





# **EMC TEST REPORT**

**Applicant** Shanghai Smawave

Technology Co. ,Ltd

FCC ID 2AU8HMGL6213A

**Product** LTE MODULE

**Brand** Smawave

Model MGL6213A

**Report No.** R2001A0004-E1V1

Issue Date March 17, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2019)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Wei Liu/ Manager

Wei Liu

Approved by: Guangchang Fan/ Director

Guangchang Fan

# TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000



## **Table of Contents**

Report No.: R2001A0004-E1V1

| 1 | Test | t Laboratory                              | 4  |
|---|------|-------------------------------------------|----|
|   | 1.1  | Notes of the Test Report                  | 4  |
|   | 1.2  | Testing Location                          | 4  |
|   |      | neral Description of Equipment under Test |    |
|   | 2.1  | Applicant and Manufacturer Information    |    |
|   | 2.2  | General information                       |    |
|   | 2.3  | Applied Standards                         | 6  |
|   | 2.4  | Test Mode                                 | 7  |
| 3 | Test | t Case Results                            | 8  |
|   | 3.1  | Radiated Emission                         | 8  |
|   | 3.2  | Conducted Emission                        | 13 |
|   |      | n Test Instruments                        |    |



## **Summary of measurement results**

| Number                                    | Test Case          | Clause in FCC Rules             | Conclusion |  |  |  |
|-------------------------------------------|--------------------|---------------------------------|------------|--|--|--|
| 1                                         | Radiated Emission  | FCC Part15.109, ANSI C63.4-2014 | PASS       |  |  |  |
| 2                                         | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | PASS       |  |  |  |
| Test Date: January 2, 2020~ March 5, 2020 |                    |                                 |            |  |  |  |

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement

Uncertainties were not taken into account and are published for informational purposes only.

Note: This revised report (Report No.: R2001A0004-E1V1) supersedes and replaces the previously issued report (Report No.: R2001A0004-E1). Please discard or destroy the previously issued report and dispose of it accordingly.



## **Test Laboratory**

## **Notes of the Test Report**

This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

## 1.2. Test facility

## FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

### A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

## 1.3 Testing Location

TA Technology (Shanghai) Co., Ltd. Company:

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

P. R. China Country:

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com



2 General Description of Equipment under Test

## 2.1 Applicant and Manufacturer Information

| Applicant Shanghai Smawave Technology Co. ,Ltd |                                                                           |  |  |
|------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Applicant address                              | 3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China |  |  |
| Manufacturer                                   | Shanghai Smawave Technology Co. ,Ltd                                      |  |  |
| Manufacturer address                           | 3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China |  |  |

Report No.: R2001A0004-E1V1

### 2.2 General information

| EUT Description                  |                                                                                                  |             |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Device Type:                     | Device Type: Module Device                                                                       |             |  |  |  |  |
| Model:                           | MGL6213A                                                                                         |             |  |  |  |  |
| SN:                              | 1#                                                                                               |             |  |  |  |  |
| HW Version:                      | V1.0                                                                                             |             |  |  |  |  |
| SW Version: MG12-AU_0.3.3.1_V2.6 |                                                                                                  |             |  |  |  |  |
| Antenna Type:                    | External Antenna                                                                                 |             |  |  |  |  |
| Eroguenov:                       | Tx (MHz)                                                                                         | Rx (MHz)    |  |  |  |  |
| Frequency:                       | 5725 ~ 5850                                                                                      | 5725 ~ 5850 |  |  |  |  |
| Modulation:                      | (LTE)QPSK 16QAM;                                                                                 |             |  |  |  |  |
|                                  | Auxiliary test equipme                                                                           | nt          |  |  |  |  |
| PC                               | PC Manufacturer: Dell                                                                            |             |  |  |  |  |
| PC                               | Model: E5450 (SN : P48G001)                                                                      |             |  |  |  |  |
| Note: The EUT is sen             | Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the |             |  |  |  |  |
| applicant.                       |                                                                                                  |             |  |  |  |  |

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E



## 2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2019) ANSI C63.4 (2014)



## 2.4 Test Mode

| Test Mode |                                                   |  |  |  |  |
|-----------|---------------------------------------------------|--|--|--|--|
| Mode 1    | External Power Supply + PCB Layout + EUT + Idle   |  |  |  |  |
| Mode 2    | External Power Supply + PCB Layout + EUT + LTE ON |  |  |  |  |

During the test, the preliminary test was performed in all modes, mode 2 is selected as the worst condition. The test data of the worst-case condition was recorded in this report.



