

FCC CERTIFICATION TEST REPORT

REPORT NO.: FC131119C06

MODEL NO.: C6725

FCC ID: V65C6725

RECEIVED: Nov. 19, 2013

TESTED: Nov. 28, 2013 ~ Dec. 06, 2013

ISSUED: Dec. 17, 2013

APPLICANT: Kyocera Communications, Inc. c/o Kyocera

Corporation

ADDRESS: 8611 Balboa Ave. San Diego, CA 92123

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB ADDRESS: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF, NVLAP, NIST or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Report No.: FC131119C06 1 of 28 Report Format Version 5.0.1

Table of Contents

R	ELEASE CONTROL RECORD	3
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
	2.1 MEASUREMENT UNCERTAINTY	
3	GENERAL INFORMATION	
	3.1 GENERAL DESCRIPTION OF EUT	6
	3.2 DESCRIPTION OF TEST MODES	
	3.3 DESCRIPTION OF SUPPORT UNITS	
	3.4 CONFIGURATION OF SYSTEM UNDER TEST	
4	TEST TYPES AND RESULTS	
	4.1 CONDUCTED EMISSION MEASUREMENT	
	4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	4.1.2 TEST INSTRUMENTS	
	4.1.3 TEST PROCEDURES	
	4.1.4 DEVIATION FROM TEST STANDARD	
	4.1.5 TEST SETUP	. 12
	4.1.6 EUT OPERATING CONDITIONS	
	4.1.7 TEST RESULTS	
	4.1.8 LIMITS OF RADIATED EMISSION MEASUREMENT	
	4.1.9 TEST INSTRUMENTS	
	4.1.10TEST PROCEDURES	_
	4.1.11 DEVIATION FROM TEST STANDARD	
	4.1.12TEST SETUP	
	4.1.13EUT OPERATING CONDITIONS	
	i. TEST RESULTS	
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	
7	APPENDIX A – MODIFICATION RECORDERS FOR ENGINEERING CHANGES TO THE EUT	
	THE LAB	. 28

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
FC131119C06	Original release	Dec. 17, 2013

Report No.: FC131119C06 3 of 28 Report Format Version 5.0.1

1 CERTIFICATION

PRODUCT: Kyocera phone

MODEL NO.: C6725

BRAND: Kyocera

APPLICANT: Kyocera Communications, Inc. c/o Kyocera Corporation

TESTED: Nov. 28, 2013 ~ Dec. 06, 2013

TEST SAMPLE: Identical Prototype

STANDARD: FCC Part 15, Subpart B, Class B

ICES-003:2012 Issue 5, Class B

ANSI C63.4:2009

The above equipment (Model: C6725) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Gina Liu / Specialist

APPROVED BY: , DATE: Dec. 17, 2013

Derrick Dai / Assistant Manager

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications.

EMISSION					
Standard	Test Type	Result	Remarks		
FCC Part 15, Subpart B,	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -1.92dB at 0.78672MHz.		
Class B ICES-003:2012, Class B	Radiated emission test (30MHz~40GHz)	PASS	Meet the requirement of limit. Minimum passing margin is -6.09dB at 35.83MHz.		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Uncertainty	
Conducted emission	150kHz ~ 30MHz	2.44 dB	
Dadiated emission	30MHz ~ 1GHz	4.29 dB	
Radiated emission	Above 1GHz	2.26 dB	

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Kyocera phone
MODEL NO.	C6725
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.8Vdc (battery)
I/O PORT	Refer to users' manual
DATA CABLE	Refer to Note as below
ACCESSORY DEVICE	Refer to Note as below

NOTE:

1 The EUT's highest operating frequency is 2.7GHz.

2 The EUT contains following accessory devices.

ITEM	BRAND	MODEL	SPECIFICATION
AC Adapter	Kyocera	SCP-47ALL	I/P: 100-240Vac, 50/60Hz, 200mA O/P: 5Vdc, 1000mA
Battery	Kyocera	SCP-59LBPS	3.8Vdc, 2000mAh
USB Cable	Kyocera	SCP-11SDC	1.2m non-shielded cable w/o core

3 The above EUT information is declared by manufacturer and for more detailed feature description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

