the above modes, the worst radiated emission was found in **Mode A**. Therefore only the test data of the modes were recorded in this report.

5. In the original report, the EUT was pre-tested under following test modes:

Power
Power from Laptop
Power from USB adapter

From the above modes, the worst conducted emission was found in **Mode A**. Therefore only the test data of the modes were recorded in this report.

6. The EUT incorporates a SISO function.

2.4GHz Band					
MODULATION MODE	MODULATION MODE TX & RX CONFIGURATION				
802.11b 1TX diversity 1RX					
802.11g	1TX diversity	1RX			
802.11n (HT20)	1TX diversity	1RX			
	5GHz Band				
MODULATION MODE	MODULATION MODE TX & RX CONFIGURATION				
802.11a	1TX diversity	1RX			
802.11n (HT20)	1TX diversity	1RX			
802.11ac (VHT20)	1TX diversity	1RX			

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

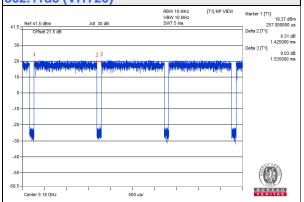
Configure	Applicable To					Descrir	otion	
Configure — Mode	RE≥1G	RE<1G	P	PLC APCN	Λ	Description		
-		\checkmark				PLC: Power from Laptop RE: Power from USB adapter		
Where RE≥1	G: Radiated	Emission at	bove 1	GHz RE<1		ssion below 1GH		
PLC: IOTE: In the origin positioned of						Conducted Measu 3 axis. The wors		
adiated Emis	sion Test (Above 1	GHz	<u>):</u>				
architecture	ailable moo).	ulations,	data	termine the wo rates and ant ected for the fi	enna ports (if	EUT with ante		
Mode	FREQ. Ban (MHz)	d Availa Chan		Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)	
			40	00 40 40				
	as been co ailable moo	149 to Below 1 nducted t	165 GHz			•		
adiated Emis Pre-Scan ha between ava architecture	5745-5825 sion Test (as been col ailable moc).	149 to Below 1 nducted t ulations,	GHz GHz to det data	149, 157, 165	orst-case mod enna ports (if	e from all pos EUT with ante	sible combina	
adiated Emis Pre-Scan ha between ava architecture	5745-5825 sion Test (as been col ailable moc).	149 to Below 1 Inducted t ulations, as (were	GHz GHz data e) sele	149, 157, 165 : termine the wo rates and ante	orst-case mod enna ports (if	e from all pos EUT with ante	sible combina	
adiated Emis Pre-Scan ha between ava architecture Following ch	5745-5825 sion Test (as been col ailable moc). nannel(s) w FREQ. Ban	149 to Below 1 nducted t ulations, as (were d Availa Chan 36 to	GHz GHz data e) sele able nel 48	149, 157, 165 termine the wo rates and ant ected for the fi	orst-case mod enna ports (if nal test as list Modulation	e from all pos EUT with ante red below. Modulation	sible combination diversity	
Adiated Emis Pre-Scan ha between ava architecture Following ch Mode 302.11ac (VHT20)	5745-5825 sion Test (as been col ailable mod). nannel(s) w FREQ. Ban (MHz) 5180-5240 5745-5825	149 to Below 1 nducted t ulations, as (were d Availa 36 to 149 to	GHz GHz data e) sele able nel 48 165	149, 157, 165 termine the wo rates and ant ected for the fi Tested Channel 40	orst-case mod enna ports (if nal test as list Modulation Technology	e from all pos EUT with ante ed below. Modulation Type	sible combina enna diversity Data Rate (Mbps)	
Adiated Emis Image: Advance of the second structure of the s	5745-5825 sion Test (as been col ailable moc). nannel(s) w FREQ. Ban (MHz) 5180-5240 5745-5825 nducted E as been col ailable moc).	149 to Below 1 nducted t ulations, as (were d Availa 36 to 149 to mission nducted t ulations,	GHz GHz able able 165 165 165 Test able able 165	149, 157, 165): termine the work rates and anterested for the file ected for the file 40 termine the work rates and anterested for the file 40 termine the work rates and anterested for the file 40 termine the work rates and anterested for the file	orst-case mod enna ports (if nal test as list Modulation Technology OFDM	e from all pos EUT with ante ed below. Modulation Type BPSK BPSK e from all pos EUT with ante	sible combine enna diversity Data Rate (Mbps) 6.5	
Adiated Emis Image: Advance of the second structure of the s	5745-5825 sion Test (as been col ailable moc). nannel(s) w FREQ. Ban (MHz) 5180-5240 5745-5825 nducted E as been col ailable moc).	149 to Below 1 nducted t ulations, as (were d Availa 36 to 149 to mission nducted t ulations, as (were mission nducted t ulations, as (were	GHz GHz a det data a ble a ble 165 A8 165 Test data a ble a ble a ble a ble b a ble a ble b a ble b a ble a ble b a ble a ble b a ble a ble b a ble a ble b a	149, 157, 165 termine the work rates and anter ected for the fir Tested Channel 40 termine the work termine the work	orst-case mod enna ports (if nal test as list Modulation Technology OFDM	e from all pos EUT with ante ed below. Modulation Type BPSK BPSK e from all pos EUT with ante	sible combine enna diversity Data Rate (Mbps) 6.5	

