

TEST REPORT

Product Silencer BT 2.0

Walker's Trade mark

GWP-SLCR2-BT-V2 Model/Type reference

Serial Number N/A

Report Number EED32N81130401

FCC ID 2AU3A-GWPSLCR2BT2

Date of Issue Nov. 25, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Good Sportsman Marketing.LLC 5250 Frye Road Irving.TX 75061

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Tom Chen

David Wang

David Wang

Reviewed by:

Javon Ma Aaron Ma

Date:

Nov. 25, 2021

Check No.: 9617021121

Report No.: EED32N81130401 Page 2 of 55

Content

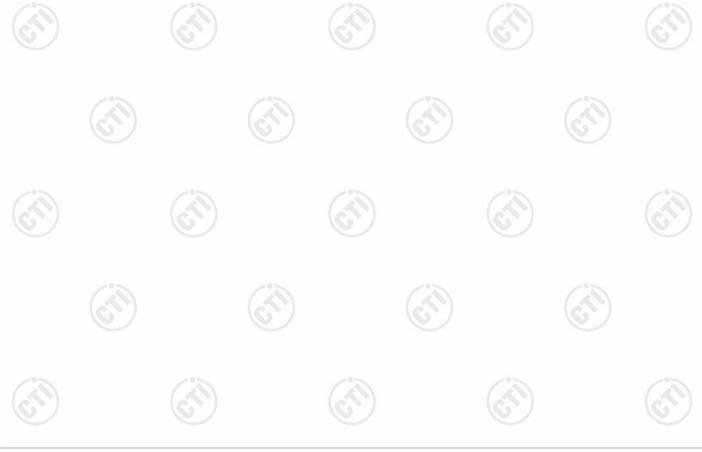
1 CONTENT	•••••		2
2 VERSION	•••••		3
3 TEST SUMMARY			4
4 GENERAL INFORMATION			
4.1 CLIENT INFORMATION	IVE TO THIS STANDARD		
5 EQUIPMENT LIST		•••••	9
6 TEST RESULTS AND MEASUREME	ENT DATA		12
6.1 ANTENNA REQUIREMENT	SSIONS DWER BITY CONDUCTED SPURIOUS EMIS	SSION	
7 APPENDIX A			37
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUC	CTIONAL DETAILS		41

Report No.: EED32N81130401

2 Version

Version No. Date		Description
00	Nov. 25, 2021	Original

Report No.: EED32N81130401


Page 4 of 55

3 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & 47 CFR Part 15 Subpart C Section 15.205/15.209		PASS	

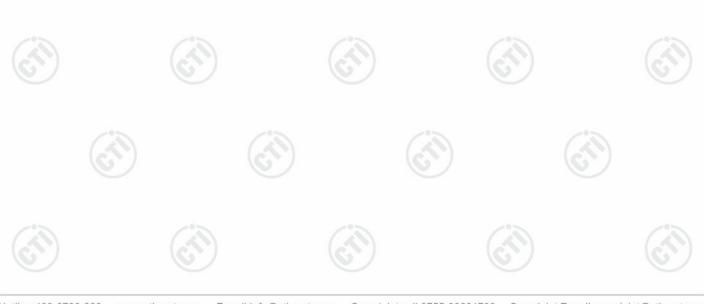
Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No.: EED32N81130401 Page 5 of 55

4 General Information

4.1 Client Information


Applicant:	Good Sportsman Marketing.LLC	
Address of Applicant:	5250 Frye Road Irving.TX 75061	
Manufacturer:	Good Sportsman Marketing.LLC	
Address of Manufacturer:	5250 Frye Road Irving.TX 75061	1
Factory:	Concord Intelligent Technology (Huizhou) Ltd.	(0)
Address of Factory:	25, Ping An Rd, Shuikou Street, Hui Cheng District, Huizhou City, Guangdong Province, China	

