

TEST REPORT

For

- Applicant : RM ACQUISITIONS LLC
 - Address: 9855 Woods Drive Skokie. IL 60077 U.S.A
- **Product Name : TND Tablet**
 - Model Name : TNDT80B, RVT80B, RET80B
 - Brand Name : Rand Mcnally
 - FCC ID : A4C-1000AA
 - Report No. : MTE/CEC/S16071514
 - Date of Issue : Jul.19, 2016
 - Issued by : Most Technology Service Co., Ltd.
 - Address : No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-8602 6850
 - Fax : 86-755-26013350

The report consists 52 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by MOST. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1 Product Information	5
2.2 Objective	5
2.3 Test Standards and Results	6
2.4 Environmental Conditions	6
3. TEST METHODOLOGY	7
3. 1TEST FACILITY	
3.2 GENERAL TEST PROCEDURES	
4. SETUP OF EQUIPMENT UNDER TEST	
4.1 SETUP CONFIGURATION OF EUT	
4.2 TEST EQUIPMENT LIST	
5. 47 CFR Part 15 C Requirements	
5.1 RF EXPOSURE	
5.1.1 Applicable Standard	
5.1.2 Measurement Result	
5.2 ANTENNA REQUIREMENT	
5.2.1 Applicable Standard	
5.2.2 Evaluation Criteria	
5.2.3 Result: Compliance	
5.3 AC Power Line Conducted Emission	
5.3.1Requirement	
5.3.2 Block Diagram of Test Setup	
5.3.3 Test procedure	
5.3.4 Test Result	
5.4 Radiated Emission	
5.4.1Requirement	16
5.4.2 Test Configuration	
5.4.3 Test Procedure:	
5.4.4 Test Result	18
5.5.1 Requirement	25
5.5.2 Block Diagram of Test Setup	25
5.5.3 Test Procedure	25
5.5.4 Test Result	25
5.6 20dB Emission Bandwidth	29
5.6.1 Test Requirement	29
5.6.2 Test Procedure	29
5.6.3 Test Result	
5.7 Carrier Frequency Separation	
5.7.1 Test Requirement	
5.7.2 Test Procedure	33
5.7.3 Test Result	
5.8 Number of Hopping Channel	
5.8.1 Test Requirement	
5.8.2 Test Procedure	
5.8.3 Test Result	
5.9 Dwell Time	
Page 2 d	of 52

5.9.1 Test Requirement	
5.9.2 Test Procedure	39
5.9.3 Test Result	39
5.9 Band Edge and Conducted Spurious Emissions	43
5.9.1 Test Requirement	43
5.9.2 Test Procedure	43
5.9.3 Test Result	
5.10 Restricted Frequency Bands	
5.10.1 Test Requirement	
5.10.2 Test Configuration	
5.10.3 Test Procedure:	
5.10.4 Test Result	48

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	TND Tablet			
Brand Name:	Rand Mcnally			
Model Number:	TNDT80B(Adapter Model:KZ0502000)			
FCC ID:	A4C-1000AA			
Applicant:	RM ACQUISITIONS LLC			
	9855 Woods Drive Skokie. IL 60077 U.S.A			
Manufacturer:	SHEN ZHEN APICAL TECHNOLOGY CO., LTD			
	9/F,B Building, Tinghua Unis Infoport, Langshan RD, North district, Hi-tech Industrial Park, Nanshan, Shenzhen			
Technical Standards:	47 CFR Part 15 Subpart C			
File Number:	MTE/CEC/S16071514			
Date of test:	Jul.01-18, 2016			
Deviation:	None			
Condition of Test Sample:	Normal			
Test Result:	PASS			

The above equipment was tested by Most Technology Service Co., Ltd. for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

chloe	
Chloe Cai	Jul.01-18, 2016
Henry	APPROVED
Henry Chen	* EMC & JUL 19, 2016
the	
	Chloe Cai Henry

Yvette Zhou (Manager) Jul.19, 2016

2. GENERAL INFORMATION

2.1 Product Information

Product	TND Tablet			
Brand Name	Rand Mcnally			
Model Number	TNDT80B			
Series Model Name:	VT80B, RET80B			
Series Model Difference description:	Only different in model name.			
Power Supply	DC 5V by USB Port DC 3.7V by Battery			
Frequency Range	2402MHz -2480MHz			
Modulation Type:	GFSK, π /4-DQPSK, 8DPSK			
Modulation Technique	FHSS			
Channel Number	79			
Antenna Type	Internal Antenna, 0.5dBi			
Temperature Range	-10°C ~ +55°C			

NOTE:

1. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

The objective of the report is to perform tests according to FCC Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title				
1	47 CFR Part 15	Radio Frequency Devices				
2	DA00-705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.				

No.	Section	Test Items	Result	Date of Test			
1	FCC 15.247 (i)	RF EXPOSURE	PASS	2016-07-12			
2	FCC 15.203	Antenna Requirement	PASS	2016-07-13			
3	FCC15.207 (a)	AC Power Line Conducted Emission	PASS	2016-07-12			
4	FCC15.209, 15.247(d)	Radiated Emission	PASS	2016-07-12			
5	FCC 15.247 (b)(1)	Conducted Peak Output Power	PASS	2016-07-11			
6	FCC 15.247 (a)(1)	20dB Emission Bandwidth	PASS	2016-07-11			
7	FCC 15.247 (a)(1)	Carrier Frequency Separation	2016-07-11				
8	FCC 15.247 (a)(1)(iii)	Number of Hopping Channel	PASS	2016-07-11			
9	FCC 15.247 (a)(1) (iii)	Dwell Time	PASS	2016-07-12			
10	FCC15.247(d)	Band Edge and Conducted Spurious Emissions	PASS	2016-07-12			
11	FCC15.247(d)	Restricted Frequency Bands	PASS	2016-07-12			
Domo	Pemark: N/A means not applicable						

2.3 Test Standards and Results

Remark: N/A means not applicable

Note: 1. The test result judgment is decided by the limit of measurement standard

2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST METHODOLOGY

3. 1TEST FACILITY

Test Site:	Most Technology Service Co., Ltd
Location:	No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
Description:	There is one 3m semi-anechoic an area test sites and two line conducted labs for final
	test. The Open Area Test Sites and the Line Conducted labs are constructed and
	calibrated to meet the FCC requirements in documents ANSI C63.10:2013 and CISPR
	16 requirements.
	The FCC Registration Number is 490827. The IC Registration Number is 7103A-1.
Site Filing:	The site description is on file with the Federal Communications
	Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
Instrument	All measuring equipment is in accord with ANSI C63.10:2013 and CISPR 16
Tolerance:	requirements that meet industry regulatory agency and accreditation agency
	requirement.
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted
	Emission, one in vertical and the other in horizontal. The dimensions of these ground
	planes are as below. The vertical ground plane was placed distancing 40 cm to the
	rear of the wooden test table on where the EUT and the support equipment were
	placed during test. The horizontal ground plane projected 50 cm beyond the footprint
	of the EUT system and distanced 80 cm to the wooden test table. For Radiated
	Emission Test, one horizontal conductive ground plane extended at least 1m beyond
	the periphery of the EUT and the largest measuring antenna, and covered the entire
	area between the EUT and the antenna.

3.2 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.5 of ANSI C63.10:2013.

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10:2013, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

4. SETUP OF EQUIPMENT UNDER TEST

4.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

4.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at Most for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No. S/N		Calibration date	Calibration Interval
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2016/03/10	1 Year
2	Spectrum Analyzer	Agilent	E7405A	US44210471	2016/03/14	1 Year
3	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2016/03/10	1 Year
4	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2016/03/07	1 Year
5	Terminator	Hubersuhner	50Ω	No.1	2016/03/07	1 Year
6	RF Cable	SchwarzBeck	N/A	No.1	2016/03/07	1 Year
7	Test Receiver	Rohde & Schwarz	ESPI	ESPI 101202		1 Year
8	Bilog Antenna	Sunol	JB3	JB3 A121206		1 Year
9	Horn Antenna	SCHWARZBECK	BBHA9120D	756	2016/03/14	1 Year
10	Horn Antenna	Penn Engineering	9034	9034 8376		1 Year
11	Cable	Resenberger	N/A	N/A NO.1		1 Year
12	Cable	SchwarzBeck	N/A	NO.2	2016/03/07	1 Year
13	Cable	SchwarzBeck	N/A	N/A NO.3		1 Year
14	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2016/03/07	1 Year
15	Test Receiver	Rohde & Schwarz	ESCI	100492	2016/03/10	1 Year
16	Loop antenna	ARA	PLA-1030/B	1039	2016/03/14	1 Year

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15 C Requirements

5.1 RF EXPOSURE

5.1.1 Applicable Standard

According to§15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v05r02:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

5.1.2 Measurement Result

The maximum conducted output power=6.004 dBm (3.985 mW) at 2402 MHz [(max. power of channel, mW)/(min. test separation distance, mm)] [\sqrt{f} (GHz)]

=3.985/5*(\(\)2.402) = 1.550< 3.0

So the stand-alone SAR evaluation is not necessary.

5.2 ANTENNA REQUIREMENT

5.2.1 Applicable Standard

According to FCC § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2.2 Evaluation Criteria

(a) Antenna must be permanently attached to the unit.

