


Test Report

Report No.:	MTi240805031-10E1
Date of issue:	2024-08-28
Applicant:	Shenzhen Yifeng Intelligent Technology Co., Ltd.
Product name:	qi2 Certified 3-in-1 Wireless Charging Stand
Model(s):	M27
FCC ID:	2AXY5-M27

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 6 6
2	Sum	mary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	uation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line 20dB Occupied Bandwidth Emissions in frequency bands (below 30MHz) Emissions in frequency bands (30MHz - 1GHz)	14 20
Ph	otogra	aphs of the test setup	28
Ph	otogra	aphs of the EUT	29

Test Result Certification			
Applicant:	Shenzhen Yifeng Intelligent Technology Co., Ltd.		
Address:	201, Building 4, Sanwei Chaxi Industrial Zone, Sanwei Community, Hang Cheng Street, Bao An District, Shenzhen.		
Manufacturer:	Shenzhen Yifeng Intelligent Technology Co., Ltd.		
Address:	201, Building 4, Sanwei Chaxi Industrial Zone, Sanwei Community, Hang Cheng Street, Bao An District, Shenzhen.		
Product description			
Product name:	qi2 Certified 3-in-1 Wireless Charging Stand		
Trademark:	YFZN		
Model name:	M27		
Series Model(s):	N/A		
Standards:	47 CFR Part 15C		
Test Method:	ANSI C63.10-2013		
Date of Test			
Date of test:	2024-08-20 to 2024-08-27		
Test result:	Pass		

Test Engineer	:	Marleerh Deny
		(Maleah Deng)
Reviewed By	:	Dowid. Cee
		(David Lee)
Approved By	:	(con chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

•	
Product name:	qi2 Certified 3-in-1 Wireless Charging Stand
Model name:	M27
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: DC 9V 3.33A Wireless Output: Phone: 5W,10W,15W; Earphone: 5W; Watch: 5W
Accessories:	Cable: USB-C to USB-C cable 100cm
Hardware version:	V1.2
Software version:	V003C18F2
Test sample(s) number:	MTi240805031-10S1001
RF specification	
Operating frequency range:	Coil 1(Phone):115-205kHz(5W,10W),360 kHz(15W) Coil 2(Earphone):115-205kHz Coil 3(Watch): 300-360kHz
Modulation type:	ASK
Antenna(s) type:	Coil Antenna

1.2 Description of test modes

No.	Emission test modes
Mode1	Wireless output(5W)+Earphone(5W)+Watch(5W)
Mode2	Wireless output(10W)+Earphone(5W)+Watch(5W)
Mode3	Wireless output(15W)+Earphone(5W)+Watch(5W)
Mode4	Wireless output(5W)+Earphone(5W)
Mode5	Wireless output(10W)+Earphone(5W)
Mode6	Wireless output(15W)+Earphone(5W)
Mode7	Wireless output(5W)+Watch(5W)
Mode8	Wireless output(10W)+Watch(5W)
Mode9	Wireless output(15W)+Watch(5W)
Mode10	Earphone(5W)+Watch(5W)
Mode11	Wireless output(5W)
Mode12	Wireless output(10W)
Mode13	Wireless output(15W)
Mode14	Wireless Watch(5W)
Mode15	Wireless Earphone(5W)
Mode16	Stand by

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
iwatch	iwatch S7 M0JVGQG1VP		Apple			
wireless charging load	YBZ1.1	/	YBZ			
HUAWEI QUICK CHARGE	HW-200200ZP1	JN67LSN7N03451	HUAWEI			
airpods	airpods 3	/	apple			
Support cable list						
Description Length (m)		From	То			
/	/	/	/			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due	
	Conducted Emission at AC power line						
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19	
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20	
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19	
		20dB Oc	cupied Bandwid	th			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20	
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20	
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20	
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20	
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20	
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19	
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20	
		Emissions in frequ	ency bands (bel	ow 30MHz)			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22	
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19	
		Emissions in freque	ency bands (30N	/Hz - 1GHz)			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22	
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19	

