Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn # **TEST REPORT** Report No. CHTEW20040115 Report verification: Project No. SHT1910069302EW FCC ID.....: 2AJ9T-ZL400 Applicant's name.....: ZKTECO CO., LTD. City, Guangdong Province, China 523728 Manufacturer...... ZKTECO CO., LTD. City, Guangdong Province, China 523728 Test item description: Wireless Hotel Lock Trade Mark ZKTECO Model/Type reference...... ZL400 Listed Model(s) - Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.225 Date of receipt of test sample......... Nov.04, 2019 Result...... PASS Testing Laboratory Name: Compiled by (position+printedname+signature)...: File administrators Echo Wei Echo Wei Supervised by (position+printedname+signature)....: Project Engineer Kiki Kong kiker kong Approved by (position+printedname+signature)....: RF Manager Hans Hu Shenzhen Huatongwei International Inspection Co., Ltd. Tianliao, Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample. Report No : CHTEW20040114 Page 2 of 23 Issued: 2020-04-16 ## **Contents** | <u>l.</u> | TEST STANDARDS AND REPORT VERSION | ა | |--------------|--|----| | 1.1. | Test Standards | 3 | | 1.1.
1.2. | Report version information | 3 | | | | | | <u>2.</u> | TEST DESCRIPTION | 4 | | | | | | <u>3.</u> | SUMMARY | 5 | | 3.1. | Client Information | 5 | | 3.2. | Product Description | 5 | | 3.3. | EUT operation mode | 6 | | 3.4. | EUT configuration | 6 | | <u>4.</u> | TEST ENVIRONMENT | 7 | | 4.1. | Address of the test laboratory | 7 | | 4.2. | Test Facility | 7 | | 4.3. | Environmental conditions | 8 | | 4.4. | Statement of the measurement uncertainty | 8 | | 4.5. | Equipments Used during the Test | 9 | | <u>5.</u> | TEST CONDITIONS AND RESULTS | 11 | | 5.1. | Antenna requirement | 11 | | 5.2. | AC Power Conducted Emissions | 12 | | 5.3. | Field Strength of the Fundamental and Mask Measurement | 13 | | 5.4. | 20dB Bandwidth | 15 | | 5.5. | Radiated Emission | 17 | | 5.6. | Frequency Stability | 21 | | <u>6.</u> | TEST SETUP PHOTOS OF THE EUT | 22 | | 7 <u>.</u> | EXTERNAL AND INTERNAL PHOTOS OF THE EUT | 23 | Report No : CHTEW20040114 Page 3 of 23 Issued: 2020-04-16 ## 1. TEST STANDARDS AND REPORT VERSION ## 1.1. Test Standards The tests were performed according to following standards: FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices. ## 1.2. Report version information | Revision No. | Date of issue | Description | | | |----------------|---------------|-------------|--|--| | N/A 2020-04-16 | | Original | Report No : CHTEW20040114 Page 4 of 23 Issued: 2020-04-16 # 2. TEST DESCRIPTION | Test Item | Section in CFR 47 | Result | Test Engineer | | |--|-------------------|--------|---------------|--| | Antenna requirement | 15.203 | PASS | N/A | | | AC Power Line Conducted Emissions | 15.207 | N/A | N/A | | | Field Strength of the Fundamental and Mask Measurement | 15.225(a)(b)(c) | PASS | Pan Xie | | | 20dB Bandwidth | 15.215 | PASS | Bruce Wong | | | Radiated Emission | 15.225(d)&15.209 | PASS | Pan Xie | | | Frequency Stability | 15.225(e) | PASS | Pan Xie | | Report No : CHTEW20040114 Page 5 of 23 Issued: 2020-04-16 # 3. **SUMMARY** ## 3.1. Client Information | Applicant: | ZKTECO CO., LTD. | |---------------|---| | Address: | No.26,Pingshan 188 Industry zone,Tangxia Town,Dongguan City,Guangdong Province,China 523728 | | Manufacturer: | ZKTECO CO., LTD. | | Address: | No.26,Pingshan 188 Industry zone,Tangxia Town,Dongguan City,Guangdong Province,China 523728 | ## 3.2. Product Description | N. CELIT | Maria and Haralli and | | | | |----------------------|--------------------------|--|--|--| | Name of EUT: | Wireless Hotel Lock | | | | | Trade Mark: | ZKTECO | | | | | Model No.: | ZL400 | | | | | Listed Model(s): | - | | | | | Power supply: | DC 6V by 1.5*4AA battery | | | | | Adapter information: | - | | | | | Hardware version: | V1.02 | | | | | Software version: | V1.03 | | | | | RF Specification | | | | | | Operation frequency: | 13.56MHz | | | | | Channel number: | 1 | | | | | Modulation Type: | ASK | | | | | Antenna type: | Coil antenna | | | | | Antenna