4.2 General Description of EUT

Product Name:	Silencer BT 2.0	(5,5)	
Mode No.:	GWP-SLCR2-BT-V2		
Trade mark:	Walker's		
EUT Supports Radios application:	BT 5.0 Dual mode, 2402MHz to 2480MHz		
Bluetooth Version:	V5.0		(0,
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location		
Power Supply:	Battery: DC 3.8V, Charge by DC 5.0V		
Test Voltage:	DC 3.8V		
Sample Received Date:	Nov. 03, 2021	(65)	
Sample tested Date:	Nov. 03, 2021 to Nov. 10, 2021		

4.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(3)	/*>
Modulation Type:	GFSK	(27)	
Transfer Rate:	⊠ 1Mbps □ 2Mbps		
Number of Channel:	40		
Antenna Type:	FPC Antenna		
Antenna Gain:	0.8dBi		(P)


Report No.: EED32N81130401

Operation	requency eac		1			(4)	1
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel (CH0)	2402MHz		
The middle channel (CH19)	2440MHz		
The highest channel (CH39)	2480MHz		

Page 6 of 55

Report No.: EED32N81130401 Page 7 of 55

4.4 Test Configuration

EUT Test Software Settings:							
Software:		BlueTest3	BlueTest3 (manufacturer declare)				
EUT Power Grade:		Class2 (Po selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the E		est frequenc	y, the middle freque	ency and the highest	frequency keep		
Test Mode Modu		ulation	Rate	Channel	Frequency(MHz)		
Mode a GFSK		1Mbps	CH0	2402			
Mode b	GF	-SK	1Mbps	CH19	2440		
Mode c	GF	-SK	1Mbps	CH39	2480		

4.5 Test Environment

Operating Environment	t:			
Radiated Spurious Emi	ssions:			
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH	-0.75	-0.7	
Atmospheric Pressure:	1010mbar			
Conducted Emissions:				
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH			
Atmospheric Pressure:	1010mbar			(3)
RF Conducted:				
Temperature:	22~25.0 °C			
Humidity:	50~55 % RH			
Atmospheric Pressure:	1010mbar	-07	Z*>	
/ AW. 1	7 353		7 2 7 7	

Report No.: EED32N81130401 Page 8 of 55

4.6 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	CTI	CE&FCC

4.7 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.8 Measurement Uncertainty (95% confidence levels, k=2)

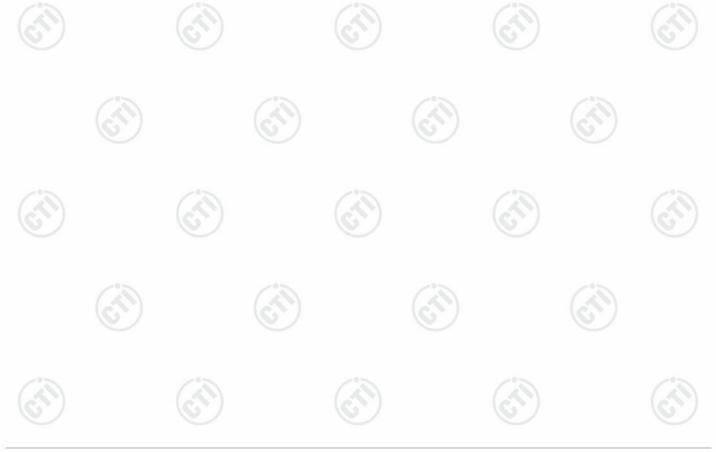
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32N81130401 **5 Equipment List**

Page 9 of 55

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022		
Temperature/ Humidity Indicator	Defu	TH128	1	(C)	700		
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022		
Barometer	changchun	DYM3	1188				

		RF test sy	rstem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
High-pass filter	Sinoscite	FL3CX03WG18NM12- 0398-002			
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	(A 4)	(4	///
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		<u> </u>	
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001		<u></u>	70.
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001			
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002		G	<i></i>
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001			/
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-28-2020	12-27-2021