5 Evaluation Results (Evaluation)

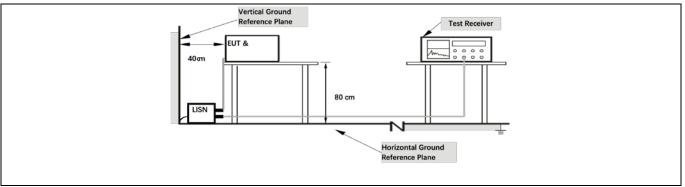
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

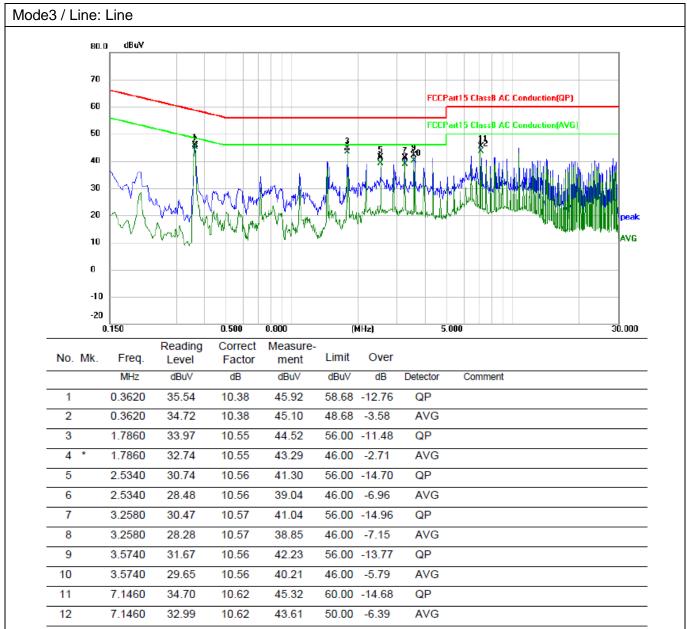
The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

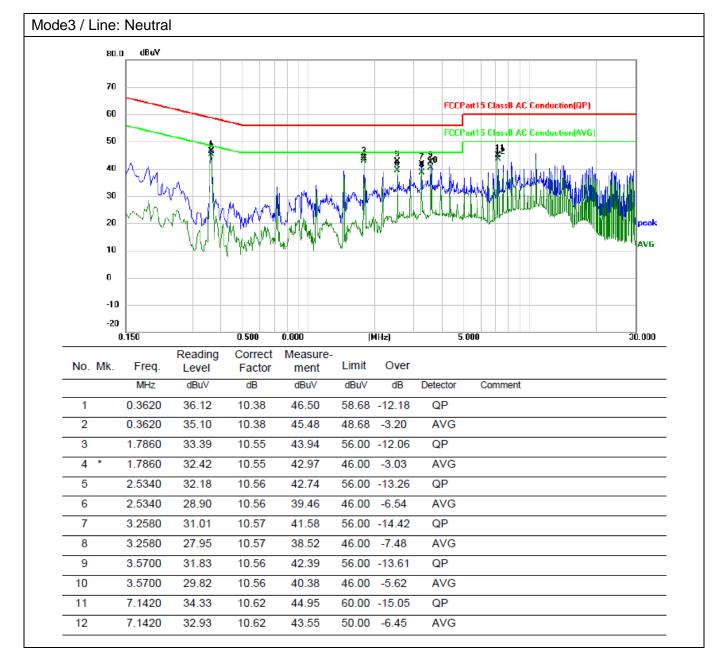

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dB	βμV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 60 50					
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 sect line conducted emissions from u			wer-		

