

Global United Technology Services Co., Ltd.

Report No.: GTS201809000023F01

FCC Report (Bluetooth)

Applicant:	Shenzhen Jingwah Information Technology Co., Ltd.
Address of Applicant:	4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Shenzhen, China
Manufacturer/Factory:	Shenzhen Jingwah Information Technology Co., Ltd.
Address of Manufacturer/Factory:	4F, Bldg 4, Jinghua Square, No.1 Huafa North Road, Shenzhen, China
Equipment Under Test (E	EUT)
Product Name:	Tablet PC
Model No.:	M7500, M7600-D
Trade Mark:	PACKARD BELL
FCC ID:	RBD-N7
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	September 05, 2018
Date of Test:	September 06-25, 2018
Date of report issued:	September 26, 2018
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	September 26, 2018	Original

Prepared By:

Bill. yuan

Date:

September 26, 2018

Project Engineer

Check By:

w

Date:

September 26, 2018

Reviewer

3 Contents

1		1
1		'
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT5.2 TEST MODE	7
	 5.3 DESCRIPTION OF SUPPORT UNITS 5.4 TEST FACILITY 	
	5.5 TEST LOCATION	
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	. 10
	7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED PEAK OUTPUT POWER 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method 7.10.1 Conducted Emission Method 7.10.2 Radiated Emission Method	. 11 . 16 . 20 . 24 . 28 . 29 . 31 . 32 . 32 . 36 . 39 . 39 . 39
8	TEST SETUP PHOTO	. 54
9	EUT CONSTRUCTIONAL DETAILS	. 58

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 General Description of EUT

Tablet PC			
M7500, M7600-D			
M7500, M7600-D			
identical in the same PCB layout, interior structure and electrical circuits.			
model name for commercial purpose.			
GTS201809000023-1			
Engineer sample			
SC5849107PC			
2402MHz~2480MHz			
79			
1MHz			
GFSK, π/4-DQPSK, 8-DPSK			
Integral Antenna			
-2.0dBi(Max)			
Adapter :			
Model:JHD-AP006U-050100BB-2			
Input: AC100-240V, 50/60Hz, 0.2A			
Output: DC 5V, 1A			
Battery: DC 3.7V , 3000mAh, 11.1Wh			

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2441MHz		
The Highest channel	2480MHz		

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

	Transmitting mode Keep the EUT in continuously transmitting mode.						
	Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.						
5.3	Description of Supp	ort Units					
	None.						
5.4	Test Facility						
	The test facility is recogni • FCC —Registration N	zed, certified, or accredited by the following organizations: o.: 381383					
	described in a report filed from the FCC is maintain	y Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully with the (FCC) Federal Communications Commission. The acceptance letter ed in files. Registration 381383, January 08, 2018. — Registration No.: 9079A-2					
	The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered b Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.						

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019	
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019	
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019	
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019	
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019	
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019	

Conc	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	КТЈ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

RF C	RF Conducted Test:							
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

Gene	General used equipment:								
Item	Test Equipment	t Equipment Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019			
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019			

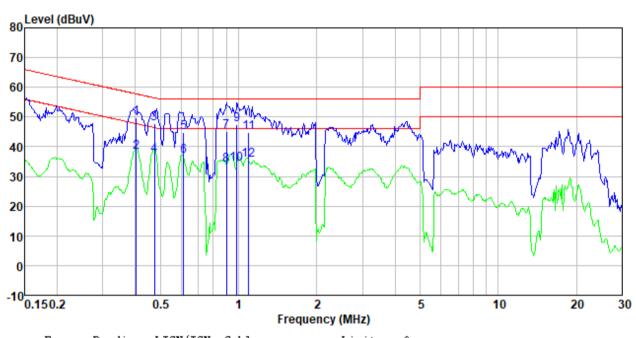
Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

7.1	Antenna require						
	Standard requirem						
	15.203 requirement:						
	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.						
	15.247(c) (1)(i) req	lirement:					
	operations may em maximum conducte	g in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point bloy transmitting antennas with directional gain greater than 6dBi provided the d output power of the intentional radiator is reduced by 1 dB for every 3 dB that the e antenna exceeds 6dBi.					
	E.U.T Antenna:						
	The antenna is Int	rnal antenna, the best case gain of the antenna is -2.0dBi					
	Model: M7600- D						
	Model: M7500						

1.2						
	Test Requirement:	FCC Part15 C Section 15.207	,			
	Test Method:	ANSI C63.10:2013				
	Test Frequency Range:	150KHz to 30MHz Class B				
	Class / Severity:					
	Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
-	Limit:		Limit (c	lBuV)		
		Frequency range (MHz)	Quasi-peak	Average		
		0.15-0.5	66 to 56*	56 to 46*		
		0.5-5	56	46		
		5-30	60	50		
		* Decreases with the logarithm	n of the frequency.			
	Test setup:	Reference Plane		-		
	-	AUX Equipment E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver			
	Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and 	n network (L.I.S.N.). The edance for the measuri also connected to the n/50uH coupling impect o the block diagram of checked for maximum d the maximum emission	his provides a ng equipment. main power through a dance with 50ohm the test setup and conducted on, the relative		
	Toot Instruments	according to ANSI C63.10:	2013 on conducted me			
	Test Instruments:	Refer to section 6.0 for details				
	Test mode:	Refer to section 5.2 for details	6			
	Test voltage:	AC 120V, 60Hz				
	Test results:	Pass				


7.2 Conducted Emissions

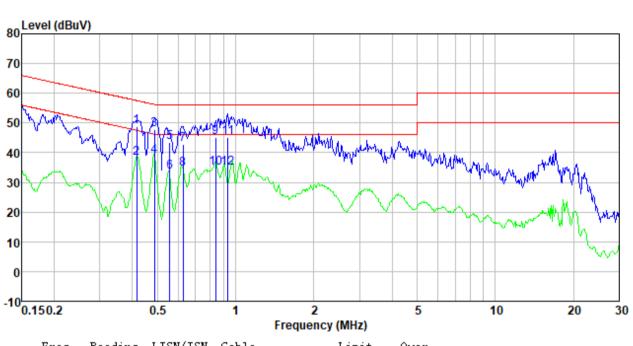
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