Test Mode	Test Condition		
	Conducted Emission		
1	CDMA BC0 Idle + BT Idle WLAN Idle + GPS Rx + USB Cable + Adapter + Earphone + Battery		
2	CDMA BC1 Idle + BT Idle WLAN Idle + NFC On + USB Cable + Adapter + Earphone + Battery		
3	CDMA BC10 Idle + BT Idle WLAN Idle + MPEG4 + USB Cable + Adapter + Earphone + Battery		
4	LTE Band25 Idle + BT Idle WLAN Idle + Camera + USB Cable + USB Link + Earphone + Battery		
5	CDMA BC0 Idle + BT Idle + WLAN Idle + GPS Rx + USB Cable + Adapter + Earphone + Battery + Wireless Charger		
	Radiated Emission		
1	CDMA BC0 Idle + BT Idle WLAN Idle + GPS Rx + USB Cable + Adapter + Earphone + Battery		
2	CDMA BC1 Idle + BT Idle WLAN Idle + NFC On + USB Cable + Adapter + Earphone + Battery		
3	CDMA BC10 Idle + BT Idle WLAN Idle + MPEG4 + USB Cable + Adapter + Earphone + Battery		
4	LTE Band25 Idle + BT Idle WLAN Idle + Camera + USB Cable + USB Link + Earphone + Battery		
5	LTE Band25 Idle + BT Idle WLAN Idle + Camera + USB Cable + Adapter + Earphone + Battery + Wireless Charger		

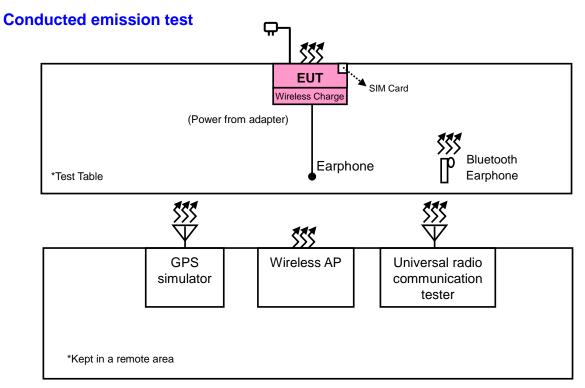
Remark:

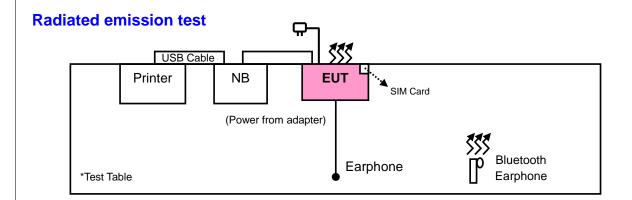
- 1. For conducted emission test, test mode 5 was the worst case and only this mode was presented in this report.
- 2. For radiated emission test, test mode 4 was the worst case and only this mode was presented in this report.

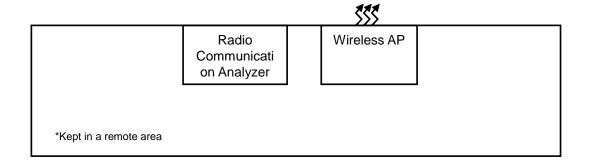
3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	BLUETOOTH EARPHONE	ELECOM	LBT-MPHS400	NA	NA
2	Universal Radio Communication Tester	R&S	CMU200	123121	NA
3	Wireless N Dual band Router	D-LINK	DIR-815	PVK21B5000399	KA21R815A1
4	GPS simulator	T&E Communication LTD.	GS-50	610493	NA
5	Notebook PC	DELL	Latitude E6420	HPFC5Q1	FCC DoC Approved
6	USB PRINTER	EPSON	T22	MEEZ070220	NA
7	Radio Communication Analyzer	Anritsu	MT8820C	6201010284	NA
8	Earphone	GALIEN	HF-HB04D	NA	NA
9	9 Wireless Charging WIRELESS CHARGING PAD		PowerMat for One Device	NA	NA
10	SIM Card	R&S	CMW-ZO4	NA	NA
11	Micro SD Card	Transcend	NA	NA	NA


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA
2	NA
3	NA
4	NA
5	NA
6	1.5m non shielded cable
7	NA
8	NA
9	NA
10	NA
11	NA


NOTE:


- 1. All power cords of the above support units are non shielded (1.8m).
- 2. Items 2-4 acted as communication partners.