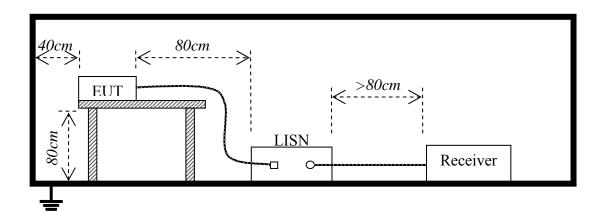
(b) Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, Installer shall be responsible for verifying that the correct antenna is employed with the unit.

5.2.3 Result: Compliance.

The EUT has one integral antenna arrangement, which was permanently attached and the antenna gain is 0.5 dBi, fulfill the requirement of this section.

5.3 AC Power Line Conducted Emission 5.3.1Requirement


A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the and 150 kHz-30 MHz, shall not exceed the limits in the following table:

Eroquopov	Maximum RF	Line Voltage
Frequency	Q.P.(dBuV)	Average(dBuV)
150kHz-500kHz	66-56	56-46
500kHz-5MHz	56	46
5MHz-30MHz	60	50

**Note: 1. the lower limit shall apply at the band edges.

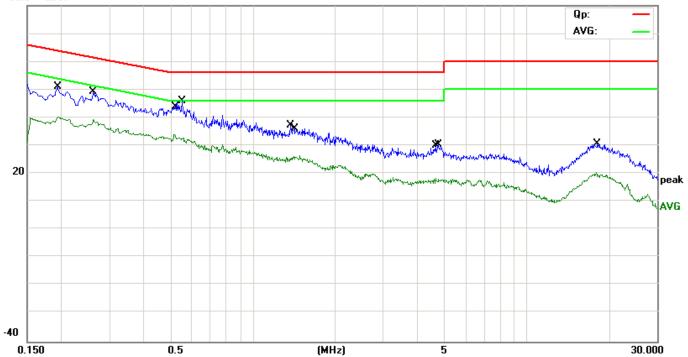
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

5.3.2 Block Diagram of Test Setup

5.3.3 Test procedure

- 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
- 2. Exploratory measurements were made to identify the frequency of the emission that has the highest amplitude relative to the limit;
- 3. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
- 4. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
- 5. The bandwidth of test receiver (ESCI) set at 9 KHz.
- 6. All data was recorded in the Quasi-peak and average detection mode.

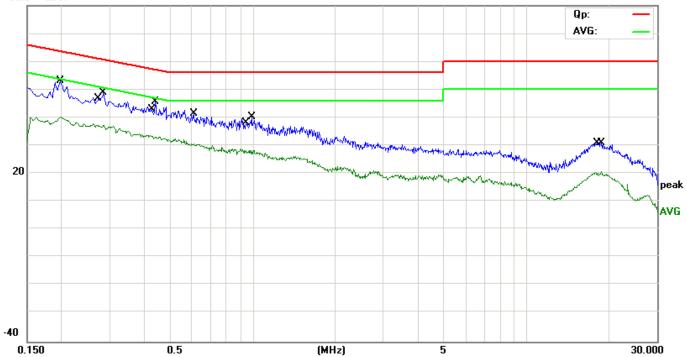
5.3.4 Test Result


Pass

Note: All test modes are performed, only the worst case is recorded in this report.

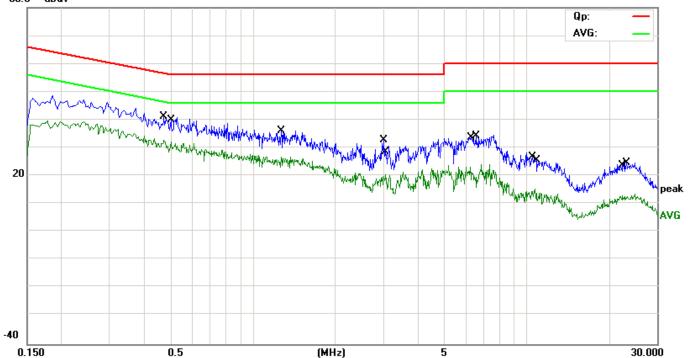
Please refer the following pages.

EUT:	TND Tablet	M/N:	TNDT80B (Adapter Model:KZ0502000)
Mode:	Charging	Phase:	L1
Test by:	John	Power:	DC 5V by USB Port
Temperature: / Humidity	23.4°C/ 52.9%	Test date:	2016-07-11



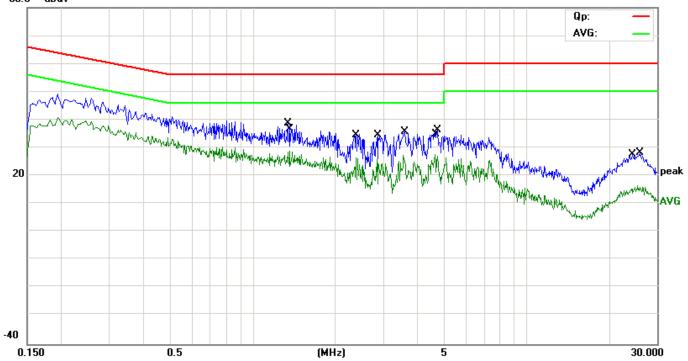
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1940	41.55	9.60	51.15	63.86	-12.71	QP	
2		0.1940	30.68	9.60	40.28	53.86	-13.58	AVG	
3		0.2620	39.74	9.60	49.34	61.37	-12.03	QP	
4		0.2620	29.62	9.60	39.22	51.37	-12.15	AVG	
5		0.5180	24.24	9.59	33.83	46.00	-12.17	AVG	
6	*	0.5540	36.23	9.59	45.82	56.00	-10.18	QP	
7		1.3740	27.74	9.60	37.34	56.00	-18.66	QP	
8		1.4180	16.53	9.60	26.13	46.00	-19.87	AVG	
9		4.6660	8.79	9.63	18.42	46.00	-27.58	AVG	
10		4.7500	20.87	9.63	30.50	56.00	-25.50	QP	
11		17.9540	10.64	9.72	20.36	50.00	-29.64	AVG	
12		18.1780	20.81	9.72	30.53	60.00	-29.47	QP	

EUT:	TND Tablet	M/N:	TNDT80B (Adapter Model:KZ0502000)
Mode:	Charging	Phase:	Ν
Test by:	John	Power:	DC 5V by USB Port
Temperature: / Humidity	23.4℃/ 52.9%	Test date:	2016-07-11



					•••••			-	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.1980	43.47	9.60	53.07	63.69	-10.62	QP		
2	0.1980	30.77	9.60	40.37	53.69	-13.32	AVG		
3	0.2701	27.70	9.60	37.30	51.11	-13.81	AVG		
4	0.2860	39.35	9.59	48.94	60.64	-11.70	QP		
5	0.4220	24.05	9.59	33.64	47.41	-13.77	AVG		
6	0.4420	36.04	9.59	45.63	57.02	-11.39	QP		
7	0.6100	31.77	9.59	41.36	56.00	-14.64	QP		
8	0.6100	21.02	9.59	30.61	46.00	-15.39	AVG		
9	0.9460	18.74	9.60	28.34	46.00	-17.66	AVG		
10	0.9940	30.62	9.60	40.22	56.00	-15.78	QP		
11	18.0900	21.29	9.72	31.01	60.00	-28.99	QP		
12	18.7460	10.95	9.72	20.67	50.00	-29.33	AVG		

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	Charging	Phase:	L1
Test by:	John	Power:	DC 5V by USB Port
Temperature: / Humidity	23.4℃/ 52.9%	Test date:	2016-07-14



0.100	0.0				(0 00.				
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over						
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment				
1	6.2420	11.81	11.25	23.06	50.00	-26.94	AVG					
2	6.5340	23.28	11.08	34.36	60.00	-25.64	QP					
3	23.1660	15.70	9.00	24.70	60.00	-35.30	QP					
4	22.5220	3.87	9.00	12.87	50.00	-37.13	AVG					
5	10.7660	6.41	9.00	15.41	50.00	-34.59	AVG					
6	10.5580	17.83	9.00	26.83	60.00	-33.17	QP					
7	3.0660	10.25	10.07	20.32	46.00	-25.68	AVG					
8	3.0180	22.71	10.02	32.73	56.00	-23.27	QP					
9	0.5020	30.06	10.00	40.06	56.00	-15.94	QP					
10 *	0.4780	22.41	10.15	32.56	46.37	-13.81	AVG					
11	1.2700	16.87	9.73	26.60	46.00	-19.40	AVG					
12	1.2700	26.37	9.73	36.10	56.00	-19.90	QP					

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	Charging	Phase:	Ν
Test by:	John	Power:	DC 5V by USB Port
Temperature: / Humidity	23.4℃/ 52.9%	Test date:	2016-07-14