Model: M7500

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Probe:	Line

 Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBu∛	Limit level dBuV	Over limit dB	Remark
0.40	49.27	0.35	0.11	49.73	57.77	-8.04	QP
0.40	37.72	0.35	0.11	38.18	47.77	-9.59	Average
0.47	47.40	0.32	0.11	47.83	56.45	-8.62	QP
0.47	36.81	0.32	0.11	37.24	46.45	-9.21	Average
0.61	44.43	0.28	0.12	44.83	56.00	-11.17	QP
0.61	36.36	0.28	0.12	36.76	46.00	-9.24	Average
0.90	44.62	0.22	0.14	44.98	56.00	-11.02	QP
0.90	33.59	0.22	0.14	33.95	46.00	-12.05	Äverage
0.98	47.25	0.20	0.15	47.60	56.00	-8.40	QP
0.98	33.68	0.20	0.15	34.03	46.00	-11.97	Äverage
1.09	44.32	0.20	0.15	44.67	56.00	-11.33	QP
1.09	35.27	0.20	0.15	35.62	46.00	-10.38	Average


Report No.: GTS201809000023F01

Mode: Temp./Hum.(%H):	Transmittin 26℃/56%RF	-			Test by Probe:	: Bill Neu	tral
80 Level (dBuV) 70 60 50 40 30 20 10 -10 0.150.2	0.5	N/14/11/14/14/14/14/14/14/14/14/14/14/14/	2	**************************************	MM M.M.	10	
			Frequency	/ (MHz)			
Freq Read leve MHz dBu	l factor	Cable loss dB	Level dBu∛	Limit level dBuV	Over limit dB	Remark	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.12	48.40 34.82 45.09 35.96 47.72 37.32 43.70 34.95 42.36 33.17 43.10 31.66	$\begin{array}{c} 63.\ 45\\ 53.\ 45\\ 57.\ 77\\ 47.\ 77\\ 56.\ 41\\ 46.\ 41\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ \end{array}$	-15.05 -18.63 -12.68 -11.81 -8.69 -9.09 -12.30 -11.05 -13.64 -12.83 -12.90 -14.34	QP Average QP Average QP Average QP Average QP Average QP Average	

Model: M7600-D

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Probe:	Line

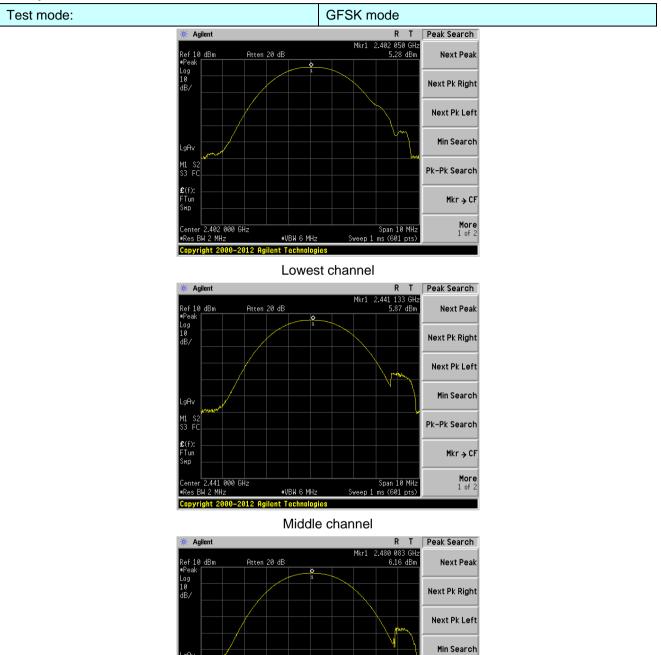
Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
0.42 0.49 0.56 0.56 0.63 0.84 0.84 0.93 0.93	$\begin{array}{c} 48.31\\ 37.76\\ 47.46\\ 38.28\\ 43.12\\ 32.92\\ 42.48\\ 33.99\\ 44.75\\ 34.32\\ 44.77\\ 34.34 \end{array}$	0.34 0.32 0.32 0.30 0.30 0.28 0.28 0.23 0.23 0.21 0.21	0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12	$\begin{array}{c} 48.\ 76\\ 38.\ 21\\ 47.\ 89\\ 38.\ 71\\ 43.\ 54\\ 33.\ 34\\ 42.\ 88\\ 34.\ 39\\ 45.\ 12\\ 34.\ 69\\ 45.\ 13\\ 34.\ 70\\ \end{array}$	$57.51 \\ 47.51 \\ 56.23 \\ 46.23 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.00 \\ 46.00 \\ 56.0$	-8.75 -9.30 -8.34 -7.52 -12.46 -13.12 -11.61 -10.88 -11.31 -10.87 -11.30	QP Average QP Average QP Average QP Average QP Average QP

Mode: Temp./Hum.(%		୮ransmitting 26℃/56%RH	-			Test by: Probe:	Bill Neu	tral	
80 Level (dBuV) 70 60 50 40 30 20 10 0	www.e	A A A A A A A A A A A A A A A A A A A		M. With Mara		12 12	Manmana	mm th	
-10 <mark>0.150.2</mark>		0.5	1	2	(MIL-)	5	10	20	30
	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Frequency Level dBuV	(MHZ) Limit level dBuV	Over limit dB	Remark		
$egin{array}{cccc} 0.40\\ 0.47\\ 0.47\\ 0.60\\ 0.60\\ 0.78\\ 0.78\\ 0.96\\ 0.96\\ 0.96\\ 4.31 \end{array}$	49. 67 40. 15 48. 72 38. 90 46. 35 37. 09 43. 55 35. 13 46. 45 37. 88 42. 07 32. 74	0.35 0.35 0.33 0.33 0.29 0.29 0.24 0.24 0.24 0.21 0.21 0.21 0.20 0.20	0.11 0.11 0.11 0.12 0.12 0.12 0.14 0.14 0.14 0.15 0.15 0.15 0.18 0.18	$\begin{array}{c} 50.13\\ 40.61\\ 49.16\\ 39.34\\ 46.76\\ 37.50\\ 43.93\\ 35.51\\ 46.81\\ 38.24\\ 42.45\\ 33.12\\ \end{array}$	$\begin{array}{c} 57.86\\ 47.86\\ 56.58\\ 46.58\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ 56.00\\ 46.00\\ \end{array}$	-7.73 -7.25 -7.42 -7.24 -9.24 -8.50 -12.07 -10.49 -9.19 -7.76 -13.55 -12.88	QP Average QP Average QP Average QP Average QP Average QP Average QP		