3.4 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

TEST STANDARD: FCC Part 15, Subpart B (section: 15.107)

ICES-003:2012 Issue 5 (section 6.1)

Fraguency (MH=)	Class A (dBuV)		Class B	(dBuV)
Frequency (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15-0.5	79	66	66-56	56-46
0.5-5	73	60	56	46
5-30	73	60	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

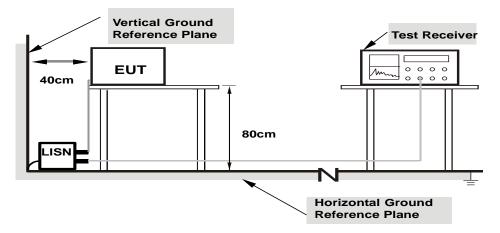
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Nov. 17, 2013	Nov. 16, 2014
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 28, 2012	Dec. 27, 2013
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 21, 2012	Dec. 20, 2013
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 17, 2013	Jul. 16, 2014
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under Limit 20dB was not recorded.

414	DEVIAT	ION	FROM	TEST	STAND	ARD

No deviation.

4.1.5 TEST SETUP

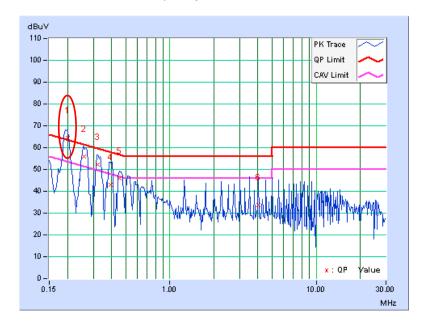
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT and Bluetooth earphone on a testing table.
- b. The EUT link the wireless charger.
- c. The EUT linked with Bluetooth earphone in idle mode.
- d. The EUT sent audio signal to the earphone.
- e. The EUT communicated data with the wireless AP, GPS simulator and CMU 200 function, which acted as communication partners.
- a. The communication partner connected with EUT via CDMA, WLAN and BT under receiving condition continuously at specific channel frequency.
- f. The necessary accessories enable the system in full functions.

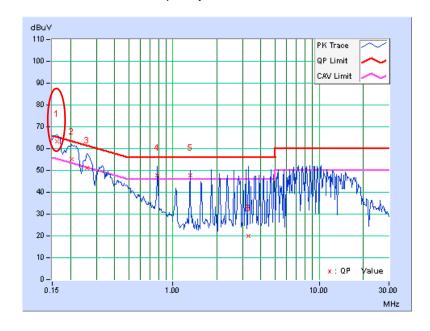


4.1.7 TEST RESULTS

INPUT POWER	120 Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	22deg. C, 65% RH	PHASE	Line 1
TESTED BY	Daniel Lin		

	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.20067	0.20	64.21	46.19	64.41	46.39	63.58	53.58	0.83	-7.19
2	0.25938	0.21	55.73	38.67	55.94	38.88	61.45	51.45	-5.52	-12.58
3	0.32188	0.21	52.01	33.50	52.22	33.71	59.66	49.66	-7.44	-15.95
4	0.39219	0.22	42.60	22.74	42.82	22.96	58.02	48.02	-15.20	-25.06
5	0.45078	0.23	45.83	19.57	46.06	19.80	56.86	46.86	-10.80	-27.06
6	4.01953	0.40	33.19	10.99	33.59	11.39	56.00	46.00	-22.41	-34.61

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. No. 1 is Fundamental frequency: 110KHz ~ 120KHz



INPUT POWER	120 Vac, 60 Hz	6dB BANDWIDTH	9 kHz
ENVIRONMENTAL CONDITIONS	22deg. C, 65% RH	PHASE	Line 2
TESTED BY	Daniel Lin		

	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	0.19	63.09	43.49	63.28	43.68	65.38	55.38	-2.09	-11.69
2	0.20469	0.19	54.83	32.21	55.02	32.40	63.42	53.42	-8.40	-21.02
3	0.25938	0.21	50.89	41.23	51.10	41.44	61.45	51.45	-10.35	-10.01
4	0.78672	0.26	47.66	43.82	47.92	44.08	56.00	46.00	-8.08	-1.92
5	1.31250	0.28	47.38	43.58	47.66	43.86	56.00	46.00	-8.34	-2.14
6	3.30469	0.40	19.61	11.99	20.01	12.39	56.00	46.00	-35.99	-33.61