Antenna Port Conducted Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

🖂 F	Following channel	(s) was (were	e) selected for the	final test as listed below.
-----	-------------------	---------------	---------------------	-----------------------------

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel		Modulation Type	Data Rate (Mbps)
802.11ac (VHT20)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
002.11aC (VH120)	5745-5825	149 to 165	149, 157, 165	OFDM	DFSK	0.5


Test Condition:

Applicable To	cable To Environmental Conditions Input Power (system)		Tested By	
RE≥1G	25deg. C, 75%RH	120Vac, 60Hz	Cary Cheng	
RE<1G	22deg. C, 64%RH	120Vac, 60Hz	Kevin Ko	
PLC	PLC 25deg. C, 75%RH		Andy Ho	
APCM	APCM 25deg. C, 60%RH		Nelson Teng	

3.3 Duty Cycle of Test Signal

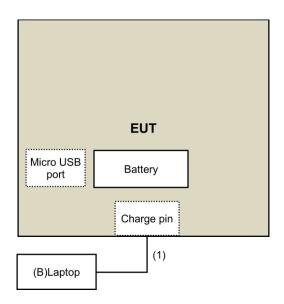
If duty cycle of test signal is < 98%, duty factor shall be considered. **802.11ac (VHT20):** Duty cycle = 1.425/1.535 = 0.928, Duty factor = 10 * log(1/0.928) = 0.32 **802.11ac (VHT20)**

3.4 Description of Support Units

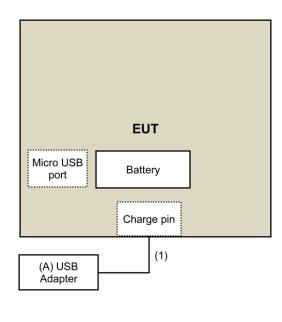
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	USB Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab
В.	Laptop	HP	TPN-Q186	5CD8212YYG	FCC DoC	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	0.8	No	0	Supplied by client



3.4.1 Configuration of System under Test

For conducted emission test:

For radiated emission test:

3.5 General Description of Applied Standard and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and References:

Test standard: FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 789033 D02 General UNII Test Procedure New Rules v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To			Limit			
789033 D02 General UNII Test Procedure			Field Strength at 3m			
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)		
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz	15.407(b)(2)		PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)		
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBμV/m) ^{*1} PK:105.2 (dBμV/m) ^{*2} PK: 110.8(dBμV/m) ^{*3} PK:122.2 (dBμV/m) ^{*4}		
		15.407(b)(4)(ii)	Emission limits in	section 15.247(d)		
 *1 beyond 75 MHz or more above of the band edge. *3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. *4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. 						

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver			DATE	UNTIL
	N9038A	MY51210202	Dec. 13, 2019	Dec. 12, 2020
Agilent Pre-Amplifier				
EMCI	EMC001340	980142	May 30, 2019	May 29, 2020
Loop Antenna				
Electro-Metrics	EM-6879	269	Sep. 16, 2019	Sep. 15, 2020
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier				
Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Oct. 23, 2019	Oct. 22, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-4-1	Mar. 19, 2019	Mar. 18, 2020
RF Cable	8D	966-4-2	Mar. 19, 2019	Mar. 18, 2020
RF Cable	8D	966-4-3	Mar. 19, 2019	Mar. 18, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980385	Aug. 15, 2019	Aug. 14, 2020
RF Cable	EMC104-SM-SM-1200	160923	Jan. 15, 2020	Jan. 14, 2021
RF Cable	104 RF cable	131215	Jan. 09, 2020	Jan. 08, 2021
RF Cable	EMC104-SM-SM-6000	180418	May 03, 2019	May 02, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC102-KM-KM-4500	181205	Aug. 26, 2019	Aug. 25, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in 966 Chamber No. 4.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: Feb. 07 to 11, 2020