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK),20.97dBm(for EDR)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


7.3 Conducted Peak Output Power

Measurement Data

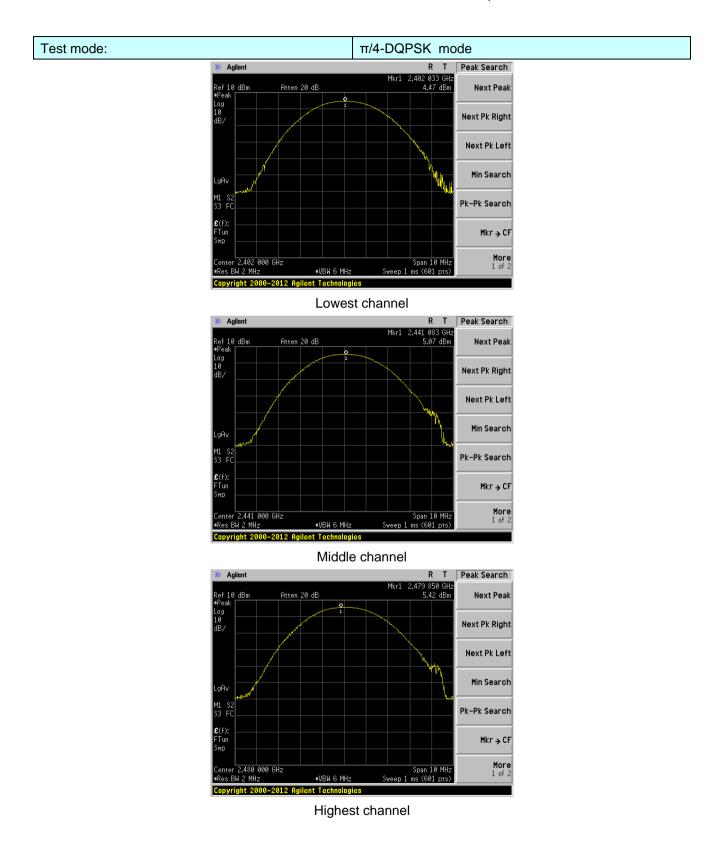
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	5.28		
GFSK	Middle	5.87	30.00	Pass
	Highest	6.16		
	Lowest	4.47		
π/4-DQPSK	Middle	5.07	20.97	Pass
	Highest	5.42		
	Lowest	4.71		
8-DPSK	Middle	5.28	20.97	Pass
	Highest	5.63		

Test plot as follows:

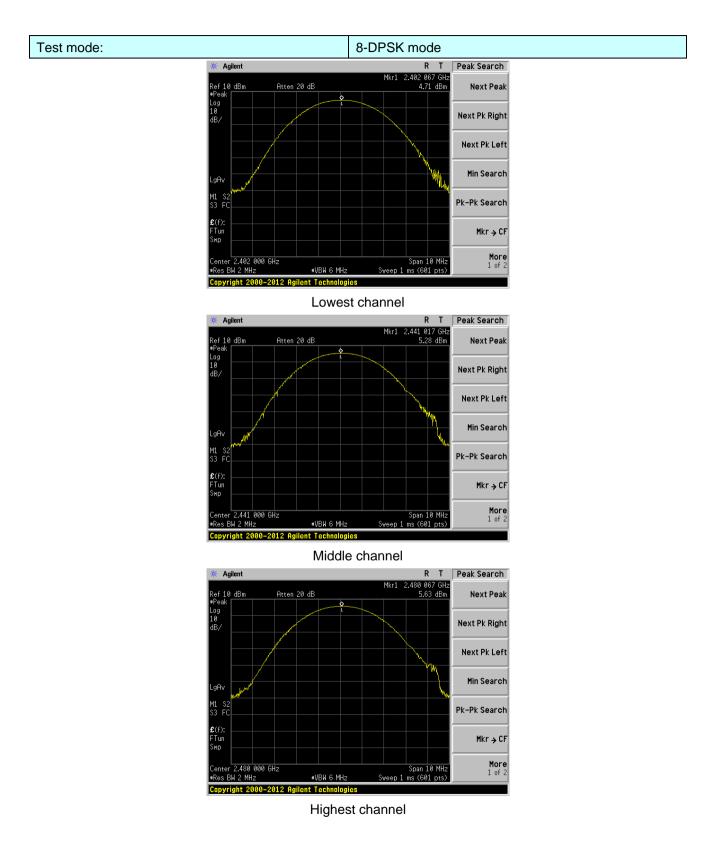
Pk-Pk Search

Span 10 MHz Sweep 1 ms (601 pts) Mkr → CF

More 1 of 2


2.480 000 GHz

Copyright 2000-2012 Agilent Technologies


Res BW 2 MHz

#VBW 6 MHz

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.834	
GFSK	Middle	0.830	Pass
	Highest	0.832	
	Lowest	1.112	
π/4-DQPSK	Middle	1.120	Pass
	Highest	1.120	
	Lowest	1.162	
8-DPSK	Middle	1.167	Pass
	Highest	1.159	

Test plot as follows:

Test mode:

	GFSK mode
* Agilent	R T Meas Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free 10 0n Off
	Avg Mode Exp Repeat
Ref 10 dBm Atten 20 dB Peak Log 10 20	Max Hold
10 dB/	Occ BW % Pwr 99.00 %
Center 2.402 000 GHz #Res BW 30 kHz ==VBW 100 kHz	OBW Span Span 3 MHz Sweep 3.2 ms (601 pts)
Occupied Bandwidth	Осс ВИ Z Риг 99.00 X × dB -20.00 dB
833.7517 kHz Transmit Freq Error 53.185 kHz × dB Bandwidth 834.432 kHz	Optimize RefLevel

Lowest channel

Middle channel

Test mode:

π/4-DQPSK mode

Lowest channel

Middle channel

Test mode:

8-DPSK mode

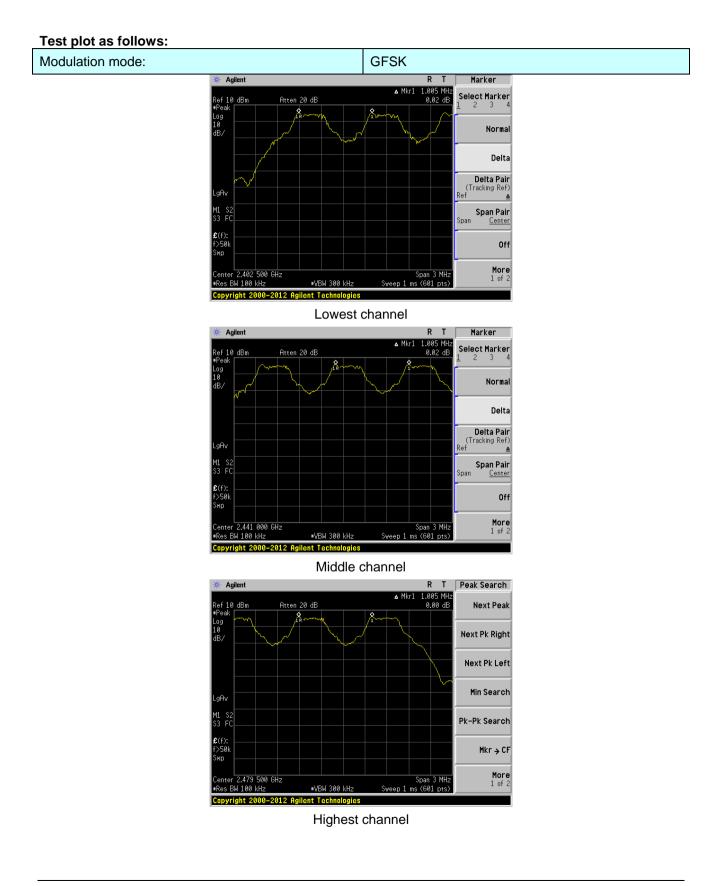
🔆 Agilent			R	Т	Mea	s Setup
Ch Freq 2.40 Occupied Bandwidth	2 GHz		Trig	Free	Av On	g Number 10 <u>Off</u>
	^^ ID				Exp f	Avg Mode Repeat
Ref 10 dBm Atten Peak Log 10	20 dB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<u>0n</u>	Max Hold Off
dB/			\sim	~~	0cc	BW % Pwr 99.00 %
Center 2.402 000 GHz #Res BW 30 kHz	•VBW 100 kHz	Sweep 3.2	Span 3			OBW Spar 00000 MHz
Occupied Bandwidt	h	Occ BW % Pwr x dB	99.0 -20.00)0 %		x dB -20.00 dB
Transmit Freq Error S x dB Bandwidth	64.836 kHz .162 MHz				F	Optimize RefLevel
Copyright 2000-2012 Ag	ilent Technologi	es				