6.1.1 E.U.T. Operation:

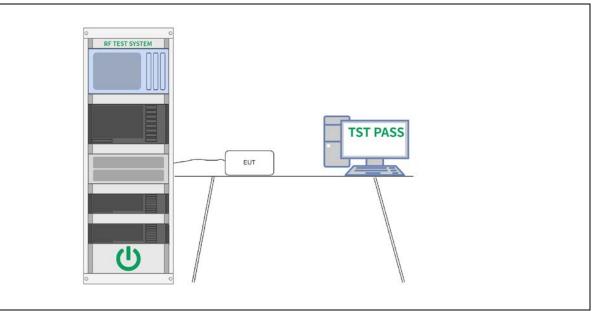

Operating Environment:						
Temperature:	25.9 °C	Humidity:	44 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report						

6.1.2 Test Setup Diagram:



6.1.3 Test Data:

6.2 20dB Occupied Bandwidth


Test Limit: Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific route which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. Test Method: ANSI C63.10-2013, section 6.9.2 Procedure: a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (VB) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level of measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be more than 10 dB below the target "-xx dB down "requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be all east 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value. Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternativel	Test Requirement:	47 CFR Part 15.215(c)
Procedure: a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (V4W) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the "efference value. g) Determine the reference value: h) Determine the reference value. h) Determine the reference value is determined by using the marker-delta function of the instrument. n) DEtermine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. g) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrume		Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule
 a) The posterior lating/set of the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (VBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or stat a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency difference between the two markers. Alternatively, such that each marker is at or slightly below the "-xx dB down amplitude" value, then i	Test Method:	ANSI C63.10-2013, section 6.9.2
plot(s).		 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequenc

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	55 %	Atmospheric Pressure:	99 kPa
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode12, Mode13, Mode14, Mode15) is recorded in the report						

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Frequency	20 dB	occupied band	width	99% occupied bandwi
kHz		Hz		Hz
127.9		815		714
	Cente	ENSE:PULSE SOURCE OFF r Freq: 127.900 kHz ree Run Avg Hold : 10 dB	Radio Std	
10 dB/div Ref -20.00 dBm -og -30.0 -40.0 -50.0				Center Freq 127.900 kHz
-60.0 -70.0 -80.0 -90.0 -100				
-110 Center 127.9 kHz #Res BW 300 Hz	#	VBW 1 kHz		pan 5 kHz 68.07 ms
Occupied Bandwidth	714 Hz	Total Power	-34.9 dBm	Auto Man Freq Offset
Transmit Freq Error	25 Hz	OBW Power	99.00 %	0 Hz

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Frequency	Coil 1(15W 20 dB occupied ba	,	99% occupied bandwidt
kHz	Hz		Hz
360	865		760
Agilent Spectrum Analyzer - Occupied BW (¥] RL RF 50 @ A_DC Center Freq 360.000 kHz #IFGa 10 dB/div Ref -10.00 dBm -20.0	SENSE:PULSE SOURCE OFF Center Freq: 360.000 kHz Trig: Free Run Avg #Atten: 10 dB	ALIGN AUTO 09:35:59 PM Radio Std: 3 Hold: 10/10 Radio Devi	ice: BTS Swept SA Channel Power Occupied BW
-100 Center 360 kHz #Res BW 300 Hz Occupied Bandwidth	#VBW 1 kHz Total Power	Sweep	an 5 kHz 68.07 ms CCDF
	760 Hz		BurstPower
Transmit Freq Error	-5 Hz OBW Powe		
x dB Bandwidth	865 Hz x dB	-20.00 dB	More 1 of 2