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

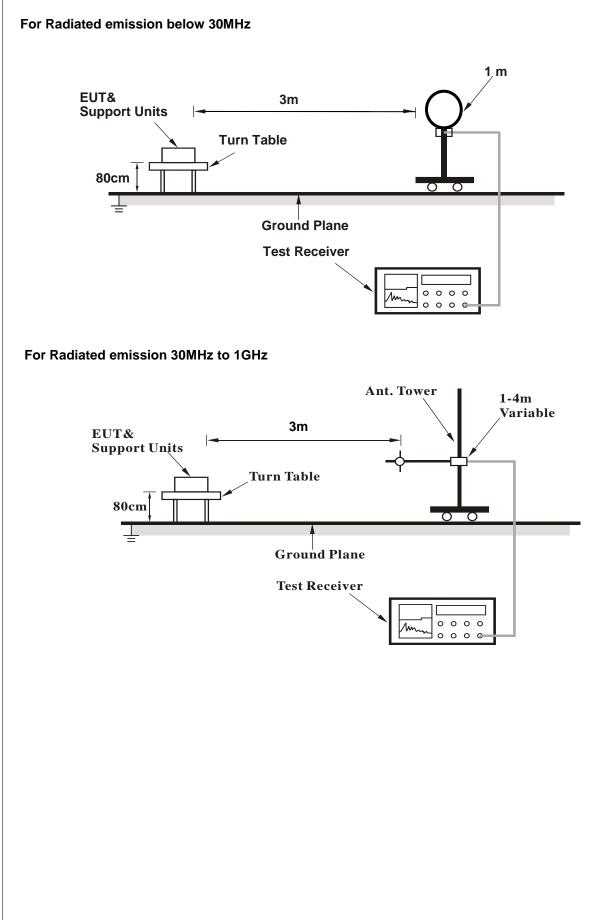
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

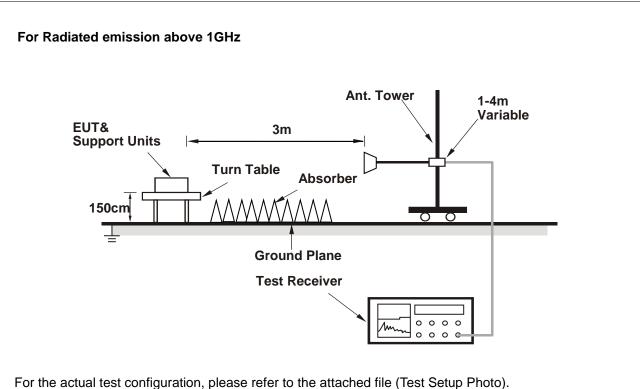
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Condition
- a. Placed the EUT on the testing table.
- b. Controlling software (HyperTerminal paste Arlo Gen RF Commands.txt command) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

802.11ac (VHT20)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	69.3 PK	74.0	-4.7	1.05 H	346	66.2	3.1	
2	5150.00	53.5 AV	54.0	-0.5	1.05 H	346	50.4	3.1	
3	*5180.00	107.2 PK			1.05 H	346	104.1	3.1	
4	*5180.00	97.9 AV			1.05 H	346	94.8	3.1	
5	#10360.00	45.4 PK	68.2	-22.8	1.10 H	339	32.3	13.1	
6	15540.00	47.5 PK	74.0	-26.5	1.36 H	239	34.0	13.5	
7	15540.00	35.0 AV	54.0	-19.0	1.36 H	239	21.5	13.5	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	66.3 PK	74.0	-7.7	1.16 V	188	63.2	3.1
2	5150.00	50.4 AV	54.0	-3.6	1.16 V	188	47.3	3.1
3	*5180.00	105.1 PK			1.16 V	188	102.0	3.1
4	*5180.00	95.3 AV			1.16 V	188	92.2	3.1
5	#10360.00	46.4 PK	68.2	-21.8	1.38 V	163	33.3	13.1
6	15540.00	47.7 PK	74.0	-26.3	1.24 V	201	34.2	13.5
7	15540.00	35.4 AV	54.0	-18.6	1.24 V	201	21.9	13.5