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value
- 6. No. 1 is Fundamental frequency: 110KHz ~ 120KHz

RADIATED EMISSION MEASUREMENT

4.1.8 LIMITS OF RADIATED EMISSION MEASUREMENT

TEST STANDARD: FCC Part 15, Subpart B (section: 15.109)

ICES-003:2012 Issue 5 (section: 6.2)

Emissions radiated outside of the specified bands, shall be according to the general radiated limits as following:

Radiated Emissions Limits at 10 meters (dBµV/m)							
Frequencies (MHz)	FCC 15B/ ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B			
30-88	39	29.5					
88-216	43.5	33.1	40	30			
216-230	46.4	35.6					
230-960	40.4	33.6	47	37			
960-1000	49.5	43.5	4/	3/			
1000-3000	Avg: 49.5	Avg: 43.5	Not defined	Not defined			
3000+	Peak: 69.5	Peak: 63.5	Not defined	Not defined			

Radiated Emissions Limits at 3 meters (dBµV/m)								
Frequencies (MHz)	FCC 15B / ICES-003, Class A	FCC 15B / ICES-003, Class B	CISPR 22, Class A	CISPR 22, Class B				
30-88	49.5	40						
88-216	54	43.5	50.5	40.5				
216-230	56.9	46						
230-960	50.9	40	57.5	47.5				
960-1000	60	54	57.5	47.5				
1000-3000			Avg: 56	Avg: 50				
	Avg: 60	Avg: 54	Peak: 76	Peak: 70				
3000+	Peak: 80	Peak: 74	Avg: 60 Peak: 80	Avg: 54 Peak: 74				

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 4. QP detector shall be applied if not specified.

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40GHz, whichever is lower

4.1.9 TEST INSTRUMENTS

Frequency range 30MHz~1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ (V)	ESIB7	100187	Dec. 27, 2012	Dec. 26, 2013
Test Receiver ROHDE & SCHWARZ (H)	ESIB7	100188	May 20, 2013	May 19, 2014
BILOG Antenna SCHWARZBECK (V)	VULB9168	9168-148	Mar. 19, 2013	Mar. 18, 2014
BILOG Antenna SCHWARZBECK (H)	VULB9168	9168-149	Mar. 19, 2013	Mar. 18, 2014
Preamplifier Agilent (V)	8447D	2944A10636	Oct. 18, 2013	Oct. 17, 2014
Preamplifier Agilent (H)	8447D	2944A10637	Oct. 18, 2013	Oct. 17, 2014
Preamplifier Agilent	8449B	3008A01959	Oct. 18, 2013	Oct. 17, 2014
RF signal cable Woken (V)	8D-FB	Cable-Hych1-01	Oct. 26, 2013	Oct. 25, 2014
RF signal cable Woken (H)	8D-FB	Cable-Hych1-02	Oct. 26, 2013	Oct. 25, 2014
Software BV ADT	BV ADT_Radiated_ V 7.7.03.8	NA	NA	NA
Antenna Tower (V)	MFA-440	9707	NA	NA
Antenna Tower (H)	MFA-440	970705	NA	NA
Turn Table	DS430	50303	NA	NA
Controller (V)	MF7802	074	NA	NA
Controller (H)	MF7802	08093	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 1.
- 3. The FCC Site Registration No. is 477732.
- 4. The IC Site Registration No. is IC 7450F-1.
- 5. The VCCI Site Registration No. is R-1893.