Report No.: EED32N81130401 Page 10 of 55

	3M Sem	i/full-anechoic Cham	ber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-16-2020 10-15-2021	10-15-2021 10-14-2022	
Multi device Controller	maturo	NCD/070/10711112		400		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Communication test set	Agilent	E5515C	GB47050534	03-01-2019	02-28-2022	
Cable line	Fulai(7M)	SF106	5219/6A	/		
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A			
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001				

Page 11 of 55 Report No.: EED32N81130401

		3M full-anech	ole Chamber		1
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Communication Antenna	Schwarzbeck	CLSA 0110L	1014		(J)
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	Tin.	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		<u></u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	(4°)	(2
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	((1)
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(612)	(c

Report No.: EED32N81130401 Page 12 of 55

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

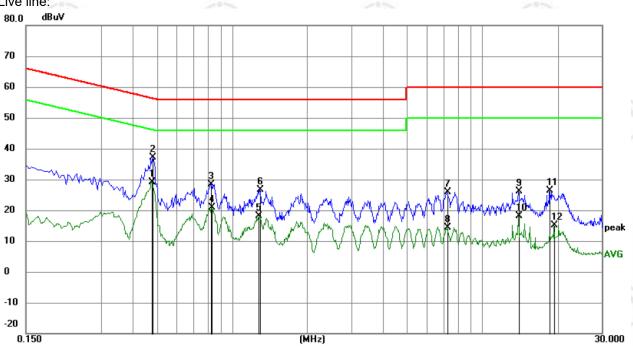
EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna is 0.8dBi.

Report No.: EED32N81130401 Page 13 of 55

6.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207		(6.7)				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	Frequency range (MHz)	Limit (dl Quasi-peak	BuV) Average				
	0.15-0.5	66 to 56*	56 to 46*				
Limit:	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of		30				
Test Setup:	Power Supply L.I.S.II.	€ 0.8m • • • • • • • • • • • • • • • • • • •	Support Equipment EUT 10 cm				
Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Neimpedance. The power cab connected to a second LISI reference plane in the same measured. A multiple socke power cables to a single LIS exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An invertical ground reference plane in the EUT shall be 0.4 m fivertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the introduced in the introduced in	AC power source thro etwork) which provides alles of all other units of N 2, which was bonded way as the LISN 1 for et outlet strip was used SN provided the rating are outlet of the reference plane, and the rating are outlet of the reference plane. The of the LISN 1 and the rating are outlet of the LISN 1 and the rating are outlet o	ugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were to the ground reference to connect multiple of the LISN was not table 0.8m above the angement, the EUT was become plane. The reference plane. The end of the boundary of the plane for LISNs is distance was EUT. All other units of the positions of				
Exploratory Test Mode:	Non-hopping transmitting moddata type at the lowest, middle Through Pre-scan, find the D	, high channel. H5 of data type and					
Final Test Mode:	lowest channel is the worst case. Only the worst case is recorde	se.					
Test Results:	Pass						