Gain: | 0.5 dBi | | | | Report No : CHTEW20040114 Page 6 of 23 Issued: 2020-04-16 ## 3.3. EUT operation mode ## **TEST MODE** | For RF test items | |--| | The engineering test program was provided and enabled to make EUT continuous transmit. | | For AC power line conducted emissions: | | The EUT was set to connect with large package sizes transmission. | ## 3.4. EUT configuration The following peripheral devices and interface cables were connected during the measurement: - - supplied by the manufacturer - supplied by the lab | Manufacturer : | / | |----------------|---| | Model No. : | / | | Manufacturer : | / | | Model No. : | / | Report No: CHTEW20040114 Page 7 of 23 Issued: 2020-04-16 ## 4. TEST ENVIRONMENT ## 4.1. Address of the test laboratory Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089 ## 4.2. Test Facility The test facility is recognized, certified, or accredited by the following organizations: CNAS-Lab Code: L1225 Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. #### A2LA-Lab Cert. No. 3902.01 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### FCC-Registration No.: 762235 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235. #### IC-Registration No.: 5377A Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A. ## ACA Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation. Report No: CHTEW20040114 Page 8 of 23 Issued: 2020-04-16 #### 4.3. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15~35°C | | | |--------------------|-------------|--|--| | Relative Humidity: | 30~60 % | | | | Air Pressure: | 950~1050mba | | | ## 4.4. Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system according to ISO/IEC 17025. Further more, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Here after the best measurement capability for Shenzhen Huatongwei is reported: | Test Items | Measurement Uncertainty | Notes | |----------------------------------|-------------------------|-------| | Conducted Disturbance 9KHz-30MHz | 3.02 dB | (1) | | Radiated emissions below 1GHz | 4.90 dB | (1) | | Radiated emissions above 1GHz | 4.96 dB | (1) | | Occupied Bandwidth | 15 Hz | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. Report No : CHTEW20040114 Page 9 of 23 Issued: 2020-04-16 ## 4.5. Equipments Used during the Test | • | Conducted Emission | | | | | | | | |------|------------------------|--------------------|---------------|--------------------|-------------------|------------------------------|------------------------------|--| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | • | Shielded Room | Albatross projects | HTWE0114 | N/A | N/A | 2018/09/28 | 2023/09/27 | | | • | EMI Test Receiver | R&S | HTWE0111 | ESCI | 101247 | 2019/10/26 | 2020/10/25 | | | • | Artificial Mains | SCHWARZBECK | HTWE0113 | NNLK 8121 | 573 | 2019/10/23 | 2020/10/22 | | | • | Pulse Limiter | R&S | HTWE0033 | ESH3-Z2 | 100499 | 2019/10/23 | 2020/10/22 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0113-02 | ENVIROFLE
X_142 | EF-NM-
BNCM-2M | 2019/10/23 | 2020/10/22 | | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | | • | Radiated emission-6th test site | | | | | | | | |------|---------------------------------|--------------------|------------------|-----------------|------------|------------------------------|------------------------------|--| | Used | Test Equipment | Manufacturer | Equipment
No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0127 | SAC-3m-02 | C11121 | 2018/09/30 | 2021/09/29 | | | • | EMI Test Receiver | R&S | HTWE0099 | ESCI | 100900 | 2019/10/26 | 2020/10/25 | | | • | Loop Antenna | R&S | HTWE0170 | HFH2-Z2 | 100020 | 2018/04/02 | 2021/04/01 | | | • | Ultra-Broadband
Antenna | SCHWARZBECK | HTWE0119 | VULB9163 | 546 | 2020/04/05 | 2023/04/04 | | | • | Pre-Amplifer | SCHWARZBECK | HTWE0295 | BBV 9742 | N/A | 2019/11/14 | 2020/11/13 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
01 | N/A | N/A | 2019/08/21 | 2020/08/20 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0062-
02 | SUCOFLEX