M

## 3 Test Case Results

### 3.1 Radiated Emission

#### Ambient condition

| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 24°C~26°C   | 45%~50%           | 102.5kPa |

Report No.: R2001A0004-E1V1

#### **Methods of Measurement**

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

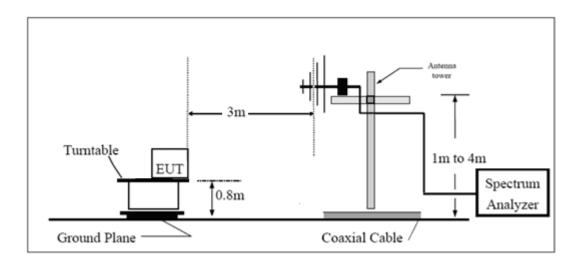
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

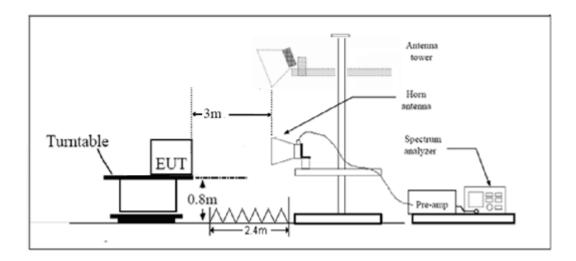
Above 1GHz:

(a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO

(b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO


The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.

During the test, EUT is connected to a laptop via a USB cable in the case of power supply.




## **Test Setup**

### **Below 1GHz**



### **Above 1GHz**



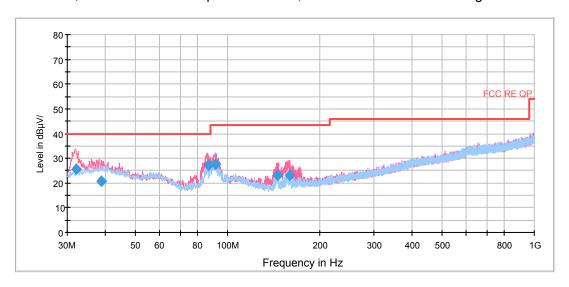
Note: Area side:2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

#### Limits

| Frequency<br>(MHz)                           | Field Strength<br>(dBµV/m) | Detector   |
|----------------------------------------------|----------------------------|------------|
| 30 -88                                       | 40.0                       | Quasi-peak |
| 88-216                                       | 43.5                       | Quasi-peak |
| 216 – 960                                    | 46.0                       | Quasi-peak |
| 960-1000                                     | 54.0                       | Quasi-peak |
| 1000-5 <sup>th</sup> harmonic of the highest | 54                         | Average    |
| frequency or 40GHz, which is lower           | 74                         | Peak       |

## **Measurement Uncertainty**

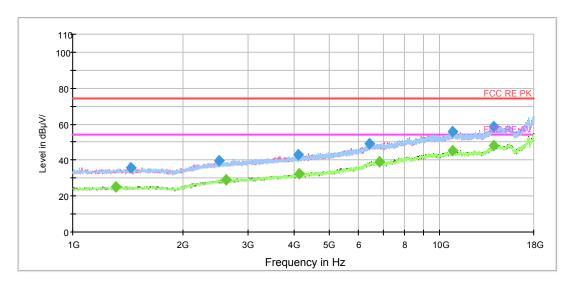

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

| Frequency      | Uncertainty |
|----------------|-------------|
| 30MHz~200MHz   | 4.02 dB     |
| 200MHz~1000MHz | 3.28 dB     |
| 1GHz~18GHz     | 3.70 dB     |
| 18GHz~26.5GHz  | 5.78 dB     |
| 26.5GHz~40GHz  | 5.82 dB     |

#### **Test Results**

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz- 26.5GHz is more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.