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	109.4 PK			1.05 H	15	106.3	3.1	
2	*5200.00	99.5 AV			1.05 H	15	96.4	3.1	
3	#10400.00	47.4 PK	68.2	-20.8	1.07 H	355	34.1	13.3	
4	15600.00	47.9 PK	74.0	-26.1	1.35 H	281	34.4	13.5	
5	15600.00	35.4 AV	54.0	-18.6	1.35 H	281	21.9	13.5	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	106.7 PK			1.23 V	195	103.6	3.1	
2	*5200.00	97.1 AV			1.23 V	195	94.0	3.1	
3	#10400.00	46.8 PK	68.2	-21.4	1.35 V	186	33.5	13.3	
4	15600.00	48.2 PK	74.0	-25.8	1.25 V	218	34.7	13.5	
5	15600.00	35.7 AV	54.0	-18.3	1.25 V	218	22.2	13.5	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	108.7 PK			1.08 H	13	105.7	3.0	
2	*5240.00	99.5 AV			1.08 H	13	96.5	3.0	
3	5350.00	50.6 PK	74.0	-23.4	1.08 H	13	47.5	3.1	
4	5350.00	38.1 AV	54.0	-15.9	1.08 H	13	35.0	3.1	
5	#10480.00	47.1 PK	68.2	-21.1	1.23 H	344	33.9	13.2	
6	15720.00	48.0 PK	74.0	-26.0	1.23 H	258	34.7	13.3	
7	15720.00	35.4 AV	54.0	-18.6	1.23 H	258	22.1	13.3	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	105.9 PK			1.23 V	174	102.9	3.0	
2	*5240.00	96.4 AV			1.23 V	174	93.4	3.0	
3	5350.00	49.4 PK	74.0	-24.6	1.23 V	174	46.3	3.1	
4	5350.00	36.7 AV	54.0	-17.3	1.23 V	174	33.6	3.1	
5	#10480.00	46.5 PK	68.2	-21.7	1.39 V	202	33.3	13.2	
6	15720.00	47.9 PK	74.0	-26.1	1.22 V	193	34.6	13.3	
7	15720.00	35.4 AV	54.0	-18.6	1.22 V	193	22.1	13.3	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5641.87	51.1 PK	68.2	-17.1	1.03 H	6	47.2	3.9	
2	*5745.00	108.2 PK			1.03 H	6	104.4	3.8	
3	*5745.00	98.2 AV			1.03 H	6	94.4	3.8	
4	#5983.50	50.6 PK	68.2	-17.6	1.03 H	6	46.1	4.5	
5	11490.00	46.0 PK	74.0	-28.0	1.02 H	360	32.2	13.8	
6	11490.00	33.8 AV	54.0	-20.2	1.02 H	360	20.0	13.8	
7	#17235.00	51.6 PK	68.2	-16.6	1.41 H	258	34.6	17.0	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5606.23	50.2 PK	68.2	-18.0	1.00 V	172	46.4	3.8	
2	*5745.00	105.1 PK			1.00 V	172	101.3	3.8	
3	*5745.00	95.3 AV			1.00 V	172	91.5	3.8	
4	#5983.98	50.3 PK	68.2	-17.9	1.00 V	172	45.8	4.5	
5	11490.00	47.6 PK	74.0	-26.4	1.43 V	202	33.8	13.8	
6	11490.00	34.9 AV	54.0	-19.1	1.43 V	202	21.1	13.8	
7	#17235.00	50.7 PK	68.2	-17.5	1.22 V	180	33.7	17.0	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5589.76	49.3 PK	68.2	-18.9	1.02 H	15	45.5	3.8	
2	*5785.00	107.8 PK			1.02 H	15	103.9	3.9	
3	*5785.00	98.4 AV			1.02 H	15	94.5	3.9	
4	#5928.88	50.0 PK	68.2	-18.2	1.02 H	15	45.6	4.4	
5	11570.00	46.8 PK	74.0	-27.2	1.05 H	341	33.3	13.5	
6	11570.00	34.4 AV	54.0	-19.6	1.05 H	341	20.9	13.5	
7	#17355.00	50.2 PK	68.2	-18.0	1.46 H	252	32.9	17.3	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5616.70	50.4 PK	68.2	-17.8	1.07 V	193	46.6	3.8	
2	*5785.00	105.3 PK			1.07 V	193	101.4	3.9	
3	*5785.00	95.0 AV			1.07 V	193	91.1	3.9	
4	#5992.60	50.1 PK	68.2	-18.1	1.07 V	193	45.6	4.5	
5	11570.00	47.3 PK	74.0	-26.7	1.45 V	154	33.8	13.5	
6	11570.00	34.4 AV	54.0	-19.6	1.45 V	154	20.9	13.5	
7	#17355.00	50.6 PK	68.2	-17.6	1.22 V	174	33.3	17.3	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE		FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5605.58	51.1 PK	68.2	-17.1	1.10 H	360	47.3	3.8	
2	*5825.00	106.7 PK			1.10 H	360	102.6	4.1	
3	*5825.00	97.0 AV			1.10 H	360	92.9	4.1	
4	#5972.90	50.1 PK	68.2	-18.1	1.10 H	360	45.6	4.5	
5	11650.00	47.5 PK	74.0	-26.5	1.16 H	346	34.2	13.3	
6	11650.00	34.6 AV	54.0	-19.4	1.16 H	346	21.3	13.3	
7	#17475.00	52.2 PK	68.2	-16.0	1.37 H	229	33.7	18.5	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5592.62	50.2 PK	68.2	-18.0	1.05 V	171	46.4	3.8	
2	*5825.00	105.6 PK			1.05 V	171	101.5	4.1	
3	*5825.00	95.3 AV			1.05 V	171	91.2	4.1	
4	#5943.84	50.4 PK	68.2	-17.8	1.05 V	171	46.0	4.4	
5	11650.00	47.5 PK	74.0	-26.5	1.50 V	162	34.2	13.3	
6	11650.00	34.8 AV	54.0	-19.2	1.50 V	162	21.5	13.3	
7	#17475.00	51.4 PK	68.2	-16.8	1.16 V	156	32.9	18.5	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