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	1.3660	19.14	9.63	28.77	46.00	-17.23	AVG	
2	1.3460	28.95	9.65	38.60	56.00	-17.40	QP	
3	2.3900	25.27	9.39	34.66	56.00	-21.34	QP	
4	2.3900	17.12	9.39	26.51	46.00	-19.49	AVG	
5	2.8540	16.00	9.85	25.85	46.00	-20.15	AVG	
6	2.8740	24.75	9.87	34.62	56.00	-21.38	QP	
7	3.5900	25.28	10.59	35.87	56.00	-20.13	QP	
8	3.5500	16.69	10.55	27.24	46.00	-18.76	AVG	
9	4.6300	16.01	11.63	27.64	46.00	-18.36	AVG	
10	4.7460	24.48	11.75	36.23	56.00	-19.77	QP	
11	24.4860	18.54	9.00	27.54	60.00	-32.46	QP	
12	25.4860	7.43	9.00	16.43	50.00	-33.57	AVG	

5.4 Radiated Emission 5.4.1Requirement

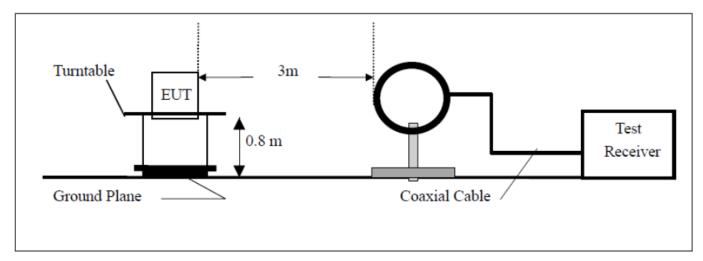
According to FCC section 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC section 15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

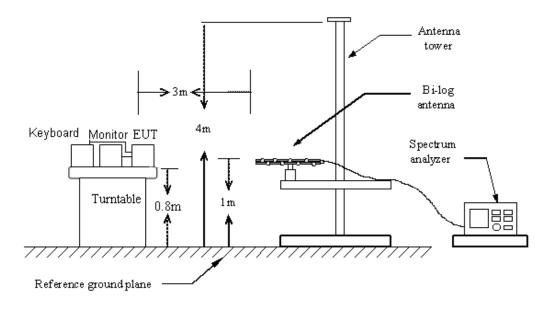
Frequency (MHz)	Field Strength (µV/m at 3-meter)	Test Distance (m)	Field Strength (dBµV/m at 3-meter)
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705-30	30	30	
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Note:

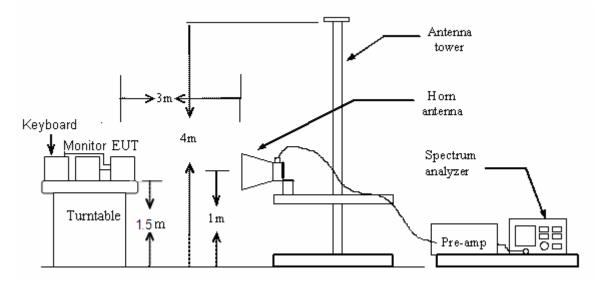
1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.


2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


5.4.2 Test Configuration

Test Setup:


1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

5.4.3 Test Procedure:

- 1. For frequencies above 1GHz, the frequencies of maximum emission was recorded by manually positioning the antenna close to the EUT and by moving the antenna over all sides of the EUT while observing a spectral display.
- 2. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 4. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rote table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. For frequencies above 1GHz, horn antenna mouth should face to the EUT all the time when rise or fall.

7. Set the spectrum analyzer in the following setting as:

Below 1GHz: PEAK: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO QP: RBW=120 kHz / Sweep=AUTO Above 1GHz: (a)PEAK: RBW=VBW=1MHz / Sweep=AUTO (b)AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

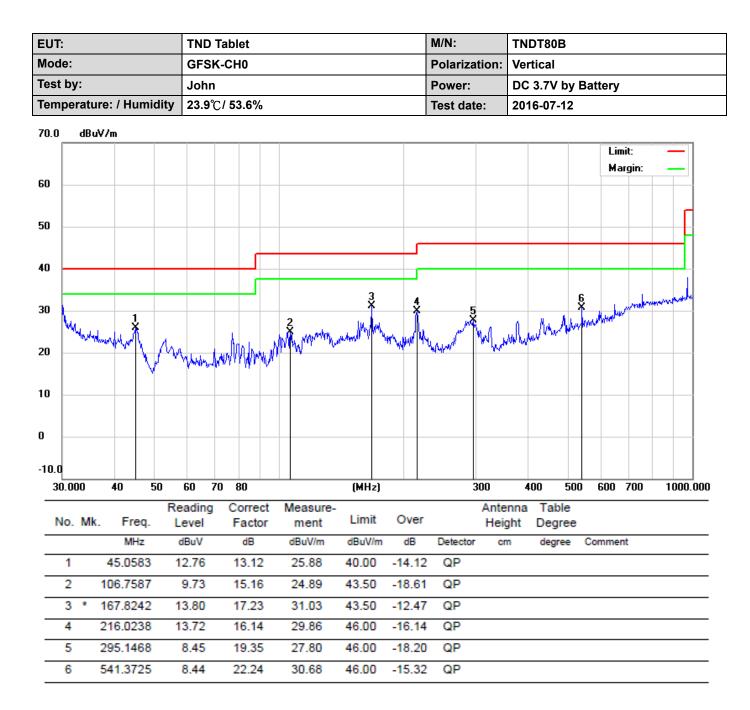
The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

8. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.4.4 Test Result

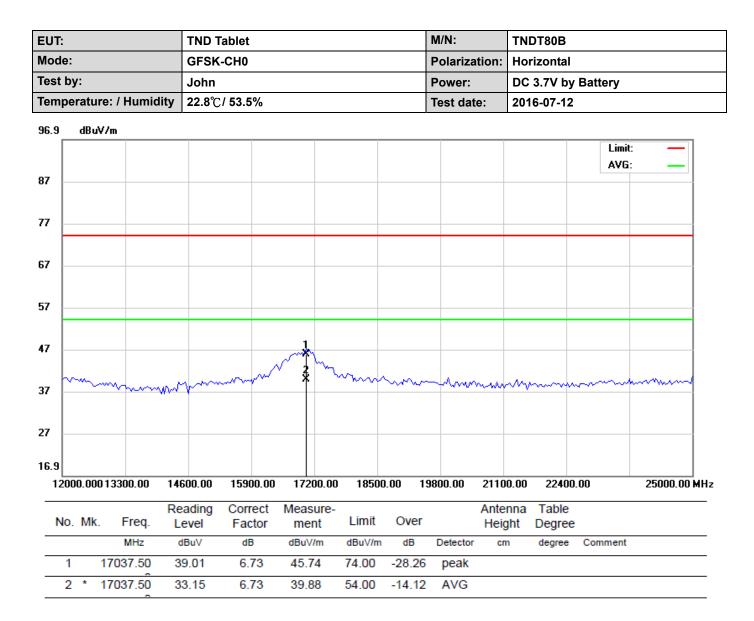
Pass

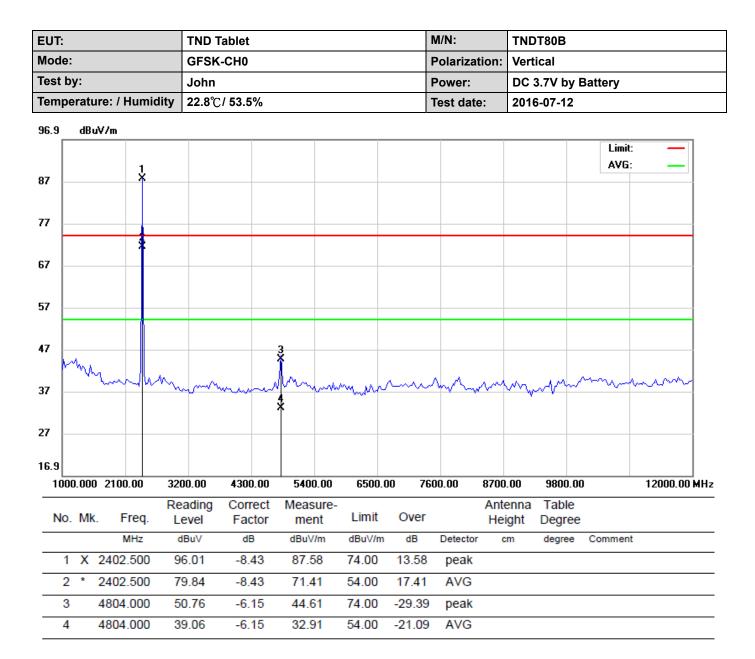
Remark:

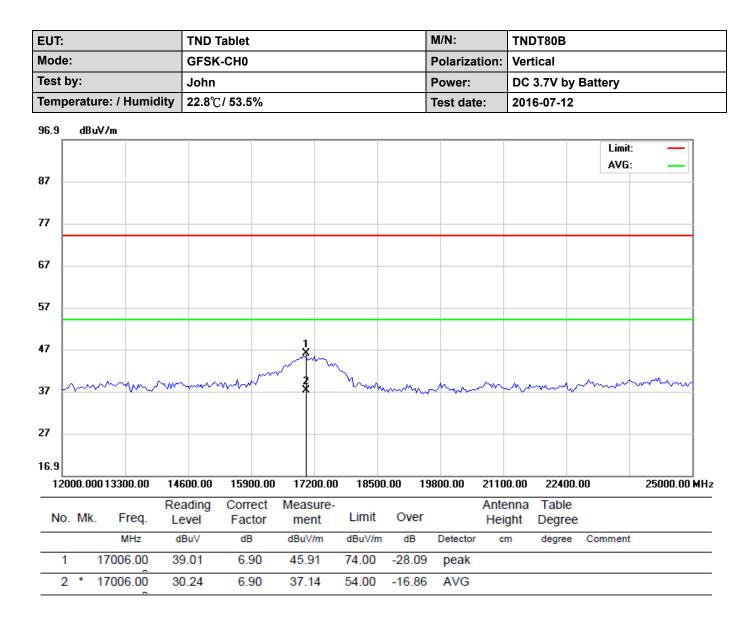

1. During the test, pre-scan the GFSK, π /4-QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case in above 1GHz and the GFSK Low channel modulation which it is worse case in below 1GHz.