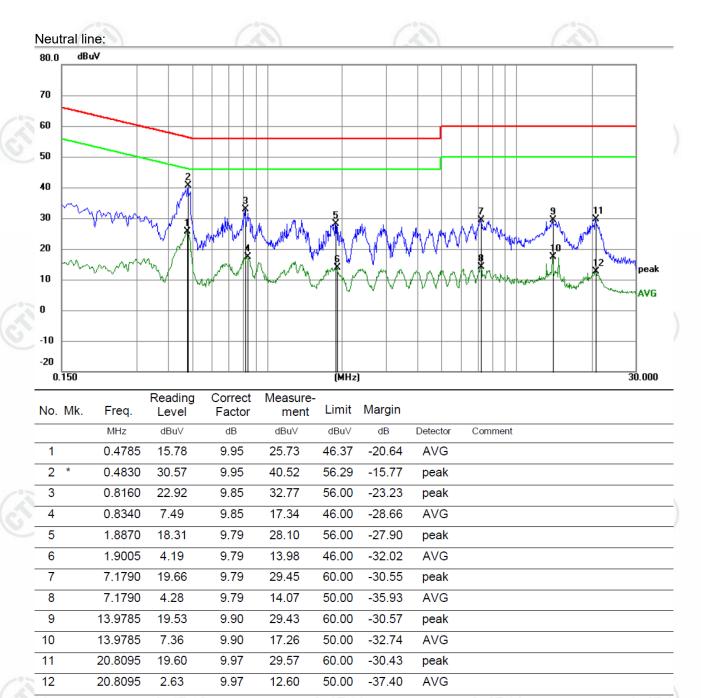

Report No.: EED32N81130401

Measurement Data

Live line:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
_	1	*	0.4785	19.16	9.95	29.11	46.37	-17.26	AVG	
_	2		0.4830	27.16	9.95	37.11	56.29	-19.18	peak	
	3		0.8250	18.56	9.85	28.41	56.00	-27.59	peak	
R	4		0.8295	11.05	9.85	20.90	46.00	-25.10	AVG	
b	5		1.2795	8.26	9.82	18.08	46.00	-27.92	AVG	
	6		1.2930	16.93	9.82	26.75	56.00	-29.25	peak	
Ī	7		7.2375	16.05	9.79	25.84	60.00	-34.16	peak	
Ī	8		7.2825	4.59	9.79	14.38	50.00	-35.62	AVG	
	9		13.9785	16.33	9.90	26.23	60.00	-33.77	peak	
	10		13.9785	8.32	9.90	18.22	50.00	-31.78	AVG	
	11		18.5865	16.34	9.96	26.30	60.00	-33.70	peak	
	12		19.4145	5.26	9.97	15.23	50.00	-34.77	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



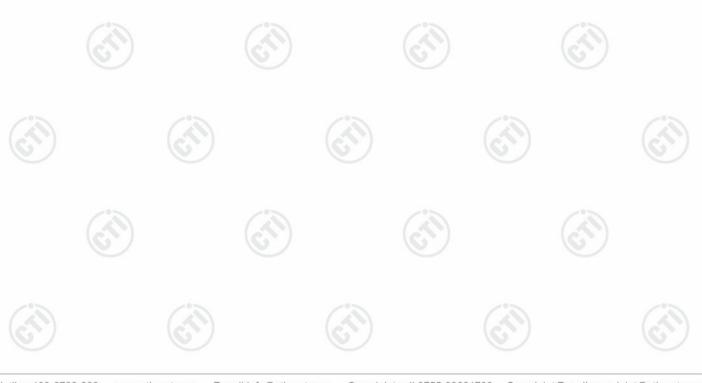
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: EED32N81130401 Page 16 of 55

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Control Control Power Supply Power Supply Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



6.4 DTS Bandwidth

47 CFR Part 15C Section 15.247 (a)(2)
ANSI C63.10 2013
Control Computer Power Pool Actenna Pool Pool Attenuator Temperature Cabinet Table RF test System Instrument
Remark: Offset=Cable loss+ attenuation factor.
 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
≥ 500 kHz
Refer to clause 5.3
Refer to Appendix A

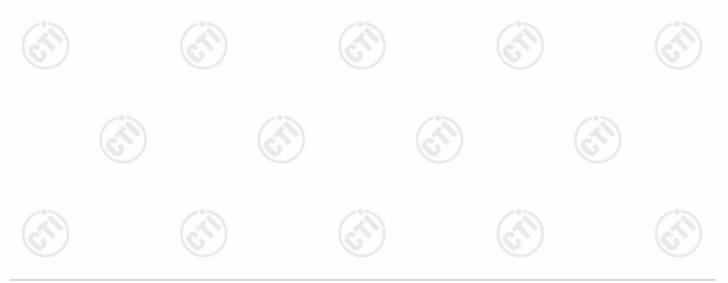
Report No.: EED32N81130401 Page 18 of 55