Frequency range above 1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Oct. 24, 2013	Oct. 23, 2014
Spectrum Analyzer Agilent	E4446A	MY44360124	Jan. 09, 2013	Jan. 08, 2014
BILOG Antenna SCHWARZBECK	VULB9168	9168-157	Mar. 20, 2013	Mar. 19, 2014
RF signal cable Woken	8D-FB	NA	Mar. 22, 2013	Mar. 21, 2014
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-404	Dec. 22, 2012	Dec. 21, 2013
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 25, 2012	Dec. 24, 2013
Preamplifier Agilent (Below 1GHz)	8447D	2944A10629	Oct. 18, 2013	Oct. 17, 2014
Preamplifier Agilent (Above 1GHz)	8449B	3008A01959	Oct. 18, 2013	Oct. 17, 2014
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MWX322+MW X2211308S029 5	Sep. 09, 2013	Sep. 08, 2014
Software BV ADT	BV ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Controller BV ADT	SC100	SC93021702	NA	NA
RF signal cable HUBER+SUHNNER	SUCOFLEX 102	38218/2+ 37433/2	Oct. 26, 2013	Oct. 25, 2014
Fix tool for Boresight antenna tower	BAF-01	2	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 2.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 686814.
- 5. The IC Site Registration No. is IC 7450F-2.
- 6. The VCCI Site Registration No. is G-18.

4.1.10 TEST PROCEDURES

Frequency range 30MHz~1GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from 1 meter to 4 meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.

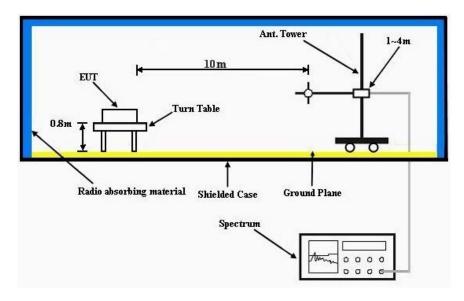
NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-Peak (QP) detection at frequency below 1GHz.

Frequency range above 1GHz

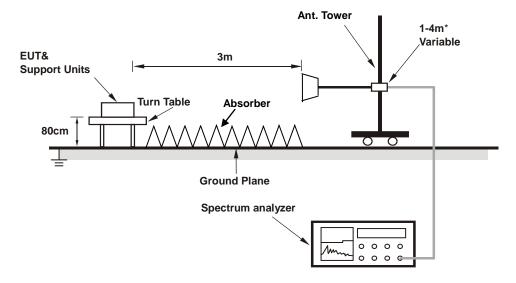
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from 1 meter to 4 meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.

NOTE:

- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak (PK) detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz for Average (AV) detection at frequency above 1GHz.
- 2. For measurement of frequency above 1000MHz, the EUT was set 3 meters away from the receiver antenna.


4.1.11 DEVIATION FROM TEST STANDARD

No deviation.



4.1.12 TEST SETUP

Frequency range 30MHz~1GHz

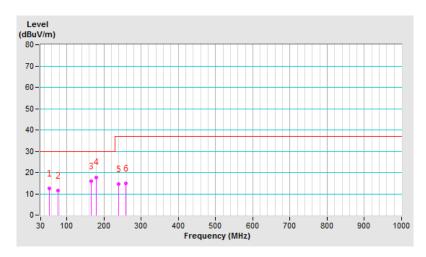
Frequency range above 1GHz

*: depends on the EUT height and the antenna 3dB beamwidth both.

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.1.13 EUT OPERATING CONDITIONS

- a. Placed the EUT and Bluetooth earphone on a testing table.
- b. The EUT linked with Bluetooth earphone in idle mode.
- c. The EUT sent audio signal to the earphone.
- d. The EUT linked with notebook and communicated data with it.
- e. The notebook sent "H" patterns to the printer, and the printer printed them.
- f. Turn on camera function.
- g. The EUT communicated data with the wireless AP and Radio Communication Analyzer, which acted as communication partners.
- h. The communication partner connected with EUT via LTE and WLAN under receiving condition continuously at specific channel frequency.
- i. The necessary accessories enable the system in full functions

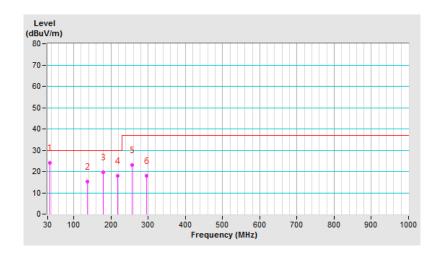


i. TEST RESULTS

INPUT POWER	120 Vac, 60 Hz	FREQUENCY RANGE	30-1000 MHz
ENVIRONMENTAL CONDITIONS	20 deg. C, 73% RH	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak , 120 kHz
TESTED BY	Scott Chen		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	53.33	12.53 QP	30.00	-17.47	2.50 H	102	26.57	-14.04	
2	76.65	11.51 QP	30.00	-18.49	3.00 H	90	29.67	-18.16	
3	166.07	15.94 QP	30.00	-14.06	3.00 H	83	30.50	-14.56	
4	179.68	17.80 QP	30.00	-12.20	2.50 H	334	32.83	-15.03	
5	239.94	14.64 QP	37.00	-22.36	2.50 H	126	29.28	-14.64	
6	259.38	14.87 QP	37.00	-22.13	3.50 H	76	28.75	-13.88	