Lowest channel

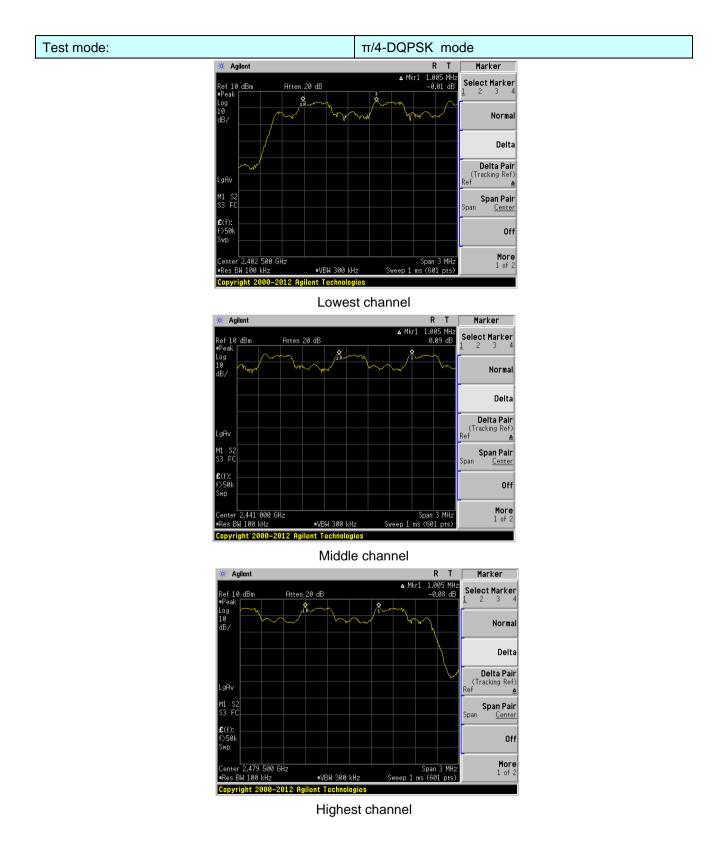
Middle channel

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

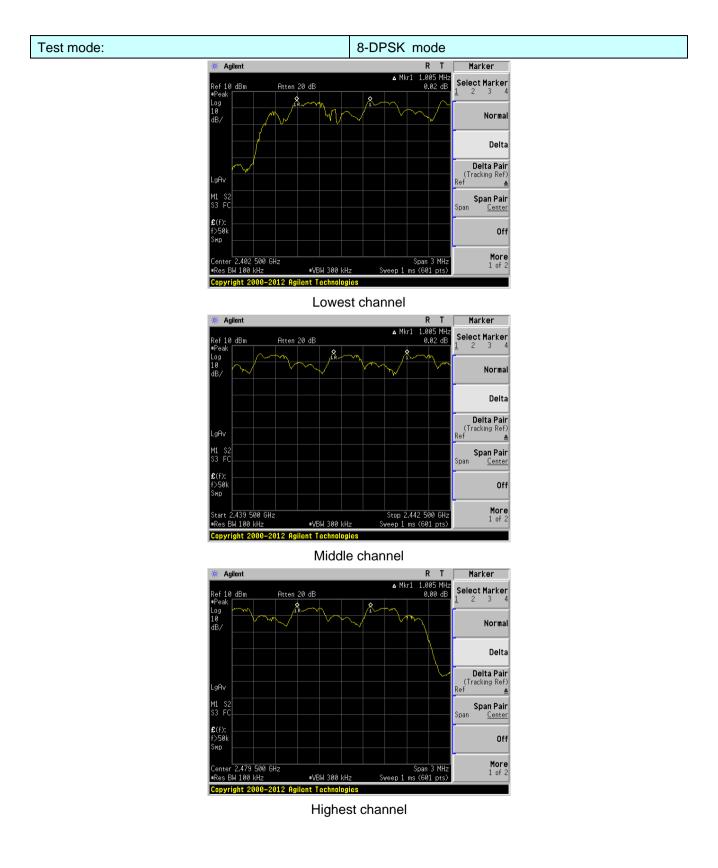
7.5 Carrier Frequencies Separation

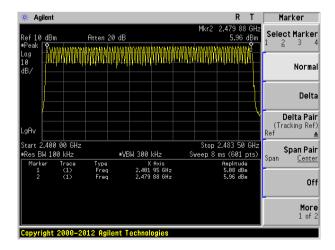

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1005	834	Pass
GFSK	Middle	1005	834	Pass
	Highest	1005	834	Pass
	Lowest	1005	747	Pass
π/4-DQPSK	Middle	1005	747	Pass
	Highest	1005	747	Pass
	Lowest	1005	778	Pass
8-DPSK	Middle	1005	778	Pass
	Highest	1005	778	Pass


Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	834	834
π/4-DQPSK	1120	747
8-DPSK	1167	778




Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

Test plot as follows:

Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Dwell Time

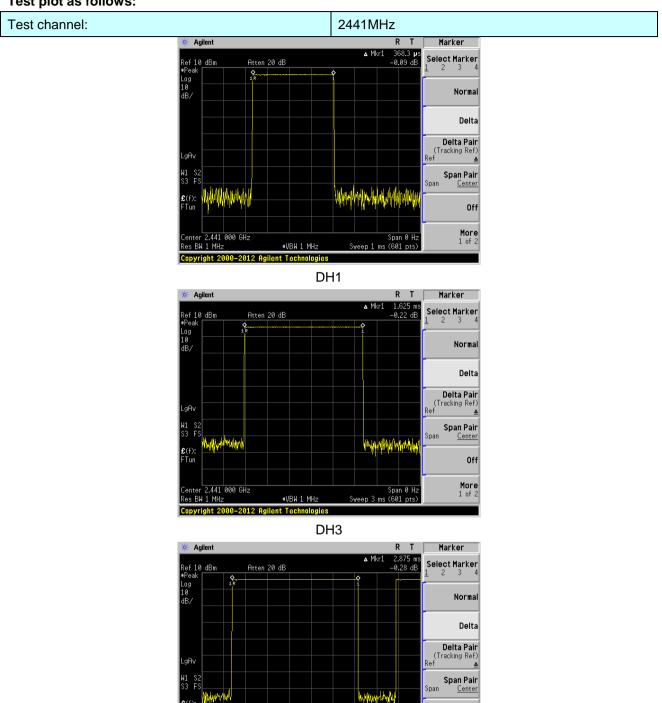
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	117.86	400	Pass
2441MHz	DH3	260.00	400	Pass
2441MHz	DH5	306.67	400	Pass

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow


DH1 time slot=0.3683(ms)*(1600/ (2*79))*31.6=117.86ms

DH3 time slot=1.625(ms)*(1600/ (4*79))*31.6=260.00ms

DH5 time slot=2.875(ms)*(1600/ (6*79))*31.6=306.67ms

Test plot as follows:

2.441 000 GHz es BW 1 MHz

pyright 2000-2012 Agilent Technologie

#VBW 1 MHz

DH5

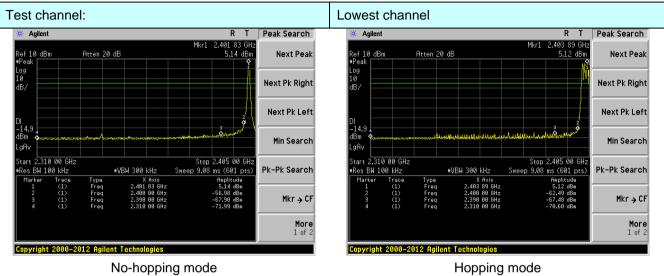
Off

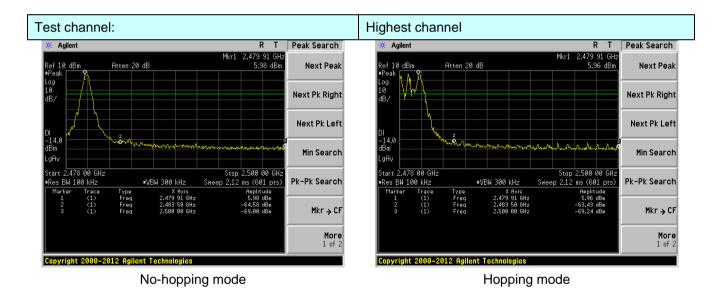
More 1 of 2

Span 0 Hz Sweep 5 ms (601 pts)