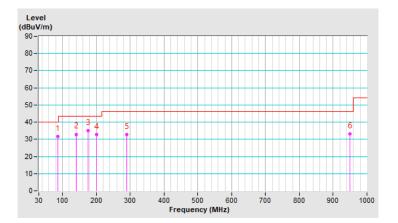
Below 1GHz Data:

802.11ac (VHT20)

CHANNEL	TX Channel 40	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	87.14	31.8 QP	40.0	-8.2	1.00 H	297	45.4	-13.6				
2	140.70	33.0 QP	43.5	-10.5	1.50 H	157	41.1	-8.1				
3	175.90	34.9 QP	43.5	-8.6	2.00 H	331	43.8	-8.9				
4	200.50	32.7 QP	43.5	-10.8	2.00 H	41	43.8	-11.1				
5	290.67	32.9 QP	46.0	-13.1	1.00 H	174	40.3	-7.4				
6	950.46	33.2 QP	46.0	-12.8	1.00 H	222	27.2	6.0				

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

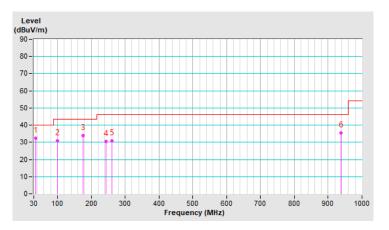
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 40	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	34.99	32.5 QP	40.0	-7.5	1.00 V	160	41.4	-8.9				
2	100.57	30.9 QP	43.5	-12.6	1.50 V	85	43.1	-12.2				
3	175.11	33.9 QP	43.5	-9.6	1.50 V	334	42.7	-8.8				
4	242.74	30.6 QP	46.0	-15.4	1.00 V	47	39.8	-9.2				
5	260.74	30.9 QP	46.0	-15.1	1.50 V	311	39.4	-8.5				
6	937.50	35.5 QP	46.0	-10.5	1.50 V	225	29.4	6.1				


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

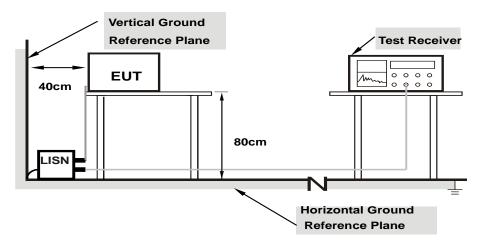
Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3. Tested Date: Jan. 21, 2020

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.



