

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#02 (g mode SISO)
TEST RESULTS:	PASS

Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	13.3	13.6	13.6
Maximum EIRP power (dBm)	10.8	11.1	11.1

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#02 (g mode SISO)
TEST RESULTS:	PASS

Radio B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	12.8	13.0	13.1
Maximum EIRP power (dBm)	10.3	10.5	10.6

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#02 (g mode MIMO)	
TEST RESULTS:	PASS	

Radio A + B

	Lowest frequency 2412 MHz	Middle frequency 2437 MHz	Highest frequency
	241210172	2437 IVITZ	2402 IVITZ
Maximum conducted power (dBm)	16.4	16.8	16.5
Maximum EIRP power (dBm)	13.9	14.3	14.0

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n20 mode SISO)	
TEST RESULTS:	PASS	

Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	14.0	14.5	14.3
Maximum EIRP power (dBm)	11.5	12.0	11.8

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n20 mode SISO)	
TEST RESULTS:	PASS	

Radio B

	Lowest frequency	Middle frequency 2437 MHz	Highest frequency
Maximum conducted power (dBm)	13.0	13.1	13.3
Maximum EIRP power (dBm)	10.5	10.6	10.8

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n20 mode MIMO)	
TEST RESULTS:	PASS	

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	16.8	17.2	17.0
Maximum EIRP power (dBm)	14.3	14.7	14.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n40 mode SISO)	
TEST RESULTS:	PASS	

Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.4	13.6	13.1
Maximum EIRP power (dBm)	9.9	11.1	10.6

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n40 mode SISO)	
TEST RESULTS:	PASS	

Radio B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.1	12.2	12.3
Maximum EIRP power (dBm)	9.6	9.7	9.8

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#03 (n40 mode MIMO)	
TEST RESULTS:	PASS	

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	15.9	16.0	16.1
Maximum EIRP power (dBm)	13.4	13.5	13.6

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#04 (ax20 mode SISO)	
TEST RESULTS:	PASS	

Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	13.7	14.1	14.0
Maximum EIRP power (dBm)	11.2	11.6	11.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#04 (ax20 mode SISO)	
TEST RESULTS:	PASS	

Radio B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	13.9	13.9	14.0
Maximum EIRP power (dBm)	11.4	11.4	11.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01	
TESTED CONDITIONS MODES:	TC#04 (ax20 mode MIMO)	
TEST RESULTS:	PASS	

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	16.6	17.0	16.9
Maximum EIRP power (dBm)	14.1	14.5	11.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#04 (ax40 mode SISO)
TEST RESULTS:	PASS

Radio A

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.9	13.2	13.6
Maximum EIRP power (dBm)	10.4	10.7	11.1

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#04 (ax40 mode SISO)
TEST RESULTS:	PASS

Radio B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	12.9	12.9	13.0
Maximum EIRP power (dBm)	10.4	10.7	10.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#04 (ax40 mode MIMO)
TEST RESULTS:	PASS

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	15.8	16.0	16.2
Maximum EIRP power (dBm)	13.3	13.5	13.7

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#05 (ax20 mode Beam forming MIMO)
TEST RESULTS:	PASS

Maximum declared antenna gain: -2.5 dBi Beam forming gain: +3 dBi (10log(N_{ANT}))a

Power Directional Gain: = +0.5 dBi (Antenna gain + Beam forming Gain)

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	11.5	12.3	12.0
Maximum EIRP power (dBm)	12.0	12.8	12.5

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#05 (ax40 mode Beam forming MIMO)
TEST RESULTS:	PASS

Beam forming gain: +3 dBi

Radio A + B

	Lowest frequency	Middle frequency	Highest frequency
	2422 MHz	2437 MHz	2452 MHz
Maximum conducted power (dBm)	11.5	12.2	11.6
Maximum EIRP power (dBm)	12.0	12.7	12.1

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

LIMITS:	Product standard:	Part 15 Subpart C §15.247 and RSS-247
LIMITS:	Test standard:	Part 15 Subpart C §15.247(d) and RSS-247 5.5

LIMITS

In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB.

TEST SETUP

	J 1 L D G/ (III	IPLES:				(S/01		
TESTED CONDITIONS MODES:				TC#01 (b mode SISO)					
TEST RESULTS:				PASS					
dio A									
vest Cha	nnel								
	_								
	0				//	1			
	-10 								
	Level in dBm								
	-40								
	-50	Street Joseph Street Pd	Sald Water	dayadah karak	January V.	TVAC-100	بينادان والعرب والسواب	and the second second	
	2310 2	320 2340	2360	2380	2400	2420 24	i i i 140 2460	2483.	5
				Frequ	uency in MHz				
-	Limit		Sum Level	×	Fail				
Spactru									
Spectru Ref Leve			■ RB	W 100 kHz					™
Ref Leve Att	10.00 dBm 30 dB	SWT 113.		W 100 kHz		ıto FFT			™
Ref Leve Att SGL Cour	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			□
Ref Leve Att	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			\(\overline{\pi}\)
Ref Leve Att SGL Cour	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			▽
Ref Leve Att SGL Cour 1Pk Max	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			\text{\tin}\text{\tetx{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex
Ref Leve Att SGL Cour 1Pk Max	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm10 dBm20 dBm	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm10 dBm20 dBm	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm—	10.00 dBm 30 dB nt 100/100	SWT 113.				uto FFT			
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	9 10.00 dBm 30 dB at 100/100		7 μs • VB	300 kHz	Mode Au				
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	9 10.00 dBm 30 dB at 100/100		7 μs • VB	300 kHz	Mode Au		Authory broken		
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	10.00 dBm 30 dB nt 100/100		7 μs • VB	300 kHz	Mode Au		hedron, Pynh	w/U/ny/tinglisitings	
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	9 10.00 dBm 30 dB at 100/100		7 μs • VB	300 kHz	Mode Au		Spellinger, so, Dr. Speeler	w/U/n Josephinika	
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -50 dBm— -70 dBm—	9 10.00 dBm 30 dB at 100/100		7 μs • VB	300 kHz	Mode Au		hollons, Produ	ap/U/vay/t/vay(t)/*vaya	
Ref Leve Att SGL Cour 1Pk Max 0 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	9 10.00 dBm 30 dB at 100/100		7 μs • VB	300 kHz	Mode Au		hodiumo, by pak	w/U/n-V/n-ylliftnin	