2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Please refer the following pages.

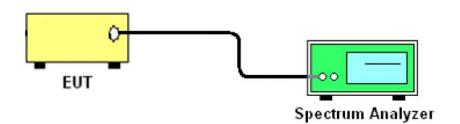

Below 1GHz:


EUT:				D Tablet				M/N:		TNDT80B					
Mode	:		GF	SK-CH0				Polarizatio	n: ⊢	lorizonta	al				
Test b	oy:		Jol	n				Power:	C	DC 3.7V	by Ba	attery	,		
Temp	eratu	ıre: / Humi	dity 23.	9℃/ 53.6%				Test date:	2	016-07-	12				
70.0	dBu	i¥∕m			1			ĺ							
													mit: argin:		
60 -											_	_			
50 -													_		
															-1
40 -													_		
													6 X		
30 -								4	-5	i			man	nere M	wh
												1.1025			
. Jul	1 X				2		3	walked	M	M	wheth	Werter			
20	1 Windy	h		p	MMMMM	wannahan	MAN	mmm	N	Kuphpala	whenty	WINDI			
20	1 William	alight - broken		un all months of the	MMMM	www.handela	LAN ANAL	mm	N. Mar	human	whenth	WICHIN			
	1 X Wurdy	and the state of t	why me have	and we have the	y Minute Marine	www.chandleta	LANNA	mm	weeke	Kerempula	mberty	Weller			
20 -	1 X Wnudy	the way	hallymouth	apprend watched A	2 MMMMMM	w-Activelity	MANA	and	and the	hurman	muntu	Wellow			
10 -	1 Windy	uligh rapiding	haddynamadayda ^{an}	anne an the	Mana	indre handlikkel og	April 1	www.www.	n den	humbra	www.hh	WPUP"			
		uhan ya wanan	haddynamadainan	annessaichte	AMM Manay	indrokadilita	L. Maryl	www.www.	M	humber		W ^{IUM}			
10 -		uligh radian	haddyneniddynen	woman worked A	A MANAA	waaduuddhaa	Lun Bangh	www.mill	arden	hummun		W			
10 -			адириний 50 60	70 80	A Marian	<u>ምላላለም∰ዋ</u> ላ (MHz)		300	, Ma	400	500		700	1	000.00
10 0 -10.0 30.0	000	40		70 80 g Correct	Measure-	(MHz)		300 Ante	nna	400 Table	500			1	000.00
10 0 -10.0 		40 :	50 60 Readin	70 80 G Correct Factor	Measure- ment	(MHz) Limit	Over	300 Ante Hei	nna	400	500	600		1	000.00
10	000 . Mk.	40 . Freq. MHz	50 60 Readin Level dBuV	70 80 70 80 G Correct Factor dB	Measure- ment dBuV/m	(MHz) Limit dBuV/m	Over	300 Ante Hei Detector c	enna ght	400 Table	500			1	000.00
10 D 10.0 30.0	000 . Mk.	40 Freq. MHz 31.8427	50 60 Readin Level dBuV 4.28	70 80 70 80 G Correct Factor dB 20.84	Measure- ment dBuV/m 25.12	(MHz) Limit dBuV/m 40.00	Over dB -14.88	300 Ante Hei	enna ght	400 Table Degree	500	600		1	000.00
10 -10.0 	000 . Mk.	40 . Freq. MHz 31.8427 100.2285	50 60 Readin Level dBuV 4.28 12.87	70 80 70 80 70 Correct Factor dB 20.84 13.26	Measure- ment dBuV/m 25.12 26.13	(MHz) Limit dBuV/m 40.00 43.50	Over dB -14.88 -17.37	300 Ante Hei Detector c QP QP	enna ght	400 Table Degree	500	600		1	000.00
10 10.0 30.0	000 Mk.	40 Freq. MHz 31.8427 100.2285 198.5879	50 60 Readin Level dBuV 4.28 12.87 5.60	70 80 70	Measure- ment dBuV/m 25.12 26.13 22.89	(MHz) Limit dBuV/m 40.00 43.50 43.50	Over dB -14.88 -17.37 -20.61	300 Ante Hei Detector c QP QP	enna ght	400 Table Degree	500	600		1	
10 -10.0 	000 Mk.	40 . Freq. MHz 31.8427 100.2285	50 60 Readin Level dBuV 4.28 12.87	70 80 70 80 70 Correct Factor dB 20.84 13.26	Measure- ment dBuV/m 25.12 26.13	(MHz) Limit dBuV/m 40.00 43.50 43.50	Over dB -14.88 -17.37	300 Ante Hei Detector c QP QP	enna ght	400 Table Degree	500	600		1	000.00
10 -10.0 30.0 No 1 2 3	000 . Mk.	40 Freq. MHz 31.8427 100.2285 198.5879	50 60 Readin Level dBuV 4.28 12.87 5.60	70 80 70	Measure- ment dBuV/m 25.12 26.13 22.89	(MHz) Limit dBuV/m 40.00 43.50 43.50 46.00	Over dB -14.88 -17.37 -20.61	300 Ante Hei Detector c QP QP	enna ght	400 Table Degree	500	600		1	



Above 1GHz:

EUT:			TND	Tablet				M/N:		TNDT80B			
Mode:			GFS	K-CH0				Polarizat	ion:	Hor	izontal		
Test b	y:		Johi	ו				Power:		DC 3.7V by Battery			
Tempe	erat	ure: / Humic	lity 22.8	°C/ 53.5%				Test date	:	2010	6-07-12		
96.9	dB	uV/m											
Г												Limit	
87		1 X										AVG	
"													
77 📙													
. –		- 3											
67 L		1											
57													
F													
47 📙													
					3								
37 🗋	~~	When the	mon	a mana and a marked a second and a second a se	thomas	m	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hon	~~~	M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm
					4								
27					×								
16.9 100	<u>n nn</u>	D 2100.00	3200.00	4300.00	5400.00	6500.	00 71	600.00	8700.	nn	9800.00	1	12000.00 MHz
			Reading		Measure-				Ante		Table		
No.	M		Level	Factor	ment	Limit	Over		Heig	jht	Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m		Detector	cm	n	degree	Comment	
		2402.500	95.86	-8.43	87.43	74.00	13.43	peak					
	*	2402.500	80.01	-8.43	71.58	54.00	17.58	AVG					
3		4804.000	46.75	-6.15	40.60	74.00	-33.40						
4		4804.000	35.04	-6.15	28.89	54.00	-25.11	AVG					

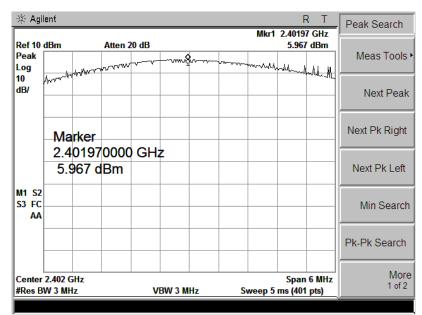


5.5 Conducted Peak Output Power

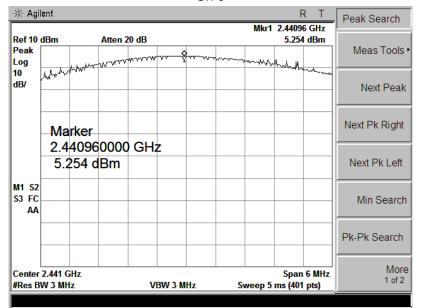
5.5.1 Requirement

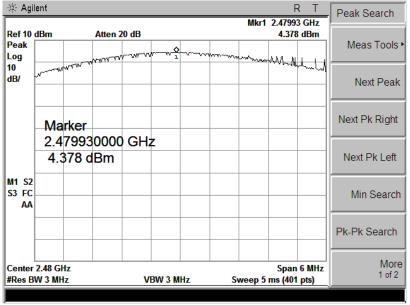
According to FCC Section 15.247(b)(1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725- 5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

5.5.2 Block Diagram of Test Setup


5.5.3 Test Procedure

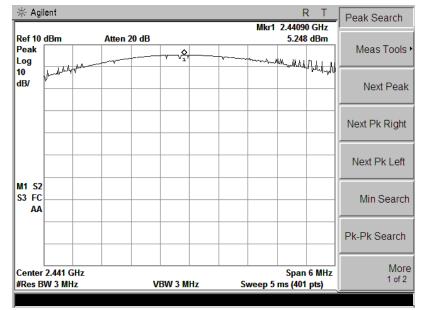
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