4.2.7 Test Results

Phase	e	Lin	ne (L)			etector Fu	nction		Quasi-Peak (QP) / Average (AV)		
	Гтол	Corr.	Reading Value		Emissi	Emission Level		Limit		gin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15214	9.97	43.24	28.99	53.21	38.96	65.88	55.88	-12.67	-16.92	
2	0.18441	9.97	35.97	22.64	45.94	32.61	64.28	54.28	-18.34	-21.67	
3	0.48975	9.99	30.79	23.92	40.78	33.91	56.17	46.17	-15.39	-12.26	
4	3.19256	10.12	23.57	13.66	33.69	23.78	56.00	46.00	-22.31	-22.22	
5	7.33245	10.34	26.19	22.58	36.53	32.92	60.00	50.00	-23.47	-17.08	
6	19.23578	11.01	21.99	15.81	33.00	26.82	60.00	50.00	-27.00	-23.18	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phas	Se	Ν	eutral (N)			Detecto	or Fu	nction	Quasi- Averag	Peak (QP) e (AV)	/
Freq.		Corr.	Reading Value E		Emis	Emission Level Limi		nit	it Margin		
No	No No		[dB	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	A	V.	Q.P.	AV.	Q.P.	AV.
1	0.16525	9.97	40.66	35.15	50.63	3 45.	.12	65.20	55.20	-14.57	-10.08
2	0.19754	9.97	33.27	27.46	43.24	4 37.	.43	63.71	53.71	-20.47	-16.28
3	0.51246	9.99	30.48	22.95	40.47	7 32.	.94	56.00	46.00	-15.53	-13.06
4	1.00512	10.02	37.44	20.68	47.46	30 .	.70	56.00	46.00	-8.54	-15.30
5	6.83427	10.26	24.55	19.52	34.81	29.	78	60.00	50.00	-25.19	-20.22
6	17.09256	10.68	20.46	17.52	31.14	4 28.	.20	60.00	50.00	-28.86	-21.80

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Transmit Power Measurement

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit		
U-NII-1		Outdoor Access Point	$\begin{array}{rl} 1 \mbox{ Watt (30 dBm)} \\ \mbox{(Max. e.i.r.p} & \leq 125 \mbox{mW}(21 \mbox{ dBm}) \mbox{ at any elevation} \\ \mbox{ angle above 30 degrees as measured from the} \\ \mbox{ horizon)} \end{array}$		
	Fixed point-to-point Access Point		1 Watt (30 dBm)		
		Indoor Access Point	1 Watt (30 dBm)		
	\checkmark	Client device	250mW (24 dBm)		
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-3		\checkmark	1 Watt (30 dBm)		

*B is the 26 dB emission bandwidth in megahertz

4.3.2 Test Setup

EUT	Attenuator	Power Sensor		Power Meter
-----	------------	--------------	--	-------------

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

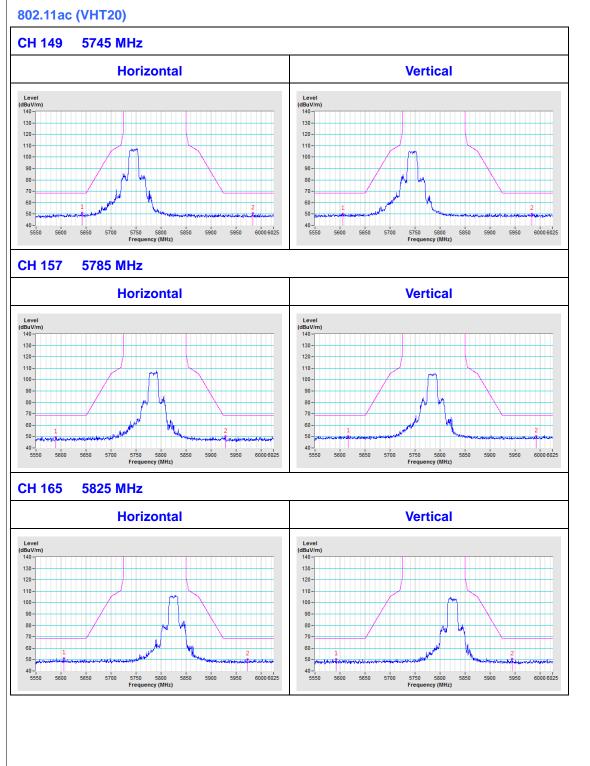
4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result


802.11ac (VHT20)

Channel	ChannelAverage PowerAverage PowerFrequency (MHz)(mW)(dBm)		Average Power (dBm)	Power Limit (dBm)	Pass/Fail
36	5180	53.827	17.31	24.00	Pass
40	5200	76.736	18.85	24.00	Pass
48	5240	75.509	18.78	24.00	Pass
149	5745	66.222	18.21	30.00	Pass
157	5785	66.834	18.25	30.00	Pass
165	5825	64.714	18.11	30.00	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----