Radiated Emission from 30MHz to 1GHz

| Frequency (MHz) | Quasi-Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor (dB) | Margin<br>(dB) | Limit<br>(dBuV/m) |
|-----------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------|
| 32.018750       | 25.4                   | 100.0       | V            | 0.0           | 15.1                   | 14.6           | 40.0              |
| 38.643750       | 20.6                   | 100.0       | V            | 84.0          | 16.8                   | 19.4           | 40.0              |
| 86.460000       | 27.0                   | 114.0       | V            | 336.0         | 11.8                   | 13.0           | 40.0              |
| 91.673750       | 27.5                   | 100.0       | V            | 270.0         | 12.7                   | 16.0           | 43.5              |
| 145.225000      | 23.2                   | 100.0       | V            | 243.0         | 9.6                    | 20.3           | 43.5              |
| 159.420000      | 23.2                   | 100.0       | V            | 192.0         | 10.1                   | 20.3           | 43.5              |

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak



Radiated Emission from 1GHz to 18GHz

| Frequency<br>(MHz) | Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) |
|--------------------|------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------|
| 1444.125000        | 35.6             | 200.0       | V            | 36.0          | -10.6                     | 38.4           | 74.0              |
| 2508.750000        | 39.5             | 200.0       | V            | 4.0           | -6.4                      | 34.5           | 74.0              |
| 4100.375000        | 42.9             | 200.0       | V            | 108.0         | -2.4                      | 31.1           | 74.0              |
| 6431.500000        | 49.1             | 200.0       | V            | 72.0          | 4.4                       | 24.9           | 74.0              |
| 10836.625000       | 55.9             | 200.0       | V            | 121.0         | 13.5                      | 18.1           | 74.0              |
| 14022.000000       | 58.5             | 100.0       | Н            | 17.0          | 16.9                      | 15.5           | 74.0              |

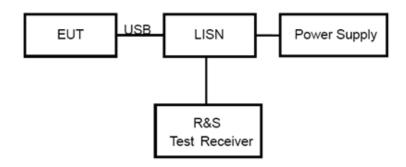
| Frequency<br>(MHz) | Average (dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor<br>(dB) | Margin<br>(dB) | Limit<br>(dBuV/m) |
|--------------------|------------------|-------------|--------------|---------------|---------------------------|----------------|-------------------|
| 1312.375000        | 25.4             | 100.0       | Н            | 219.0         | -10.9                     | 28.6           | 54.0              |
| 2615.000000        | 29.2             | 200.0       | V            | 326.0         | -6.2                      | 24.8           | 54.0              |
| 4140.750000        | 32.3             | 100.0       | Н            | 343.0         | -2.3                      | 21.7           | 54.0              |
| 6837.375000        | 39.1             | 100.0       | Н            | 206.0         | 5.1                       | 14.9           | 54.0              |
| 10815.375000       | 45.2             | 100.0       | V            | 263.0         | 13.4                      | 8.8            | 54.0              |
| 14017.750000       | 48.0             | 200.0       | Н            | 62.0          | 16.9                      | 6.0            | 54.0              |



## 3.2 Conducted Emission

#### **Ambient condition**

| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 24°C ~26°C  | 50%~55%           | 102.5kPa |


Report No.: R2001A0004-E1V1

#### **Methods of Measurement**

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

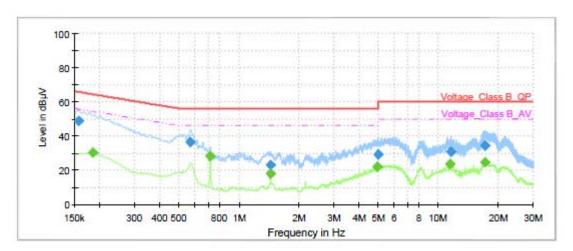
During the test, EUT is connected to a laptop via a USB cable in the case of power supply.

### **Test Setup**



Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

### Limits


| Frequency                                        | Conducted Limits(dBµV) |                       |  |  |  |  |
|--------------------------------------------------|------------------------|-----------------------|--|--|--|--|
| (MHz)                                            | Quasi-peak             | Average               |  |  |  |  |
| 0.15 - 0.5                                       | 66 to 56 *             | 56 to 46 <sup>*</sup> |  |  |  |  |
| 0.5 - 5                                          | 56                     | 46                    |  |  |  |  |
| 5 - 30                                           | 60                     | 50                    |  |  |  |  |
| * Decreases with the logarithm of the frequency. |                        |                       |  |  |  |  |

### **Measurement Uncertainty**

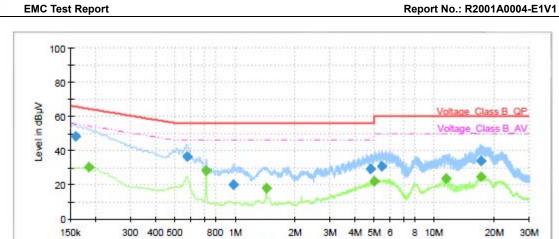
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

### **Test Results**

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.