Page 17 of 29

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

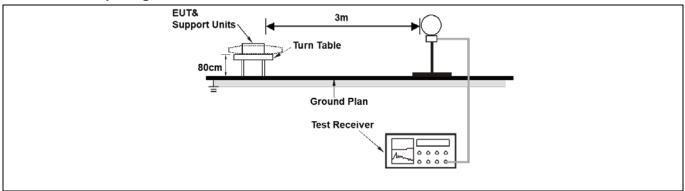
Frequency	20 dB occ	cupied banc	width	99% oc	cupied bandwid
kHz		Hz			Hz
128.14		812			696
Agilent Spectrum Analyzer - Occupied BW					
RL RF 50 Ω ADC Center Freq 128.140 kHz	Center Freq	ILSE SOURCE OFF	Ra	:44:16 PM Aug 22, 2024 dio Std: None	Frequency
	in:Low #Atten: 10 d			dio Device: BTS	
10 dB/div Ref -10.00 dBm Log					
-20.0					Center Freq
-30.0					128.140 kHz
-50.0					
-60.0		\rightarrow			
-70.0		- ha		- / /	
-80.0					
-100					
Center 128.1 kHz				Span 5 kHz	
#Res BW 300 Hz	#VBW	1 kHz	Sv	/eep 68.07 ms	CF Step 500 Hz
Occupied Bandwidth	т	otal Power	-25.6 dE	lm	<u>Auto</u> Man
	696 Hz				Freq Offset
Transmit Freq Error	10 Hz 0	BW Power	99.00	%	0 Hz
x dB Bandwidth		dB	-20.00		
			1		

Coil 2

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

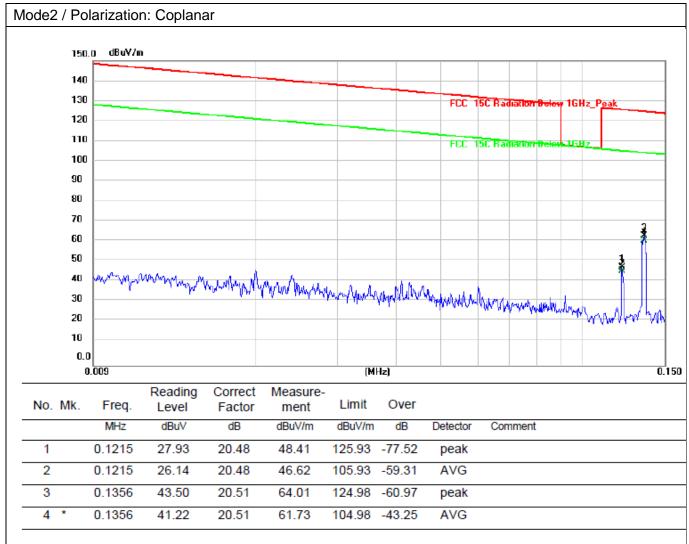
Frequency kHz	20 dB occupied bar Hz	ndwidth 99%	occupied bandwidt Hz
325.845	868		766
Agilent Spectrum Analyzer - Occupied BW K RL RF 50 Ω▲DC Center Freq 325.845 kHz	SENSE:PULSE SOURCE OFF	ALIGNAUTO 09:52:56 PM Aug 22, 2 Radio Std: None old: 10/10	
#IFGai 10 dB/div Ref -30.00 dBm Log		Radio Device: BTS	Center Freq 325.845 kHz
-60.0 -70.0 -80.0 -90.0 -100 -110			
-120 Center 325.8 kHz #Res BW 300 Hz	#VBW 1 kHz	Span 5 k Sweep 68.07	ms 500 Hz
Occupied Bandwidth	Total Power 766 Hz	-54.6 dBm	Auto Man Freq Offset
Transmit Freq Error x dB Bandwidth	-6 Hz OBW Power 868 Hz x dB	99.00 % -20.00 dB	0 Hz

```
Coil 3
```