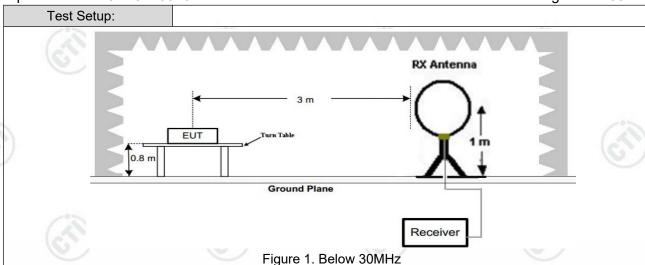
6.5 Maximum Power Spectral Density

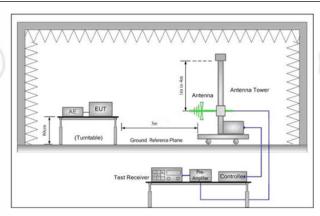
47 CFR Part 15C Section 15.247 (e)
ANSI C63.10 2013
Control Computer Computer Power Supply Power Power Table RF test System Instrument Instrument
Remark: Offset=Cable loss+ attenuation factor.
 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude leve within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no lest than 3 kHz) and repeat.
≤8.00dBm/3kHz
Refer to clause 5.3
Refer to Appendix A

6.6 Band Edge measurements and Conducted Spurious Emission

/ ///	
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Computer Power Pool Acteons Pool Actenuator Control System Power Power Pool Attenuator Instrument Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A




6.7 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Secti	7 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10kHz	Average			
Limit:	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measuremen distance (m)			
	0.009MHz-0.490MHz	0.009MHz-0.490MHz 24		-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-/3	30			
	1.705MHz-30MHz		30	-	(6)	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz	(°)	500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20c equip	dB above the oment under t	maximum est. This p	permitted ave	erage emission			

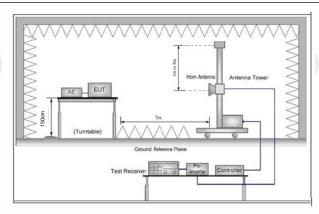
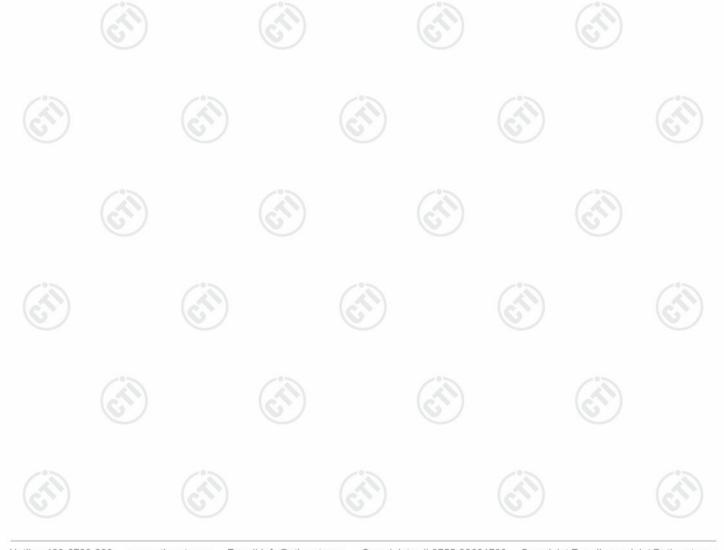


Figure 2. 30MHz to 1GHz

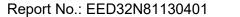
Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

