FCC RF Exposure Evaluation

1. Product Information

FCC ID	2ATFT-PM1507			
Product name	PORTABLE MONITOR			
Model number	PM1507			
Additional Model No.	PM1508, F-157, F-158, KJM-PM-157, KJM-PM-158, KJM-PM-159			
Model Declaration	PCB board, structure and internal of these model(s) are the same, So			
	no additional models were tested			
	DC 3.7V by Rechargeable Li-ion Battery, 6000mAh			
Power supply	For Adapter Model: KZ0502500SU			
Fower suppry	Input: AC 100-240V, 50/60Hz, 0.6A MAX			
	Output: DC 5.0V, 2.5A, 12.5W			
	GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.0(DSS)			
Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK);			
	IEEE 802.11g/n: OFDM(64QAM, 16QAM, QPSK, BPSK)			
Bluetooth Antenna Description	PCB Antenna; 0dBi(Max.)			
2.4G WLAN Antenna Description	FPC Antenna; 0dBi(Max.)			
Antenna Gain	OdBi(Max.)			
Hardware version	KJM-PM157A/V**			
Software version	/			
FCC Operation frequency	2402MHz ~ 2480MHz			
rec operation frequency	2412MHz-2462MHz			
Exposure category	General population/uncontrolled environment			
EUT Type	Production Unit			
Device Type	Portable Device			

2. Evaluation method and Limit

According to KDB447498 D01 General RF Exposure Guidance v06 Section 4.3.1 Standalone SAR test exclusion considerations: "Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.22 The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander (see 5) of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT two-way radios, handsets, laptops & tablets etc." [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] · [Vf (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- f (GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

 The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to f) in section 4.1 is applied to determine SAR test exclusion.

When one of the following test exclusion conditions is satisfied for all combinations of simultaneous transmission configurations, further equipment approval is not required to incorporate transmitter modules in host devices that operate in the mixed mobile and portable host platform exposure conditions. The grantee is responsible for documenting this according to Class I permissive change requirements. Antennas that qualify for standalone SAR test exclusion must apply the estimated standalone SAR to determine simultaneous transmission test exclusion.

- a) The [\sum of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [\sum of MPE ratios] is \leq 1.0.
- b)The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all \leq 0.04, and the [\sum of MPE ratios] is \leq 1.0.

3. Refer Evaluation Method

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz.

<u>FCC KDB publication 447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1093: Radiofrequency radiation exposure evaluation: portable devices

4. Conducted Power Results

< BT Max Conducted Power >

Mode	Channel	Frequency(MHz)	Max Conducted Power (dBm)
	0	2402	1.122
GFSK	39	2441	-3.064
	78	2480	-3.282
	0	2402	0.436
π/4DQPSK	39	2441	-0.776
	78	2480	-1.082
	0	2402	0.806
8DPSK	39	2441	-0.527
	78	2480	-0.730

<2.4GWLAN Max Conducted Power >

Mode	Channel	Frequency(MHz)	Max Conducted Power (dBm)
	1	2412	9.07
IEEE 802.11b	6	2437	8.94
	11	2462	8.38
	1	2412	8.57
IEEE 802.11g	6	2437	9.40
	11	2462	8.90
	1	2412	8.80
IEEE 802.11n HT20	6	2437	8.70
	11	2462	9.24
	3	2422	8.49
IEEE 802.11n HT40	6	2437	9.10
	9	2452	8.91

5. Manufacturing Tolerance

<BT>

GFSK (Peak)					
Channel	Channel 0 Channel 39		Channel 78		
Target (dBm)	1.0	-3.0	-3.0		
Tolerance ±(dB)	1.0	1.0	1.0		
π/4DQPSK (Peak)					
Channel	Channel 0	Channel 39	Channel 78		
Target (dBm)	0	0	-1.0		
Tolerance ±(dB)	1.0	1.0 1.0			
8DPSK (Peak)					
Channel	Channel 0	Channel 39	Channel 78		
Target (dBm)	0	0	0		
Tolerance ±(dB)	1.0	1.0	1.0		

-2	40	14/	
< Z.	4 G	vv	-

11B (Peak)					
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	8.5	8.0	8.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	11G (Peak)			
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	8.0	8.5	8.0		
Tolerance ±(dB)	1.0	1.0	1.0		
	11N20SIS	SO (Peak)			
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	8.0	8.0	8.5		
Tolerance ±(dB)	1.0	1.0	1.0		
11N40SISO (Peak)					
Channel	Channel 3	Channel 6	Channel 9		
Target (dBm)	8.0	8.5	8.0		
Tolerance ±(dB)	1.0	1.0	1.0		

6. Evaluation Results

6.1 Standalone Evaluation

BT:

		Antenna	RF output power		SAR Test	SAR Test
Band/Mode	f (GHz)	Distance (mm)	dBm	mW	Exclusion Threshold	Exclusion
GFSK	2.402	5	2.0	1.5849	0.4913< 3.0	Yes
π/4DQPSK	2.402	5	1.0	1.2589	0.3902< 3.0	Yes
8DPSK	2.402	5	1.0	1.2589	0.3902< 3.0	Yes

2.4GWIFI:

		Antenna	RF outpu	ıt power	SAR Test	SAR Test
Band/Mode	f (GHz)	Distance (mm)	dBm	mW	Exclusion Threshold	Exclusion
IEEE 802.11b	2.412	5	9.5	8.9125	2.7683< 3.0	Yes
IEEE 802.11g	2.412	5	9.5	8.9125	2.7683< 3.0	Yes
IEEE 802.11n HT20	2.412	5	9.5	8.9125	2.7683< 3.0	Yes
IEEE 802.11n HT40	2.412	5	9.5	8.9125	2.7683< 3.0	Yes

Remark:

- 1. Output power including tune up tolerance;
- 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to f) in section 4.1 is applied to determine SAR test exclusion.

6.2 Simultaneous Transmission for SAR Exclusion

The sample support one BT modular and one wifi modular, need consider simultaneous transmission; standalone SAR value = $[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] \cdot [Vf (GHz)/x]; where X=7.5 for 1-g SAR and x=18.75 for 10-g SAR$

SAR_{BT}=1.5849mw/5mm*[vf (2.402GHz)/7.5]=0.0655

SAR_{WIFI}=8.9125mw/5mm*[Vf (2.412GHz)/7.5]=0.3691

Antennas that qualify for standalone SAR test exclusion must apply the estimated standalone SAR to determine simultaneous transmission test exclusion:

The $[\Sigma]$ of (the highest measured or estimated SAR for each standalone antenna configuration,

NZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATFT-PM150.
adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [Σ of MPE range	atios] is ≤ 1.0.
Result: \sum of (the highest measured or estimated SAR _{ANT0} +SAR _{ANT1})/1	.6 = (0.0655+0.3691)/1.6 = 0.3 < 1.0;
7 Canalysian	
7. Conclusion	
The measurement results comply with the ECC Limit per 47 CER 2.11	202 for the uncentralled DE Evaccure
The measurement results comply with the FCC Limit per 47 CFR 2.10	193 for the uncontrolled RF Exposure
and SAR Exclusion Threshold per KDB 447498 v06.	
THE END OF REPORT	