104 | 501184/4 | 2019/05/27 | 2020/05/26 | | | • | Test Software | R&S | N/A | ES-K1 | N/A | N/A | N/A | | | • | Radiated emis | sion-7th test site | | | | | | |------|-----------------------------|--------------------|---------------|----------------------|-------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0122 | SAC-3m-01 | N/A | 2018/09/27 | 2021/09/26 | | • | Spectrum
Analyzer | R&S | HTWE0098 | FSP40 | 100597 | 2019/10/26 | 2020/10/25 | | • | Horn Antenna | SCHWARZBECK | HTWE0126 | 9120D | 1011 | 2020/04/01 | 2023/03/31 | | • | Horn Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | 25841 | 2018/10/11 | 2021/10/10 | | • | Broadband Horn
Antenna | SCHWARZBECK | HTWE0103 | BBHA9170 | BBHA9170472 | 2018/10/11 | 2021/10/10 | | • | Pre-amplifier | CD | HTWE0071 | PAP-0102 | 12004 | 2019/11/14 | 2020/11/13 | | • | Broadband Pre-
amplifier | SCHWARZBECK | HTWE0201 | BBV 9718 | 9718-248 | 2019/05/23 | 2020/05/22 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-01 | 6m 18GHz
S Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-02 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-03 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-04 | 6m 3GHz
RG Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0121-01 | 6m 18GHz
S Serisa | N/A | 2019/05/10 | 2020/05/09 | | • | Test Software | Audix | N/A | E3 | N/A | N/A | N/A | Report No : CHTEW20040114 Page 10 of 23 Issued: 2020-04-16 | • | RF Conducted Method | | | | | | |------|------------------------------|--------------|-----------|------------|------------------------------|------------------------------| | Used | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | • | Signal and spectrum Analyzer | R&S | FSV40 | 100048 | 2019/10/26 | 2020/10/25 | | • | Spectrum Analyzer | Agilent | N9020A | MY50510187 | 2019/10/26 | 2020/10/25 | | 0 | Radio communication tester | R&S | CMW500 | 137688-Lv | 2019/10/26 | 2020/10/25 | Report No: CHTEW20040114 Page 11 of 23 Issued: 2020-04-16 ## 5. TEST CONDITIONS AND RESULTS ## 5.1. Antenna requirement #### Requirement ### FCC CFR Title 47 Part 15 Subpart C Section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### Refer to statement below for compliance. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. ### **TEST RESULTS** | oxtimes Passed | ☐ Not Applicable | |----------------|------------------| |----------------|------------------| The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo. Report No: CHTEW20040114 Page 12 of 23 Issued: 2020-04-16 #### 5.2. AC Power Conducted Emissions #### LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.207: | Fraguenay ranga (MHz) | Limit (dBuV) | | | | |-----------------------|--------------|-----------|--|--| | Frequency range (MHz) | Quasi-peak | Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | ^{*} Decreases with the logarithm of the frequency. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. The EUT was setup according to ANSI C63.10:2013 - 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. - 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment. - 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) - 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source. - 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. - Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. - 8. During the above scans, the emissions were maximized by cable manipulation. #### **TEST MODE:** Please refer to the clause 3.3 #### **TEST RESULTS** Report No : CHTEW20040114 Page 13 of 23 Issued: 2020-04-16 ## 5.3. Field Strength of the Fundamental and Mask Measurement ## **LIMIT** FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c) | Fundamental frequency(MHz) | Field strength of fundamental (uV/m @30m) | Field strength of fundamental (dBuV/m @3m) | |-----------------------------|---|--| | 13.553-13.567 | 15848 | 124.0 | | 13.410-13.553&13.567-13.710 | 334 | 90.5 | | 13.110-13.410&13.710-14.010 | 106 | 80.5 | Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40. ## **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements. - 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. - 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. ## TEST MODE: Please refer to the clause 3.3 ### **TEST RESULTS** Report No: CHTEW20040114 Page 15 of 23 Issued: 2020-04-16 #### 5.4. 