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2398.525000	-43.3	17.0	-26.3	PASS
2398.475000	-43.3	17.0	-26.3	PASS
2356.475000	-43.6	17.3	-26.3	PASS
2356.425000	-43.6	17.3	-26.3	PASS
2398.775000	-43.7	17.4	-26.3	PASS
2398.725000	-43.9	17.6	-26.3	PASS
2396.975000	-43.9	17.6	-26.3	PASS
2397.675000	-44.0	17.7	-26.3	PASS
2397.625000	-44.0	17.7	-26.3	PASS
2398.025000	-44.1	17.7	-26.3	PASS
2398.975000	-44.3	18.0	-26.3	PASS
2324.275000	-44.4	18.0	-26.3	PASS
2397.025000	-44.5	18.1	-26.3	PASS
2367.275000	-44.5	18.2	-26.3	PASS
2367.225000	-44.5	18.2	-26.3	PASS

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2484.075000	-44.5	17.1	-27.4	PASS
2486.475000	-44.6	17.2	-27.4	PASS
2495.275000	-44.9	17.4	-27.4	PASS
2486.425000	-44.9	17.5	-27.4	PASS
2495.225000	-45.0	17.6	-27.4	PASS
2497.875000	-45.1	17.6	-27.4	PASS
2484.125000	-45.1	17.6	-27.4	PASS
2484.025000	-45.1	17.7	-27.4	PASS
2499.025000	-45.1	17.7	-27.4	PASS
2498.975000	-45.1	17.7	-27.4	PASS
2496.675000	-45.2	17.8	-27.4	PASS
2487.675000	-45.3	17.8	-27.4	PASS
2486.375000	-45.3	17.9	-27.4	PASS
2484.675000	-45.4	18.0	-27.4	PASS
2497.825000	-45.4	18.0	-27.4	PASS

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	Result
2399.425000	-43.6	16.3	-27.3	PASS
2399.475000	-43.6	16.4	-27.3	PASS
2355.775000	-43.8	16.5	-27.3	PASS
2398.475000	-44.1	16.8	-27.3	PASS
2398.525000	-44.2	16.9	-27.3	PASS
2361.575000	-44.3	17.0	-27.3	PASS
2385.875000	-44.4	17.1	-27.3	PASS
2355.725000	-44.4	17.1	-27.3	PASS
2398.625000	-44.6	17.3	-27.3	PASS
2398.675000	-44.6	17.3	-27.3	PASS
2355.825000	-44.6	17.3	-27.3	PASS
2398.575000	-44.7	17.4	-27.3	PASS
2361.525000	-44.7	17.4	-27.3	PASS
2371.725000	-44.7	17.4	-27.3	PASS
2311.725000	-44.7	17.5	-27.3	PASS

19.2

19.2

19.3

19.3

-23.5 PASS

-23.5 PASS

-23.5 PASS

-23.5 PASS

-42.7

-42.7

-42.8

-42.8

2484.025000

2487.275000

2490.225000

2489.675000

Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2484.475000	-39.7	11.6	-28.1	PASS
2484.425000	-39.8	11.8	-28.1	PASS
2485.775000	-40.8	12.8	-28.1	PASS
2485.725000	-40.8	12.8	-28.1	PASS
2484.725000	-41.2	13.1	-28.1	PASS
2485.625000	-41.2	13.2	-28.1	PASS
2484.775000	-41.3	13.2	-28.1	PASS
2484.175000	-41.3	13.3	-28.1	PASS
2483.525000	-41.4	13.3	-28.1	PASS
2484.525000	-41.4	13.4	-28.1	PASS
2483.575000	-41.4	13.4	-28.1	PASS
2485.575000	-41.6	13.5	-28.1	PASS
2483.825000	-41.7	13.6	-28.1	PASS
2483.775000	-41.7	13.6	-28.1	PASS
2484.225000	-41.7	13.6	-28.1	PASS

Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
2484.375000	-43.9	15.2	-28.7	PASS
2484.325000	-44.0	15.3	-28.7	PASS
2483.575000	-44.1	15.5	-28.7	PASS
2483.525000	-44.3	15.6	-28.7	PASS
2485.675000	-44.3	15.6	-28.7	PASS
2484.175000	-44.3	15.6	-28.7	PASS
2484.125000	-44.4	15.7	-28.7	PASS
2485.725000	-44.5	15.8	-28.7	PASS
2483.625000	-44.5	15.8	-28.7	PASS
2486.825000	-44.5	15.8	-28.7	PASS
2483.925000	-44.5	15.8	-28.7	PASS
2486.775000	-44.5	15.8	-28.7	PASS
2483.725000	-44.6	15.9	-28.7	PASS
2483.975000	-44.6	15.9	-28.7	PASS
2487.225000	-44.6	15.9	-28.7	PASS

13.5

13.6

-24.5 PASS

-24.5 PASS

-38.0

-38.2

2485.125000

2484.175000