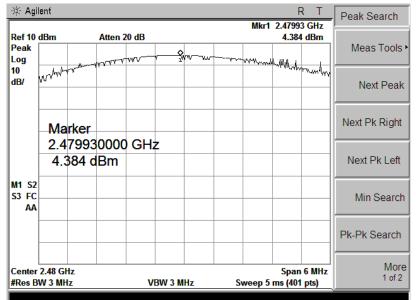

5.5.4 Test Result


Test Item:	Peak Output Power	Temperature :	21°C
Test Engineer:	Kang	Relative Humidity :	59%

Mode	Channel	Frequency	Peak Output	Liı	Pass/Fail	
mede	Chaine	(MHz)	Power(dBm)	(mW)	(dBm)	1 400/1 411
	Low	2402	5.967	125	20.97	Pass
BDR (GFSK)	Middle	2441	5.254	125	20.97	Pass
	High	2480	4.378	125	20.97	Pass
	Low	2402	6.004	125	20.97	Pass
EDR (π/4-DQPSK)	Middle	2441	5.248	125	20.97	Pass
	High	2480	4.384	125	20.97	Pass
	Low	2402	6.004	125	20.97	Pass
EDR (8DPSK)	Middle	2441	5.263	125	20.97	Pass
	High	2480	4.380	125	20.97	Pass

Ch 0

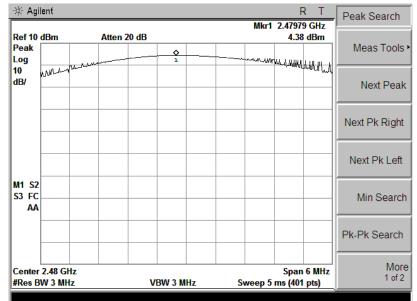



Ch 78

🔆 Agil	ent								 Υ	Peak Search
Ref 10 Peak Log			Atten 2	0 dB		-v			I GHZ I dBm	Meas Tools
10 dB/	hydrothente								 ** +-*4#Q~4	Next Peak
		rker								Next Pk Right
		0191)04 d	0000 IBm	GHz	<u>:</u>					Next Pk Left
M1 S2 S3 FC AA										Min Search
										Pk-Pk Search
Center #Res B	2.402 G W 3 MH			VE	3W 3 M	Hz	Si	weep 5	6 MHz pts)	More 1 of 2

π/4-DQPSK Mode

Ch 0



🔆 Agil	ent								R T	Peak Search
Ref 10 Peak Log	dBm	Atten :	20 dB	\$		v			0 GHz I dBm 사내	Meas Tools
10 dB/	,hillin									Next Peak
	Marker									Next Pk Right
	2.4019 6.004) GH	z						Next Pk Left
M1 S2 S3 FC AA										Min Search
										Pk-Pk Search
	2.402 GHz W 3 MHz		v	BW 3 M	Hz	Sı	veep 5 i	-	6 MHz pts)	More 1 of 2

8DPSK Mode

Ch 0

🔆 Agi	lent								F	<u>T</u>	Peak Search
Ref 10	dDaa		Atten 2	a				Mkr1	2.4409	3 GHz 8 dBm	
Peak Log	abm mb.M	thest	Auen 2		wr • Ŷ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A-L-L	Meas Tools •
10 dB/	- Arthur									·	Next Peak
		rker	0000								Next Pk Right
			0000	GH	z						Next Dk Left
	J ⊃.∠	263 d	BW								Next Pk Left
M1 S2 S3 FC AA											Min Search
											Pk-Pk Search
	· 2.441 G SW 3 MH			v	BW 3 M	Hz	Sv	veep 5	Span ms (401	6 MHz pts)	More 1 of 2

5.6 20dB Emission Bandwidth

5.6.1 Test Requirement

The bandwidth of a frequency hopping channel is the -20 dB emission bandwidth, measured with the hopping stopped.

5.6.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

5.6.3 Test Result

Test Item:	20dB Emission Bandwidth	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

Mode	Channel	Frequency (MHz)	20dB Bandwidth(MHz)
חחח	Low	2402	1.054
BDR (GFSK)	Middle	2441	1.045
	High	2480	1.041
	Low	2402	1.377
EDR (π/4-DQPSK)	Middle	2441	1.354
	High	2480	1.363
	Low	2402	1.371
EDR (8DPSK)	Middle	2441	1.350
	High	2480	1.362

🔆 Agilent			RT	Meas Setup
Ch Freq Occupied Bandwidth	2.402 GHz		Trig Free	Avg Number 10 On <u>Off</u>
x dB -20.00 d				Avg Mode Exp Repeat
Ref 10 dBm #Peak Log 10	Atten 20 dB			Max Holc On Off
dB/				Occ BW % Pw 99.00 %
Center 2.402 GHz #Res BW 30 kHz	#VBW 100 k	Hz Sweep 5 I	Span 3 MHz ms (401 pts)	OBW Spa 3.00000000 MHz
Occupied Ba	ndwidth 950.0246 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
Transmit Freq Error x dB Bandwidth	-37.575 kHz 1.054 MHz			Optimize Ref Level
Data out of range		Ch 0		
🔆 Agilent			RT	Meas Setup

🔆 Agilent			RT	Meas Setup
Ch Freq Occupied Bandwidt	2.441 GHz h		Trig Free	Avg Number 10 On <u>Off</u>
Ref Level 10	Atten 20 dB			Avg Mode Exp Repeat
#Peak Log 10 dB/		an a start a st		Max Hold <u>On Off</u>
dB/				Occ BW % Pw 99.00 %
Center 2.441 GHz #Res BW 30 kHz	#VBW 100	kHz Sweep 5	Span 3 MHz ms (401 pts)	OBW Spa 3.00000000 MHz
Occupied B	andwidth 938.5639 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
Transmit Freq Error x dB Bandwidth	-34.518 kHz 1.045 MHz			Optimize Ref Level
Data out of range				

-∰ Agilent			RT	Meas Setup
Ch Freq Occupied Bandwidtl	2.48 GHz 1		Trig Free	Avg Number 10 On <u>Off</u>
Ref 10 dBm	Atten 20 dB			Avg Mode Exp Repeat
#Peak Log 10	went so and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Max Hold <u>On Off</u>
dB/				Occ BW % Pw 99.00 %
Center 2.48 GHz #Res BW 30 kHz	#VBW 100 I	kHz Sweep 5	Span 3 MHz ms (401 pts)	OBW Spar 3.00000000 MHz
Occupied Ba	andwidth 944.4379 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
Transmit Freq Error x dB Bandwidth	-38.093 kHz 1.041 MHz			Optimize Ref Level
Data out of range				

		RT	Meas Setup
.402 GHz		Trig Free	Avg Number 10 On <u>Off</u>
			Avg Mode Exp Repeat
•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Max Hold On Off
			Occ BW % Pw 99.00 %
#VBW 100 kHz	Sweep 5 n	Span 3 MHz ns (401 pts)	OBW Spa 3.00000000 MHz
	Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
-24.098 kHz 1.377 MHz			Optimize Ref Level
	#VBW 100 kHz #VBW 100 kHz width 2728 MHz -24.098 kHz	0000 GHz tten 20 dB #VBW 100 kHz Sweep 5 m Width Occ BW % Pwr 2728 MHz x dB -24.098 kHz	2.402 GHz Trig Free 00000 GHz tten 20 dB ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

π/4-DQPSK Mode

Ch 0

🔆 Agilent				RT	Me	eas Setup
Ch Fr Occupied Bandv				Trig Free	A	vg Number 10 <u>Off</u>
Center 2.4 Ref 10 dBm	Atten 20 dB	Hz			Exp	Avg Mode Repeat
#Peak	→ → ~~	·**···	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>On</u>	Max Hold <u>Off</u>
dB/ \\	WANN				00	c BW % Pw 99.00 %
Center 2.441 GH #Res BW 30 kHz		VBW 100 kHz	Sweep 5 I	Span 3 MHz ms (401 pts)	3.000	OBW Spa 000000 MHz
Occupied	Bandwidth 1.2654 M	lHz	Occ BW % Pwr x dB	99.00 % -20.00 dB		x dB -20.00 dB
Transmit Freq E x dB Bandwidth						Optimize Ref Level
Data out of range						

-∰ Agilent			RT	Meas Setup
Ch Freq Occupied Bandwic			Trig Free	Avg Number 10 On <u>Off</u>
Ref 10 dBm	Atten 20 dB			Avg Mode Exp Repeat
#Peak Log 10	→ /	······································		Max Hold On Off
dB/ <u>Дидми</u> дуу	νγ ^ω νν			Occ BW % Pw 99.00 %
Center 2.48 GHz #Res BW 30 kHz	#VBW 10	0 kHz Sweep	Span 3 MHz 5 ms (401 pts)	OBW Spa 3.00000000 MHz
Occupied E	andwidth 1.2662 MHz	Occ BW % Pw x dE	99.00 %	x dB -20.00 dB
Transmit Freq Erro x dB Bandwidth	r -28.026 kHz 1.363 MHz			Optimize Ref Level
Data out of range				