20dB Bandwidth #### Limit ## FCC CFR Title 47 Part 15 Subpart C Section 15.215 Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band 13.553~13.567MHz. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously - Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold - 4. Measure and record the results in the test report. ## **TEST MODE:** Please refer to the clause 3.3 #### **TEST RESULTS** ## 5.5. Radiated Emission ## **LIMIT** ## FCC CFR Title 47 Part 15 Subpart C Section 15.209&15.225(d) Limit for frequency below 30MHz: | Frequency | Limit (uV/m) | Measurement Distance(m) | Remark | |-------------|--------------|-------------------------|------------| | 0.009~0.490 | 2400/F(kHz) | 300 | Quasi-peak | | 0.490~1.705 | 24000/F(kHz) | 30 | Quasi-peak | | 1.705~30.0 | 30 | 30 | Quasi-peak | Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3) = Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3) = Limit dBuV/m @30m + 40. Limit for frequency above 30MHz: | Frequency | Limit (dBuV/m@3m) | Remark | |---------------|-------------------|------------| | 30MHz~88MHz | 40.00 | Quasi-peak | | 88MHz~216MHz | 43.50 | Quasi-peak | | 216MHz~960MHz | 46.00 | Quasi-peak | | 960MHz-1GHz | 54.00 | Quasi-peak | | Above 1GHz | 54.00 | Average | | Above IGHZ | 74.00 | Peak | ## **TEST CONFIGURATION** ## • 9 kHz ~ 30 MHz ## • 30 MHz ~ 1 GHz Above 1 GHz Report No: CHTEW20040114 Page 18 of 23 Issued: 2020-04-16 #### **TEST PROCEDURE** - The EUT was setup and tested according to ANSI C63.10:2013 requirements. - 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. - 5. Set to the maximum power setting and enable the EUT transmit continuously. - 6. Use the following spectrum analyzer settings - (1) Span shall wide enough to fully capture the emission being measured; - (2) Below 30MHz: - RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold; - (3) 30MHz to 1 GHz: - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. - (4) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value. #### **TEST MODE:** Please refer to the clause 3.3 #### **TEST RESULTS** Report No: CHTEW20040114 Page 19 of 23 Issued: 2020-04-16 ## Below 30MHz: Report No: CHTEW20040114 Page 20 of 23 Issued: 2020-04-16 ## Above 30MHz: Report No: CHTEW20040114 Page 21 of 23 Issued: 2020-04-16 ## 5.6. Frequency Stability #### LIMIT The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The equipment under test was connected to an external power supply. - 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. - 3. The EUT was placed inside the temperature chamber. - 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency. - 5. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. - 6. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached. #### **TEST MODE:** Please refer to the clause 3.3 #### **TEST RESULTS** | Test Enviroment Voltage Temperature(℃) | | Frequency
Reading(MHz) | Frequency
Error(%) | Limit | Result | |---|-----|---------------------------|-----------------------|--------------|--------| | voltage | . , | 3 () | , , | 1.0.040/ | Dana | | | -20 | 13.56010 | 0.0007 | ±0.01% | Pass | | | -10 | 13.56009 | 0.0007 | \pm 0.01% | Pass | | | 0 | 13.56009 | 0.0007 | $\pm 0.01\%$ | Pass | | DC6.00V | 10 | 13.56008 | 0.0006 | $\pm 0.01\%$ | Pass | | DC0.00V | 20 | 13.56009 | 0.0007 | \pm 0.01% | Pass | | | 30 | 13.56009 | 0.0007 | $\pm 0.01\%$ | Pass | | | 40 | 13.56012 | 0.0009 | \pm 0.01% | Pass | | | 50 | 13.56014 | 0.0010 | \pm 0.01% | Pass | | DC6.90V | 20 | 13.56010 | 0.0007 | $\pm 0.01\%$ | Pass | | DC5.10V | 20 | 13.56012 | 0.0009 | ±0.01% | Pass | # 6. TEST SETUP PHOTOS OF THE EUT Radiated Emissions Report No : CHTEW20040114 Page 23 of 23 Issued: 2020-04-16 # 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT | Reference to the test report No.: CH | ΓEW20040114. | |--------------------------------------|---------------| | | | | | Fnd of Report | | | |