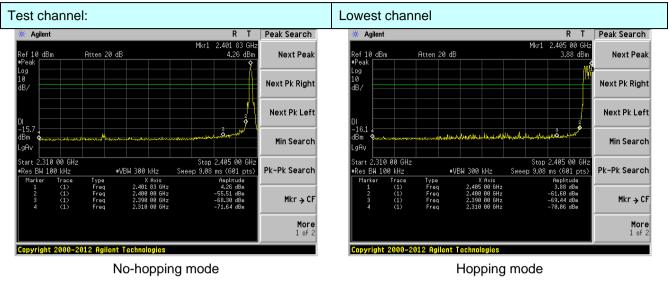
3	Pseudorandom Frequency Hopping Sequence			
	Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:			
	a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.			
	 Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. 			
	EUT Pseudorandom Frequency Hopping Sequence			
	The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins			
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ - 1 = 511 bits 			
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence			
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹-1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:			
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence			
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ - 1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:			
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 0 2 4 6 62 64 78 1 73 75 77			
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter.			
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding			

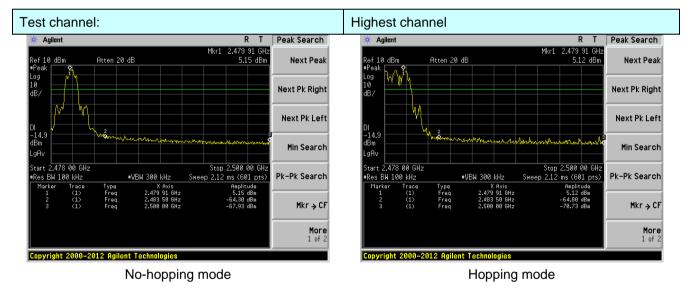
7.9 Band Edge

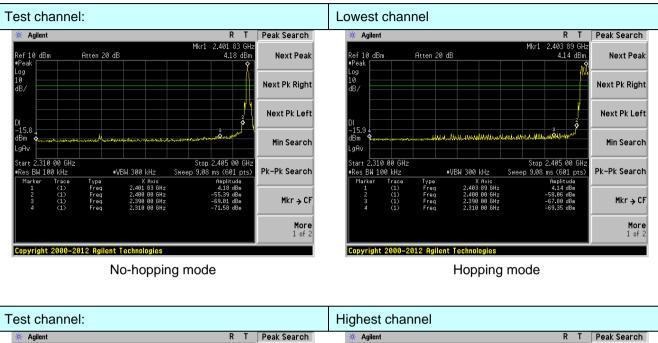

7.9.1 Conducted Emission Method

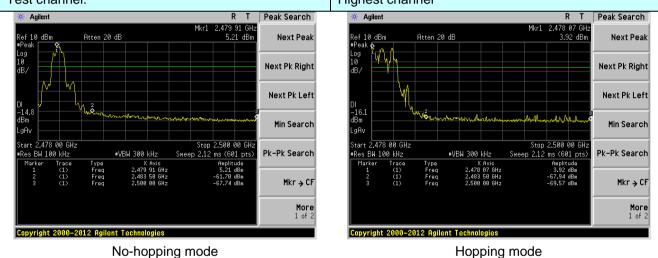

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Test plot as follows:


GFSK Mode:




π /4-DQPSK Mode:



8-DPSK Mode:

7.9.2 Radiated Emission M					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.				
Test site:	Measurement Distance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Ггодио	Peak	1MHz	10Hz	Average Value
Limit:	Frequency		Limit (dBuV/m @3m) 54.00		Remark Average Value
	Above 1GHz		74.00		Peak Value
	Image: Simple state Image: Simple state Imag				
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.9.2 Radiated Emission Method