	001			
- ∰ Agilent			RT	Meas Setup
Ch Freq Occupied Bandwidth	2.402 GHz		Trig Free	Avg Number 10 On <u>Off</u>
Ref 10 dBm	Atten 20 dB			Avg Mode Exp Repeat
#Peak Log 10	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Max Hold On Off
10 dB/	www.			Occ BW % Pw 99.00 %
Center 2.402 GHz #Res BW 30 kHz	#VBW 100 k	Hz Sween 5	Span 3 MHz ms (401 pts)	OBW Spa 3.00000000 MHz
Occupied Ba		Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
Transmit Freq Error x dB Bandwidth	-27.173 kHz 1.371 MHz			Optimize Ref Level
Data out of range				

8DPSK Mode

Ch 0

谢 Agilent R T					Meas Setup	
C Occupied Ba		2.441 GHz		Trig Free	Av On	vg Number 10 <u>Off</u>
Center		00000 GHz			Exp	Avg Mode <u>Repeat</u>
#Peak Log 10 dB/	umutu	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>On</u>	Max Hold <u>Off</u>
					Occ	BW % Pw 99.00 %
Center 2.44 #Res BW 30		#VBW 100	kHz Sweep 5	Span 3 MHz ms (401 pts)	3.000	OBW Spa 00000 MHz
Occupied Bandwidth 1.2620 MHz			Occ BW % Pwr x dB	99.00 % -20.00 dB		x dB -20.00 dB
Transmit Fr x dB Bandv		-32.193 kHz 1.350 MHz				Optimize Ref Level

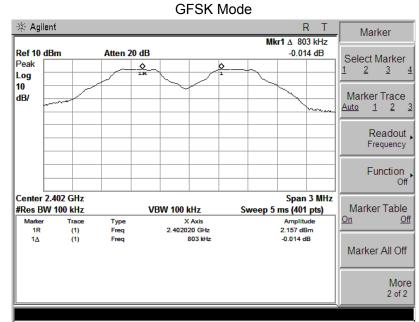
🔆 Agilent			RT	Meas Setup
Ch Freq Occupied Bandwid	Avg Number 10 On <u>Off</u>			
Ref 10 dBm	Atten 20 dB			Avg Mode Exp Repeat
#Peak Log 10	÷	······································		Max Hold <u>On Off</u>
10 dB/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Occ BW % Pw 99.00 %
Center 2.48 GHz #Res BW 30 kHz	#VBW 100	kHz Sweep 5	Span 3 MHz ms (401 pts)	OBW Spa 3.0000000 MHz
Occupied B	andwidth 1.2673 MHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	x dB -20.00 dB
Transmit Freq Error-30.265 klx dB Bandwidth1.362 MH				Optimize Ref Level
Data out of range				

5.7 Carrier Frequency Separation 5.7.1 Test Requirement

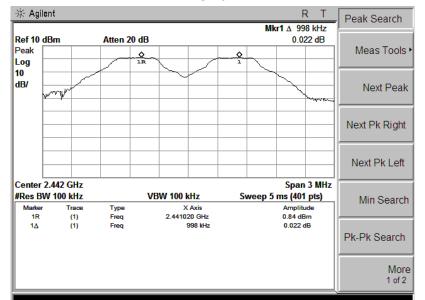
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

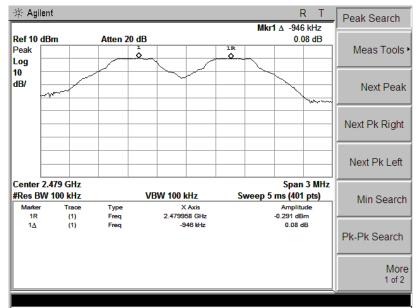
5.7.2 Test Procedure

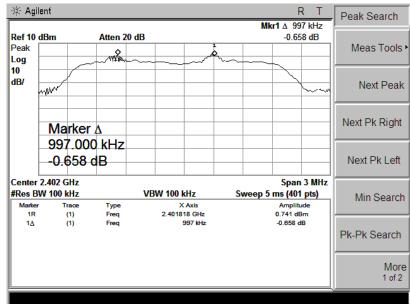
1.Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.


2.Set the adjacent channel of the EUT maxhold another trace

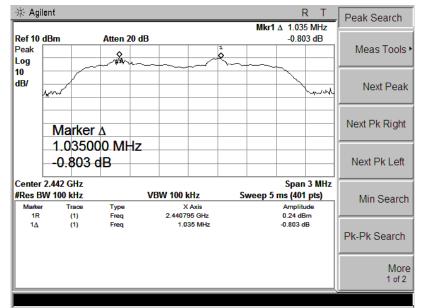
3.Measure the channel separation.

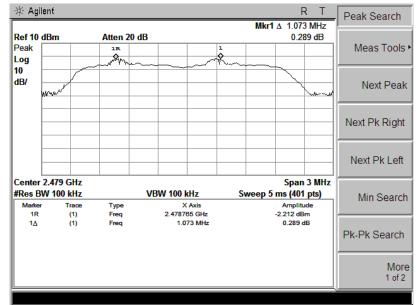

5.7.3 Test Result

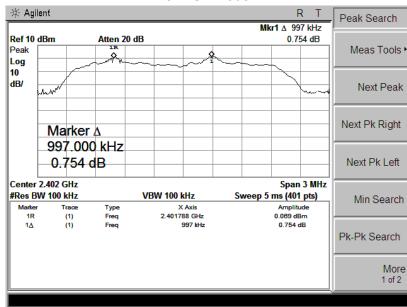

Test Item:	Carrier Frequency Separation	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%


Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
BDR (GFSK)	Low	2402	0.803	0.703	Pass
	Middle	2441	0.998	0.697	Pass
	High	2480	0.946	0.694	Pass
EDR (π/4-DQPSK)	Low	2402	0.997	0.918	Pass
	Middle	2441	1.035	0.903	Pass
	High	2480	1.073	0.909	Pass
EDR (8DPSK)	Low	2402	0.997	0.914	Pass
	Middle	2441	0.982	0.900	Pass
	High	2480	1.020	0.908	Pass

Ch 0

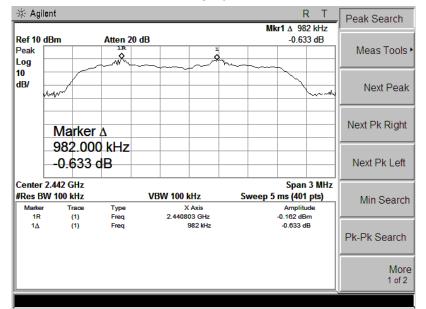


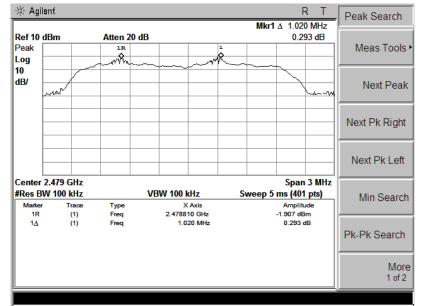




π/4-DQPSK Mode

Ch 0





8DPSK Mode

Ch 0

5.8 Number of Hopping Channel 5.8.1 Test Requirement

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.8.2 Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

5.8.3 Test Result

Test Item:	Number of Hopping Channel	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

Mode	Frequency Range (MHz)	Number of Hopping Channel	Limit
GFSK	2400-2483.5	79	≥15
π /4-DQPSK	2400-2483.5	79	≥15
8DPSK	2400-2483.5	79	≥15

🔆 Agi	lent								F	ד א	-	Tr	ace/Viev	v
Ref 10 Peak Log 10	dBm	AAAAAAAA	Atten 2		AAAAAAA	HAAAAAA	ADE ARARA	AUGAAGGA	ስትሲስብታለሲ	inantu		1	Tra <u>2</u>	ace <u>3</u>
dB/	(Inth	nttorti	mun	Laith.	ikhtikiki	UYYYYYY Y	n) huk	nn in the second se	Alanida))))(())			Clear W	/rite
DI -21.5											F		Max I	Hold
dBm											J		Min	Hold
M1 S2 S3 FC AA													١	/iew
													В	lank
Start 2 #Res B	.4 GHz W 100 I	kHz		#VE	3W 300	kHz	Sweep	St 5 8.651 i	top 2.48 ms (401		z			Nore of 2

GFSK Mode

🔆 Agil	lent								F	к т	Tra	ce/View	
Ref 10 Peak Log			Atten 2								1	Trac 2	ce <u>3</u>
10 dB/	 	www.w	www.	KWWK	MAAM	www	www	MMM	MM AN	ww.		Clear Wri	ite
DI -21.5												Max Ho	old
dBm												Min Ho	old
M1 S2 S3 FC AA												Vie	ew
												Bla	ınk
Start 2. #Res B	4 GHz W 100 I	kHz		#VE	3W 300	kHz	Sweej	St 5 8.651 (top 2.48 ms (401			Mo 1 of	