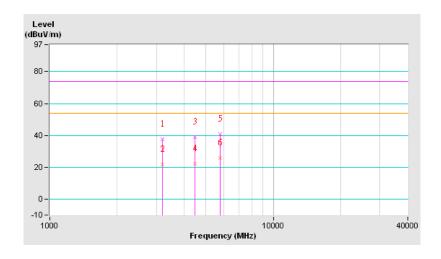
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



INPUT POWER	120 Vac, 60 Hz	FREQUENCY RANGE	30-1000 MHz
ENVIRONMENTAL CONDITIONS	20 deg. C, 73% RH	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak , 120 kHz
TESTED BY	Scott Chen		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	35.83	23.91 QP	30.00	-6.09	1.50 V	260	38.52	-14.61
2	136.91	15.36 QP	30.00	-14.64	1.50 V	193	29.95	-14.59
3	179.68	19.83 QP	30.00	-10.17	2.00 V	197	34.27	-14.44
4	218.56	17.97 QP	30.00	-12.03	1.00 V	337	34.07	-16.10
5	257.43	23.12 QP	37.00	-13.88	1.00 V	164	36.40	-13.28
6	296.31	17.93 QP	37.00	-19.07	1.50 V	20	29.39	-11.46

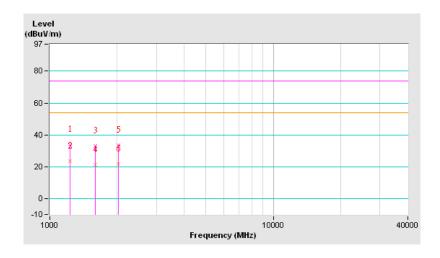
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



INPUT POWER	120 Vac, 60 Hz	FREQUENCY RANGE	1-40 GHz	
ENVIRONMENTAL CONDITIONS	18 deg. C, 66% RH	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1 MHz	
TESTED BY	Ben Huang			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	3191.85	37.62 PK	74.00	-36.38	1.50 H	85	43.70	-6.08
2	3191.85	21.63 AV	54.00	-32.37	1.50 H	85	27.71	-6.08
3	4471.62	38.90 PK	74.00	-35.10	1.50 H	276	41.78	-2.88
4	4471.62	22.36 AV	54.00	-31.64	1.50 H	276	25.24	-2.88
5	5800.69	40.98 PK	74.00	-33.02	1.00 H	239	40.84	0.14
6	5800.69	25.63 AV	54.00	-28.37	1.00 H	239	25.49	0.14

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



INPUT POWER	120 Vac, 60 Hz	FREQUENCY RANGE	1-40 GHz	
ENVIRONMENTAL CONDITIONS	18 deg. C, 66% RH	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1 MHz	
TESTED BY	Ben Huang			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1231.63	33.96 PK	74.00	-40.04	1.00 V	113	45.74	-11.78
2	1231.63	23.62 AV	54.00	-30.38	1.00 V	113	35.40	-11.78
3	1601.26	33.23 PK	74.00	-40.77	1.00 V	12	43.53	-10.30
4	1601.26	21.20 AV	54.00	-32.80	1.00 V	12	31.50	-10.30
5	2030.52	33.69 PK	74.00	-40.31	1.00 V	139	42.76	-9.07
6	2030.52	21.52 AV	54.00	-32.48	1.00 V	139	30.59	-9.07

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

5 PHOTOGRAPHS OF THE TEST CONFIGURATION Please refer to the attached file (Test Setup Photo)

 Report No.: FC131119C06
 26 of 28
 Report Format Version 5.0.1

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF Lab

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATION RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

--- END ---