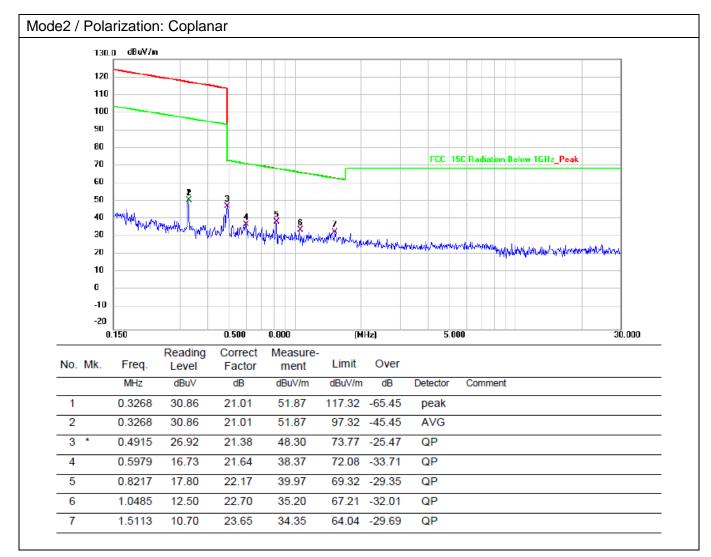


6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209			
Test Limit:	Frequency (MHz)	Field strength	Measuremen	
		(microvolts/meter)	t distance	
			(meters)	
	0.009-0.490	2400/F(kHz)	300	
	0.490-1.705	24000/F(kHz)	30	
	1.705-30.0	30	30	
	30-88	100 **	3	
	88-216	150 **	3	
	216-960	200 **	3	
	Above 960	500	3	
Test Method: Procedure:	frequency bands 54-72 M However, operation withi sections of this part, e.g. In the emission table abo The emission limits show employing a CISPR quas kHz, 110–490 kHz and a three bands are based o As shown in § 15.35(b), t limits in paragraphs (a)ar However, the peak field s maximum permitted aver any condition of modulat (b)of this section, the peak	ove, the tighter limit applies at the on in the above table are based si-peak detector except for the f bove 1000 MHz. Radiated emission for frequencies above 1000 MH and (b)of this section are based strength of any emission shall no rage limits specified above by no ion. For point-to-point operation ak field strength shall not exceet are along the antenna azimuth.	or 470-806 MHz. mitted under other ne band edges. on measurements frequency bands 9- ssion limits in these average detector. Iz, the field strength on average limits. not exceed the nore than 20 dB un n under paragraph	⊢90 e h

6.3.1 E.U.T. Operation:

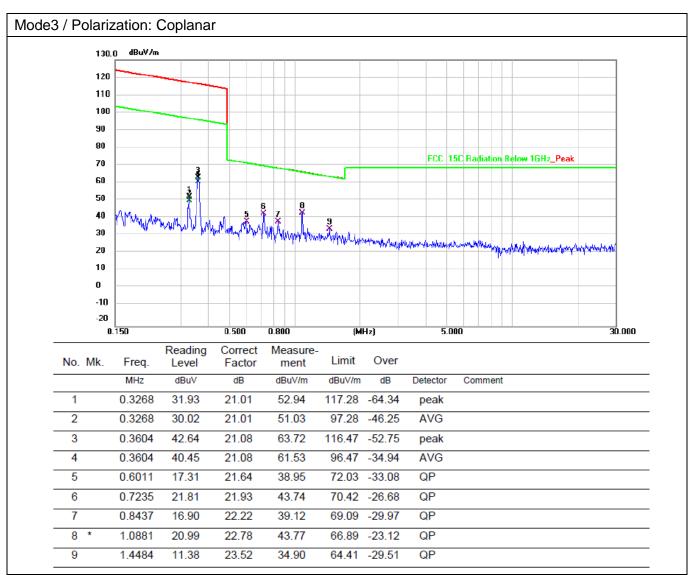

Operating Envi	Operating Environment:					
Temperature:	22.5 °C		Humidity:	43 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode10, Mode12, Mode13, Mode14, Mode15, Mode16						
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode2, Mode3) is recorded in the report						of the worst mode