π/4-DQPSK

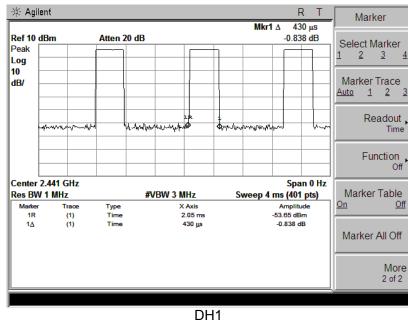
🔆 Agil	lent								F	₹ T	-	Marker
Ref 10 Peak Log 10 dB/		www.hi	Atten 2		lululii	Mum	uwww	www	WWWW	4447Y		ct Marker 2 <u>3</u> Norma
DI -21.5 dBm	 											Delta Delta Pail acking Ref)
M1 S2 S3 FC AA											Ref Span	Span Pai
												Of
Start 2. #Res B	.4 GHz W 100 I	κHz		#VE	300 W	kHz	Swee	St p 8.651 i	op 2.48 ns (401			1 of 2

8DPSK Mode

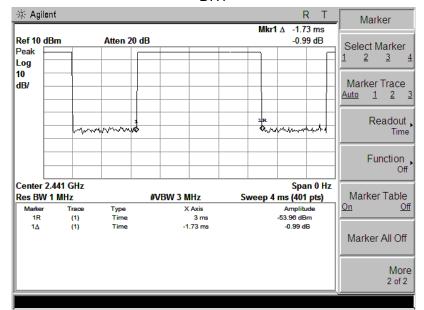
5.9 Dwell Time 5.9.1 Test Requirement

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

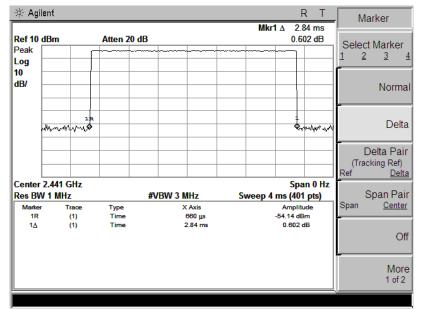
5.9.2 Test Procedure


The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

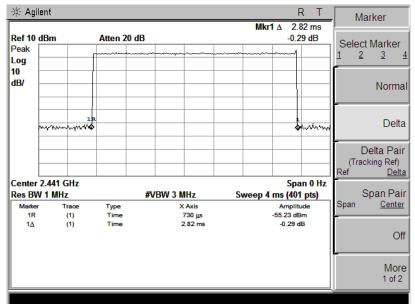
Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s Hop rate=1600/s


5.9.3 Test Result

Test Item:	Dwell Time	Temperature :	25°C
Test Engineer:	Henry	Relative Humidity :	65%

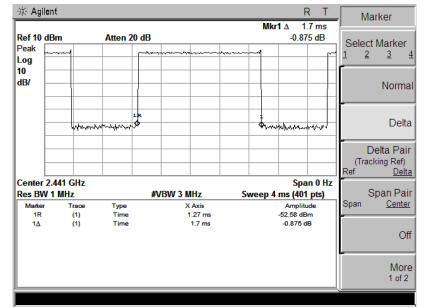

Mode	Packet	Pulse Time (ms)	Dwell Time(ms)	Limit(ms)	Result				
	DH1	0.43	137.60	400	Pass				
GFSK	DH3	1.73	276.80	400	Pass				
	DH5	2.84	302.94	400	Pass				
	2DH1	0.57	182.40	400	Pass				
π /4DQPSK	2DH3	1.70	272.00	400	Pass				
	2DH5	2.82	300.81	400	Pass				
	3DH1	0.43	137.60	400	Pass				
8DPSK	3DH3	1.70	272.00	400	Pass				
	3DH5 2.83 301.88 400 Pass								
Note: DH1/2DH1/3DH1: Dwell Time=Pulse Time(ms)X[(1600/2/79)X31.6]									
DH3/2DH3/3DH3: Dwell Time= Pulse Time(ms)X[(1600/4/79)X31.6]									
DH5/2D	H5/3DH5: Dwell Time	e= Pulse Time(ms)>	K[(1600/6/79)X31	.6]					

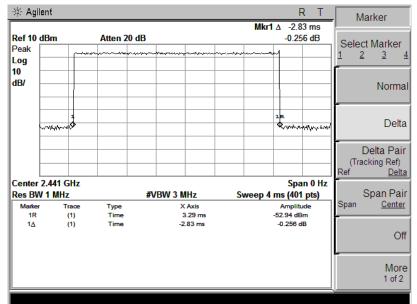

DH3



π/4-DQPSK Mode

DH1


DH3


🔆 Agi	ilent							Mkr1	F ∆ -430		M	arker
Ref 10	dBm		Atten 2	0 dB					-1.95		<u></u>	
Peak Log				* mared			~~~				5elec 1 <u>2</u>	t Marker <u>3</u>
10 dB/												Norma
		www.www.w	~~~~~	1R Ør	lungersulu	mun		n hannak de	www	~		Delta
												Delta Pai cking Ref) Delt
Center	2.441	GHz							Spa	n 0 Hz	<u> </u>	
Res BV	N 1 MH	z		#V	BW 3 N	IHz	S	weep 4	ms (401	pts)		Span Pa
Marke	-	Trace	Туре			Axis			Amplitu		Span	<u>Cente</u>
1R		(1)	Time			1.53 ms			-53.96 dBi		-	
1∆		(1)	Time		-4	430 μs			-1.951 dl	3		Of
												Mor 1 of 2

8DPSK Mode

DH1

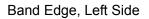
DH3

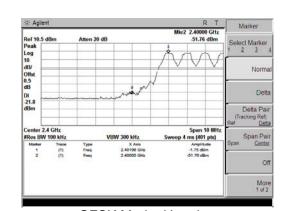
5.9 Band Edge and Conducted Spurious Emissions 5.9.1 Test Requirement

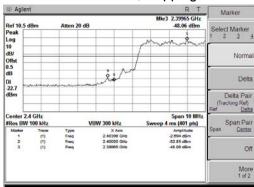
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

5.9.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

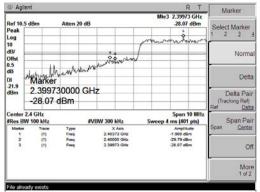

5.9.3 Test Result

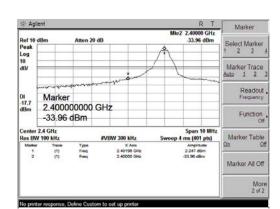

Pass


Remark:

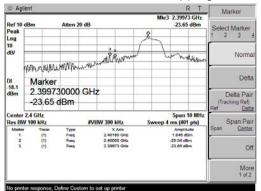
During the Conducted Spurious Emissions test, pre-scan the GFSK, $\pi/4$ -QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test Item:	Band Edge	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