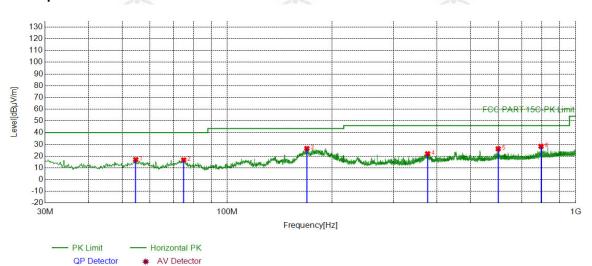

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

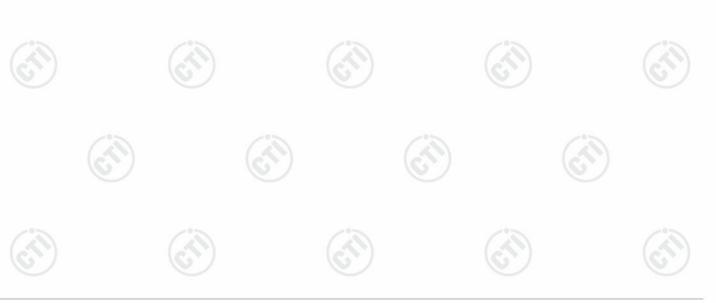

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

CTI华测检测

Report No.: EED32N81	130401		P	age 22 of 55
		For each suspected emissic and then the antenna was to the test frequency of below meter) and the rotatable degrees to find the maximum	uned to heights from 1 mete 30MHz, the antenna was to table was turned from 0	er to 4 meters (for uned to heights 1
		The test-receiver system wa Bandwidth with Maximum Ho		ion and Specified
		If the emission level of the I limit specified, then testing of EUT would be reported. Oth margin would be re-tested average method as specified	could be stopped and the particles are the emissions that define by one using peak	eak values of the lid not have 10dB k, quasi-peak or
		Test the EUT in the lowe (2440MHz),the Highest char		middle channel
	13	The radiation measurement for Transmitting mode, and worst case.		
	i.	Repeat above procedures u	ntil all frequencies measure	d was complete.
Test Mode:	Refe	er to clause 5.3	(2)	· -
Test Results:	Pass	s	(25)	(27)

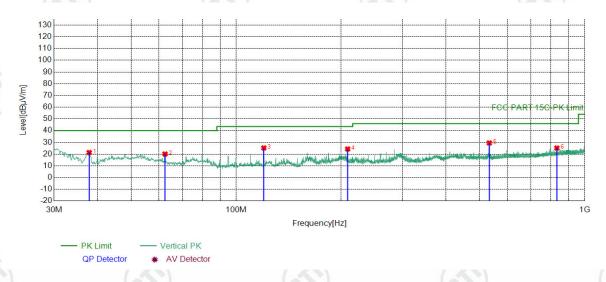

Page 23 of 55

Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode a was recorded in the report.

Left ear:

Test Graph


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	54.6405	-17.79	34.80	17.01	40.00	22.99	PASS	Horizontal	Peak
2	75.0125	-21.68	38.42	16.74	40.00	23.26	PASS	Horizontal	Peak
3	169.3059	-20.51	47.01	26.50	43.50	17.00	PASS	Horizontal	Peak
4	376.0336	-13.44	35.45	22.01	46.00	23.99	PASS	Horizontal	Peak
5	599.5440	-8.65	34.88	26.23	46.00	19.77	PASS	Horizontal	Peak
6	795.7946	-6.68	35.00	28.32	46.00	17.68	PASS	Horizontal	Peak



Test Graph

			<u> </u>						
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	37.8578	-18.70	40.08	21.38	40.00	18.62	PASS	Vertical	Peak
2	62.4983	-19.07	39.19	20.12	40.00	19.88	PASS	Vertical	Peak
3	120.0250	-20.08	45.37	25.29	43.50	18.21	PASS	Vertical	Peak
4	208.8859	-17.63	42.01	24.38	43.50	19.12	PASS	Vertical	Peak
5	532.7043	-10.19	39.76	29.57	46.00	16.43	PASS	Vertical	Peak
6	832.2702	-6.03	31.23	25.20	46.00	20.80	PASS	Vertical	Peak