6.3.2 Test Setup Diagram:

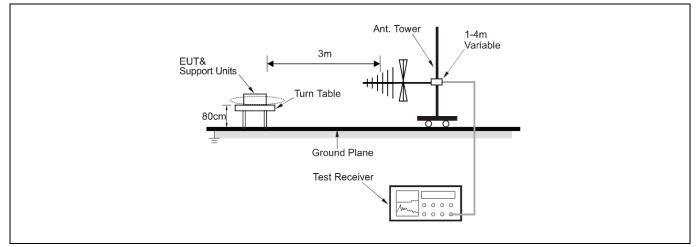


6.3.3 Test Data:



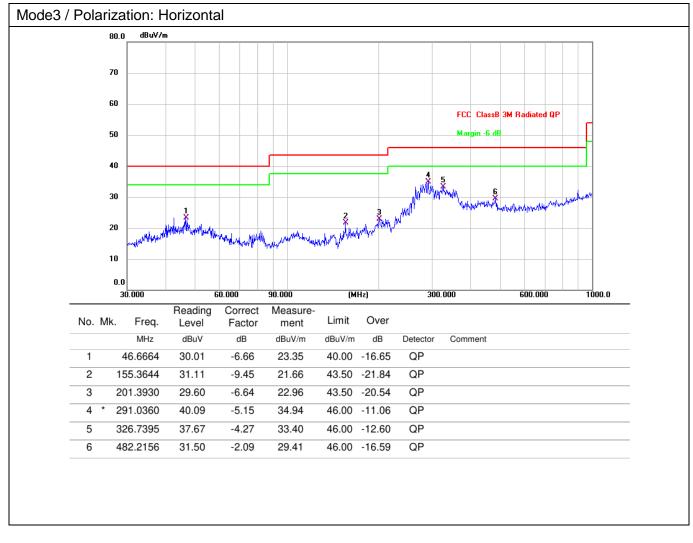


Mode3 / Polarization: Coplanar

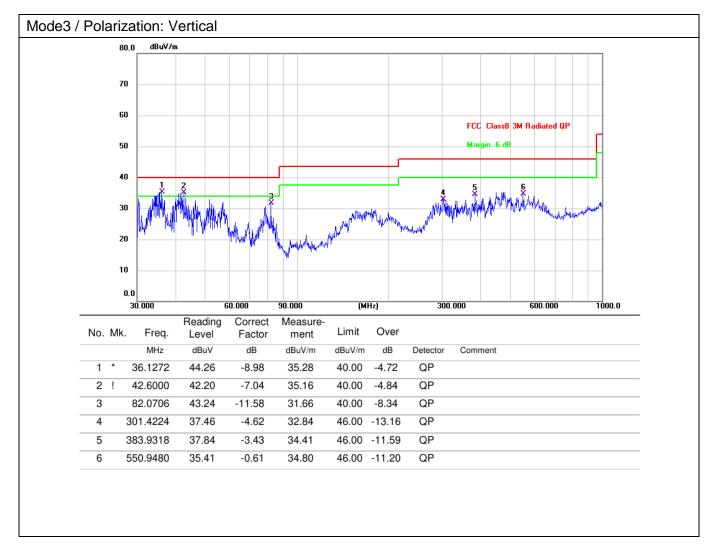

6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209				
Test Limit:	Frequency (MHz)	Field strength	Measuremen		
		(microvolts/meter)	t distance		
			(meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
Test Method:	intentional radiators opera frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas kHz, 110–490 kHz and at three bands are based or As shown in § 15.35(b), fi limits in paragraphs (a) However, the peak field s maximum permitted avera any condition of modulati (b) of this section, the peak	ve, the tighter limit applies at the n in the above table are based i-peak detector except for the for ove 1000 MHz. Radiated emission measurements employing an or frequencies above 1000 MH id (b)of this section are based of trength of any emission shall n age limits specified above by m on. For point-to-point operation k field strength shall not exceet rs along the antenna azimuth.	ot be located in the or 470-806 MHz. mitted under other he band edges. on measurements requency bands 9–9 ssion limits in these average detector. z, the field strength on average limits. ot exceed the hore than 20 dB under under paragraph		
Procedure:	ANSI C63.10-2013 section				
	ANO 003.10-2013 Secul				

6.4.1 E.U.T. Operation:


Operating Environment:						
Temperature:	22.5 °C		Humidity:	43 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode1, Mode2, Mode3, Mode4, Mode5, Mode6, Mode7, Mode8, Mode9, Mode10, Mode11, Mode12, Mode13, Mode14, Mode15, Mode16				
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report				

6.4.2 Test Setup Diagram:



6.4.3 Test Data:

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----