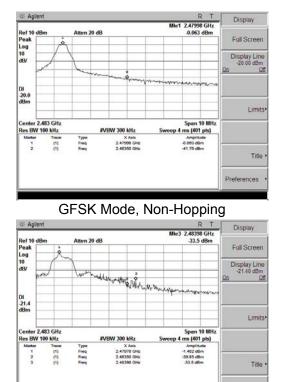


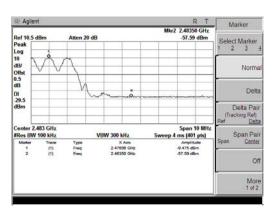


GFSK Mode, Hopping

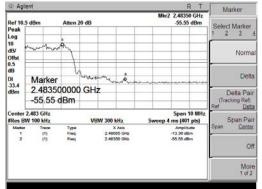

π/4-DQPSK Mode, Hopping

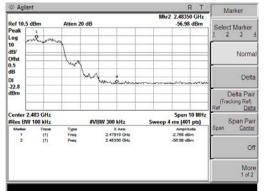
8DPSK Mode, Hopping


GFSK Mode, Non-Hopping

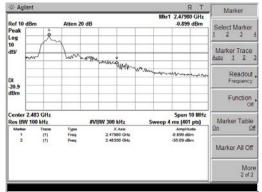

 π /4-DQPSK Mode, Non-Hopping

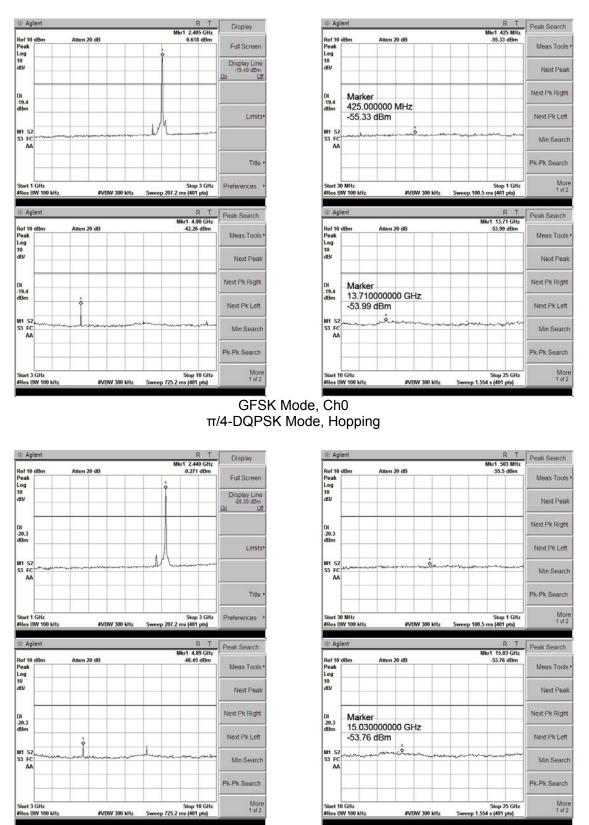
柒 Agi	lent								F	T S	Display
	1927		11.000	10000				Mkr1	2.4018		Dropiny
Ref 10 Peak	dBm	_	Atten 2	0 dB	_		1 232	1	1.042	dBm	Full Screen
Log		-			-	-	*	-		-	- unocreen
10						-	Í	1			Display Line
dB/					. 9.1	a.	1	t.	man	A. LANG	-19.00 dBm
	MILINU	VILA	MUM	n	~	-					<u>Qn Qf</u>
U4	Disp	lav	Line	-		-		-			
-19.0 dBm	-19										14
out in						-					Limits
	2.4 GHz V 100 kHz				BW 300				Span 1 ms (401		
Marker			Туре	**		CAsis	5	weep 4	Amplitu		
1	(*)		Freq			IS3 GHE			1.042 00	m	2
2	(1)		Freq			M3 GHz			-27.5 dB		1 22070
. *	19		ried		2.59	nus one			24.44.00	°	Title
											Í
											Preferences
er response, Define Custom to set up printer	se. Define Custom to set un printer	fine Custom to set up printer	stom to set up printer	set up printer	ranter						Preferences •


8DPSK Mode, Non-Hopping


Band Edge, Right Side

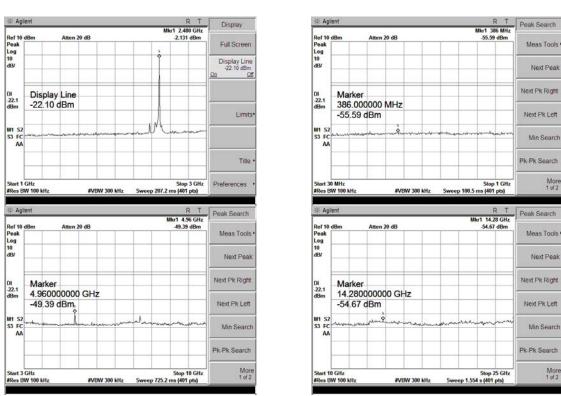
GFSK Mode, Hopping


 π /4-DQPSK Mode, Hopping


8DPSK Mode, Hopping

 π /4-DQPSK Mode, Non-Hopping

nces

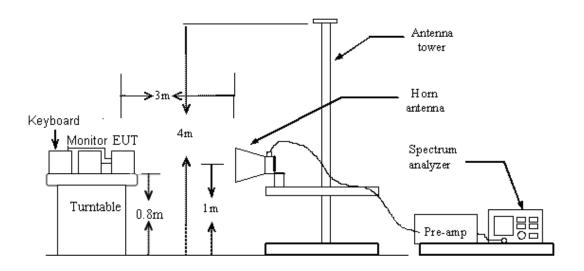


8DPSK Mode, Non-Hopping

Conducted Spurious Emissions

GFSK Mode, Ch39

Conducted Spurious Emissions


GFSK Mode, Ch78 π /4-DQPSK Mode, Hopping

5.10 Restricted Frequency Bands 5.10.1 Test Requirement

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.10.2 Test Configuration

Test Setup:

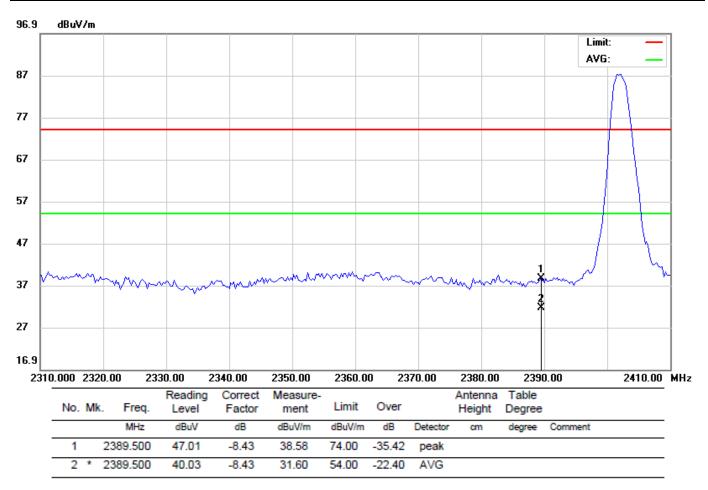
5.10.3 Test Procedure:

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

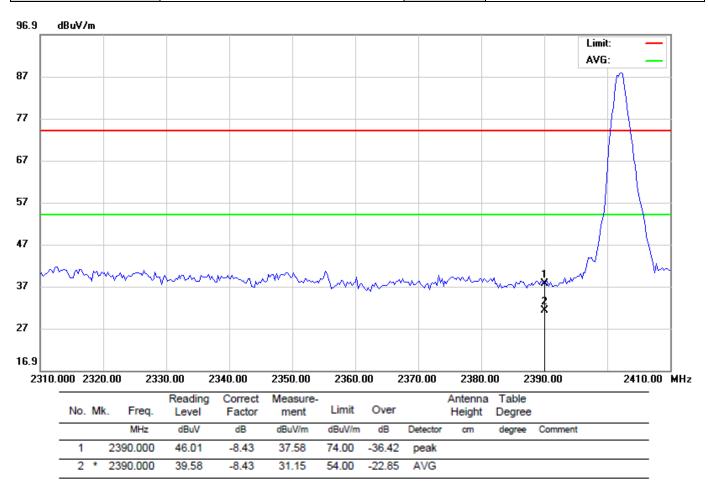
3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

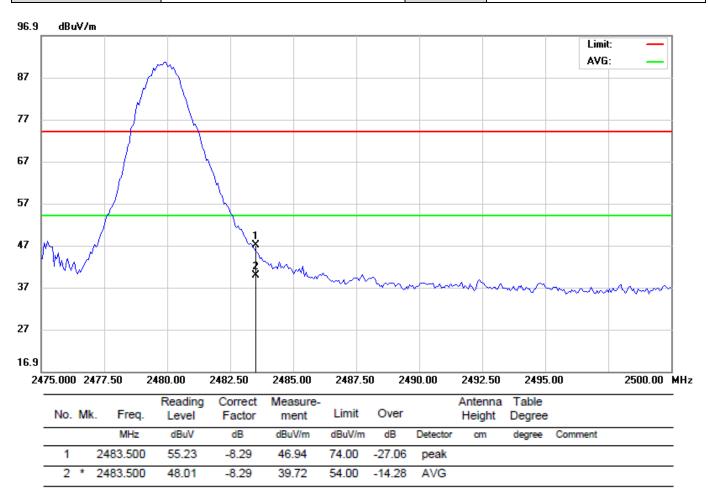

5.10.4 Test Result

Pass

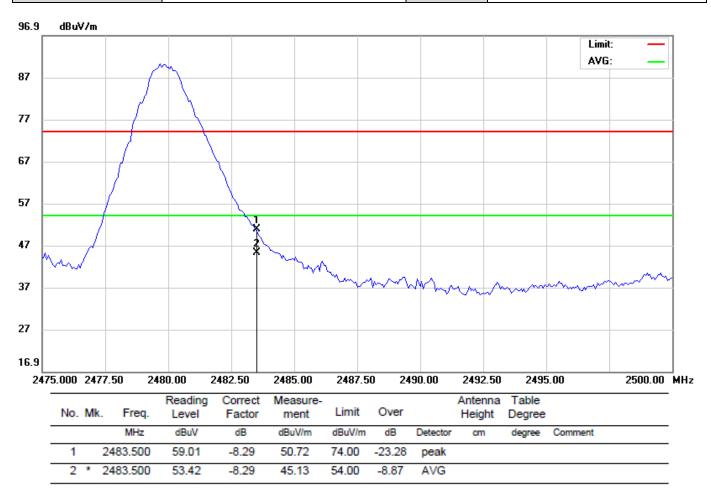
Note: All test modes are performed, only the worst case is recorded in this report.


Please refer the following plots.

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	GFSK-CH0	Polarization:	Horizontal
Test by:	John	Power:	DC 3.7V by Battery
Temperature: / Humidity	23.7℃/ 52.9%	Test date:	2016-07-12


*:Maximum data x:Over limit !:over margin

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	GFSK-CH0	Polarization:	Vertical
Test by:	John	Power:	DC 3.7V by Battery
Temperature: / Humidity	23.7℃/ 52.9%	Test date:	2016-07-12



*:Maximum data x:Over limit !:over margin

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	GFSK-CH78	Polarization:	Horizontal
Test by:	John	Power:	DC 3.7V by Battery
Temperature: / Humidity	23.7℃/ 52.9%	Test date:	2016-07-12

EUT:	TND Tablet	M/N:	TNDT80B
Mode:	GFSK-CH78	Polarization:	Vertical
Test by:	John	Power:	DC 3.7V by Battery
Temperature: / Humidity	23.7℃/ 52.9%	Test date:	2016-07-12

*:Maximum data x:Over limit !:over margin

End of the Report