| Frequency<br>(MHz) | QuasiPeak<br>(dΒμV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) |
|--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------|
| 0.16               | 48.55               | -                 | 65.63           | 17.08          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 0.18               |                     | 30.24             | 54.31           | 24.07          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 0.57               | 36.55               |                   | 56.00           | 19.45          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 0.72               |                     | 28.38             | 46.00           | 17.62          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 1.43               | 22.89               |                   | 56.00           | 33.11          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 1.44               |                     | 18.03             | 46.00           | 27.97          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 4.97               |                     | 21.93             | 46.00           | 24.07          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 4.98               | 29.40               |                   | 56.00           | 26.60          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 11.50              |                     | 23.64             | 50.00           | 26.36          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 11.54              | 30.66               |                   | 60.00           | 29.34          | 1000.0                | 9.000              | L1   | ON     | 19            |
| 17.21              | 34.22               |                   | 60.00           | 25.78          | 1000.0                | 9.000              | L1   | ON     | 20            |
| 17.25              |                     | 24.62             | 50.00           | 25.38          | 1000.0                | 9.000              | L1   | ON     | 20            |


Remark: Correct factor=cable loss + LISN factor

L line

Conducted Emission from 150 KHz to 30 MHz

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E



Frequency in Hz

| Frequency<br>(MHz) | QuasiPeak<br>(dΒμV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) |
|--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------|
| 0.16               | 48.28               |                   | 65.52           | 17.24          | 1000.0                | 9.000              | N    | ON     | 19            |
| 0.18               |                     | 30.16             | 54.31           | 24.15          | 1000.0                | 9.000              | N    | ON     | 19            |
| 0.58               | 36.60               |                   | 56.00           | 19.40          | 1000.0                | 9.000              | N    | ON     | 19            |
| 0.72               |                     | 28.25             | 46.00           | 17.75          | 1000.0                | 9.000              | N    | ON     | 19            |
| 0.99               | 19.91               |                   | 56.00           | 36.09          | 1000.0                | 9.000              | N    | ON     | 19            |
| 1.44               |                     | 18.20             | 46.00           | 27.80          | 1000.0                | 9.000              | N    | ON     | 19            |
| 4.80               | 29.37               |                   | 56.00           | 26.63          | 1000.0                | 9.000              | N    | ON     | 19            |
| 4.99               |                     | 22.10             | 46.00           | 23.90          | 1000.0                | 9.000              | N    | ON     | 19            |
| 5.48               | 30.96               |                   | 60.00           | 29.04          | 1000.0                | 9.000              | N    | ON     | 19            |
| 11.50              |                     | 23.71             | 50.00           | 26.29          | 1000.0                | 9.000              | N    | ON     | 19            |
| 17.23              | 33.68               |                   | 60.00           | 26.32          | 1000.0                | 9.000              | N    | ON     | 20            |
| 17.25              |                     | 24.64             | 50.00           | 25.36          | 1000.0                | 9.000              | N    | ON     | 20            |

Remark: Correct factor=cable loss + LISN factor

N line

Conducted Emission from 150 KHz to 30 MHz



## 4 Main Test Instruments

| Name                       | Manufacturer | Туре      | Serial<br>Number | Calibration<br>Date | Expiration<br>Time |
|----------------------------|--------------|-----------|------------------|---------------------|--------------------|
| Spectrum<br>Analyzer       | R&S          | FSV40     | 15195-01-<br>00  | 2019-05-19          | 2020-05-18         |
| EMI Test<br>Receiver       | R&S          | ESCI      | 100948           | 2019-05-19          | 2020-05-18         |
| Trilog Antenna             | SCHWARZBECK  | VULB 9163 | 9163-201         | 2017-11-18          | 2020-11-17         |
| Horn Antenna               | R&S          | HF907     | 100126           | 2018-07-07          | 2020-07-06         |
| Standard Gain<br>Horn      | ETS-Lindgren | 3160-09   | 00102643         | 2018-06-20          | 2020-06-19         |
| EMI Test<br>Receiver       | R&S          | ESR       | 101667           | 2019-05-19          | 2020-05-18         |
| LISN                       | R&S          | ENV216    | 101171           | 2018-12-15          | 2021-12-14         |
| Bore Sight<br>Antenna mast | ETS          | 2171B     | 00058752         | 1                   | 1                  |
| Test software              | EMC32        | R&S       | 9.26.0           | 1                   | 1                  |

\*\*\*\*\*\*END OF REPORT \*\*\*\*\*\*