Model: M75	500							
Test channe				Low	est			
Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	43.28	27.59	5.38	30.18	46.07	74.00	-27.93	Horizontal
2390.00	60.12	27.58	5.39	30.18	62.91	74.00	-11.09	Horizontal
2310.00	43.86	27.59	5.38	30.18	46.65	74.00	-27.35	Vertical
2390.00	62.20	27.58	5.39	30.18	64.99	74.00	-9.01	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	33.74	27.59	5.38	30.18	36.53	54.00	-17.47	Horizontal
2390.00	41.00	27.58	5.39	30.18	43.79	54.00	-10.21	Horizontal
2310.00	33.71	27.59	5.38	30.18	36.50	54.00	-17.50	Vertical
2200.00	10.00	07.50	5.39	00.40		F A O O	0 50	
2390.00	42.68	27.58	5.39	30.18	45.47	54.00	-8.53	Vertical
Test channe	91:	27.58	5.39	30.18		54.00	-8.53	Vertical
	91:	Antenna Factor (dB/m)	Cable Loss (dB)			Limit Line (dBuV/m)	-8.53 Over Limit (dB)	Polarization
Test channe Peak value Frequency	el: Read Level	Antenna Factor	Cable Loss	High Preamp Factor	nest Level	Limit Line	Over Limit	
Test channe Peak value Frequency (MHz)	el: Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
Test channe Peak value Frequency (MHz) 2483.50	el: Read Level (dBuV) 48.29	Antenna Factor (dB/m) 27.53	Cable Loss (dB) 5.47 5.49 5.47	High Preamp Factor (dB) 29.93	Level (dBuV/m) 51.36	Limit Line (dBuV/m) 74.00	Over Limit (dB) -22.65	Polarization Horizontal
Test channe Peak value Frequency (MHz) 2483.50 2500.00	el: Read Level (dBuV) 48.29 46.90	Antenna Factor (dB/m) 27.53 27.55	Cable Loss (dB) 5.47 5.49	High Preamp Factor (dB) 29.93 29.93	Level (dBuV/m) 51.36 50.01	Limit Line (dBuV/m) 74.00 74.00	Over Limit (dB) -22.65 -24.00	Polarization Horizontal Horizontal
Test channe Peak value Frequency (MHz) 2483.50 2500.00 2483.50 2500.00	el: Read Level (dBuV) 48.29 46.90 49.62 48.18 Iue:	Antenna Factor (dB/m) 27.53 27.55 27.55 27.55	Cable Loss (dB) 5.47 5.49 5.47 5.49	High Preamp Factor (dB) 29.93 29.93 29.93 29.93	Level (dBuV/m) 51.36 50.01 52.69	Limit Line (dBuV/m) 74.00 74.00 74.00	Over Limit (dB) -22.65 -24.00 -21.31 -22.72	Polarization Horizontal Horizontal Vertical
Test channe Peak value Frequency (MHz) 2483.50 2500.00 2483.50	el: Read Level (dBuV) 48.29 46.90 49.62 48.18	Antenna Factor (dB/m) 27.53 27.55 27.53	Cable Loss (dB) 5.47 5.49 5.47	High Preamp Factor (dB) 29.93 29.93 29.93	Level (dBuV/m) 51.36 50.01 52.69	Limit Line (dBuV/m) 74.00 74.00 74.00	Over Limit (dB) -22.65 -24.00 -21.31	Polarization Horizontal Horizontal Vertical
Test channe Peak value Frequency (MHz) 2483.50 2500.00 2483.50 2500.00 Average va Frequency	el: Read Level (dBuV) 48.29 46.90 49.62 48.18 Iue: Read Level	Antenna Factor (dB/m) 27.53 27.55 27.55 27.55 27.55 Antenna Factor	Cable Loss (dB) 5.47 5.49 5.47 5.49 Cable Loss	High Preamp Factor (dB) 29.93 29.93 29.93 29.93 29.93 Preamp Factor	Level (dBuV/m) 51.36 50.01 52.69 51.29 Level	Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 74.00	Over Limit (dB) -22.65 -24.00 -21.31 -22.72 Over Limit	Polarization Horizontal Horizontal Vertical Vertical
Test channe Peak value Frequency (MHz) 2483.50 2500.00 2483.50 2500.00 Average va Frequency (MHz)	el: Read Level (dBuV) 48.29 46.90 49.62 48.18 Iue: Read Level (dBuV)	Antenna Factor (dB/m) 27.53 27.55 27.55 27.55 27.55 Antenna Factor (dB/m)	Cable Loss (dB) 5.47 5.49 5.47 5.49 Cable Loss (dB)	Preamp Factor (dB) 29.93 29.93 29.93 29.93 Preamp Factor (dB)	Level (dBuV/m) 51.36 50.01 52.69 51.29 Level (dBuV/m)	Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 74.00 Limit Line (dBuV/m)	Over Limit (dB) -22.65 -24.00 -21.31 -22.72 Over Limit (dB)	Polarization Horizontal Horizontal Vertical Vertical Polarization
Test channe Peak value Frequency (MHz) 2483.50 2500.00 2483.50 2500.00 Average va Frequency (MHz) 2483.50	el: Read Level (dBuV) 48.29 46.90 49.62 48.18 Iue: Read Level (dBuV) 38.58	Antenna Factor (dB/m) 27.53 27.55 27.55 27.55 Antenna Factor (dB/m) 27.53	Cable Loss (dB) 5.47 5.49 5.47 5.49 Cable Loss (dB) 5.47	Preamp Factor (dB) 29.93 29.93 29.93 29.93 29.93 Preamp Factor (dB) 29.93	Level (dBuV/m) 51.36 50.01 52.69 51.29 Level (dBuV/m) 41.65	Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 Limit Line (dBuV/m) 54.00	Over Limit (dB) -22.65 -24.00 -21.31 -22.72 Over Limit (dB) -12.36	Polarization Horizontal Horizontal Vertical Vertical Polarization Horizontal

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

4. During the test, pre-scan the GFSK, π/4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

Model: M7600-D

Test channe	el:			Low	est					
Peak value:				÷						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2310.00	43.16	27.59	5.38	30.18	45.95	74.00	-28.05	Horizontal		
2390.00	59.99	27.58	5.39	30.18	62.78	74.00	-11.22	Horizontal		
2310.00	43.73	27.59	5.38	30.18	46.52	74.00	-27.48	Vertical		
2390.00	62.05	27.58	5.39	30.18	64.84	74.00	-9.16	Vertical		
Average value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2310.00	33.65	27.59	5.38	30.18	36.44	54.00	-17.56	Horizontal		
2390.00	40.90	27.58	5.39	30.18	43.69	54.00	-10.31	Horizontal		
2310.00	33.61	27.59	5.38	30.18	36.40	54.00	-17.60	Vertical		
2390.00	42.57	27.58	5.39	30.18	45.36	54.00	-8.64	Vertical		
Test channe	el:			High	nest					
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		

Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polarization
2483.50	45.30	27.53	5.47	29.93	48.37	74.00	-25.63	Horizontal
2500.00	44.41	27.55	5.49	29.93	47.52	74.00	-26.48	Horizontal
2483.50	46.19	27.53	5.47	29.93	49.26	74.00	-24.74	Vertical
2500.00	45.44	27.55	5.49	29.93	48.55	74.00	-25.45	Vertical
Average va	lue:							

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	36.48	27.53	5.47	29.93	39.55	54.00	-14.45	Horizontal
2500.00	34.44	27.55	5.49	29.93	37.55	54.00	-16.45	Horizontal
2483.50	37.71	27.53	5.47	29.93	40.78	54.00	-13.22	Vertical
2500.00	34.38	27.55	5.49	29.93	37.49	54.00	-16.51	Vertical

Remarks:

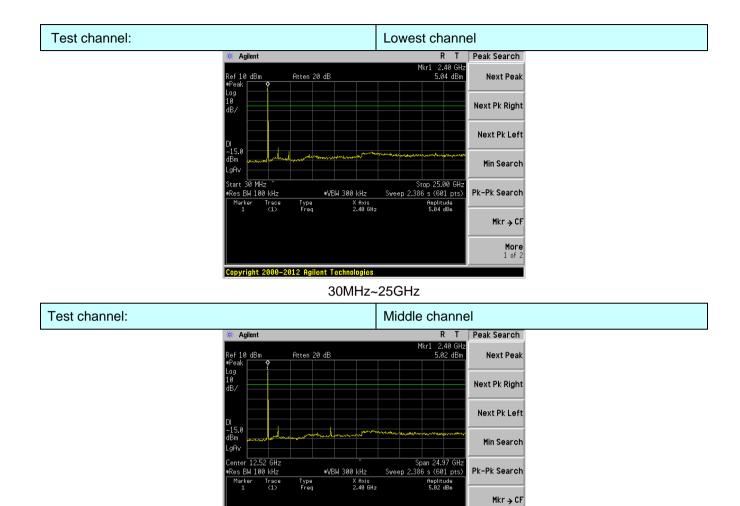
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

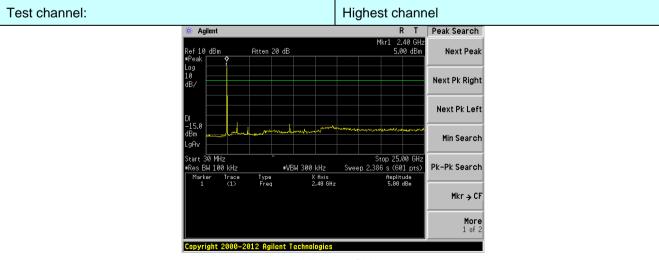
7.10 Spurious Emission


7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark:

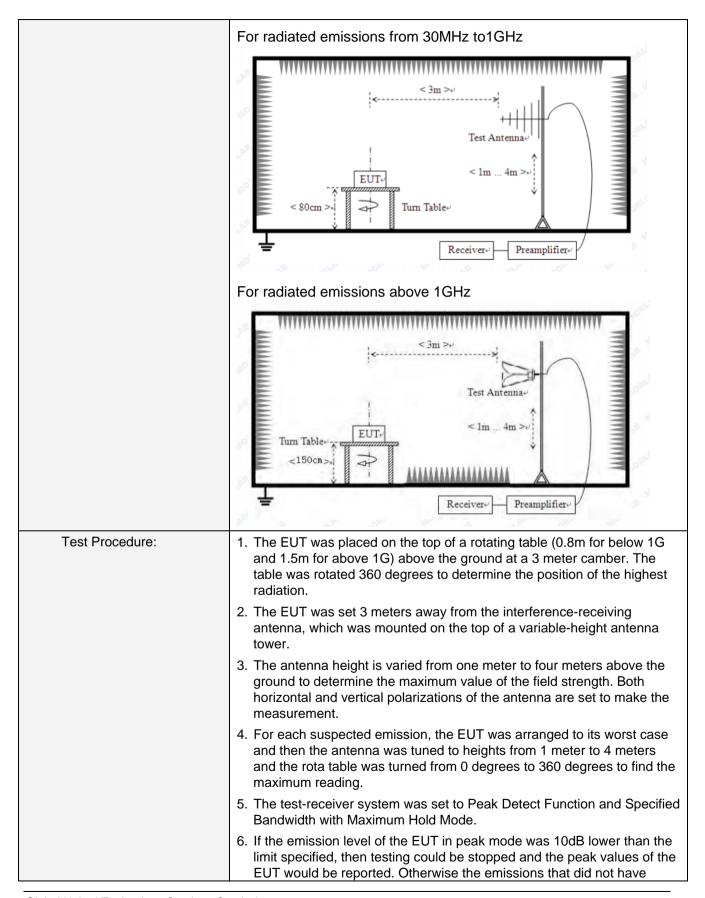
During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.



Copyright 2000–2012 Agilent Technologies

30MHz~25GHz

More 1 of 2


Global United Technology Services Co., Ltd. No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

FCC Part15 C Section 15.209								
ANSI C63.10:2013								
9kHz to 25GHz								
Measurement Distar	nce: 3	ßm						
Frequency	D	etector	RBV	V V	′BW	Value		
9KHz-150KHz G		asi-peak	200⊦	lz 60	00Hz	Quasi-peak		
150KHz-30MHz Q		asi-peak	9KH	z 30)KHz	Quasi-peak		
30MHz-1GHz	Qu	asi-peak	100K	Hz 300	0KHz	Quasi-peak		
		Peak	1MH	lz 31	MHz	Peak		
Above TGHZ		Peak	1MH	lz 10	0Hz	Average		
Frequency		Limit (u∨	//m)	Value	, I	Measurement Distance		
0.009MHz-0.490M	lHz	2400/F(K	(Hz)	QP		300m		
0.490MHz-1.705M	lHz	24000/F(I	KHz)	QP		300m		
1.705MHz-30MH	z	30	30			30m		
30MHz-88MHz		100		QP				
88MHz-216MHz	2	150		QP				
216MHz-960MH	z	200		QP		3m		
960MHz-1GHz		500		QP		0111		
Above 1GHz		500		Average				
710070 10112		5000		Peak				
For radiated emiss	sions	from 9kHz	z to 30	MHz				
	11111		*****			///		
Tum Table« E		z						
	ANSI C63.10:2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Above 1GHz 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3 Frequency D 9KHz-150KHz Qu 150KHz-30MHz Qu 30MHz-1GHz Qu Above 1GHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emissions	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009MHz-0.490MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 0.490MHz-1.705MHz 2400/F(k 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 For radiated emissions from 9kHz 500 Store 500	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 200H 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100K Above 1GHz Peak 1MH Peak 1MH 0.009MHz-0.490MHz 2400/F(KHz) 0.490MHz-1.705MHz 24000/F(KHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Above 1GHz 500 Soud 5000 Above 1GHz 500 Above 1GHz 500 Soud 5000	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW V 9KHz-150KHz Quasi-peak 200Hz 60 150KHz-30MHz Quasi-peak 9KHz 30 30MHz-1GHz Quasi-peak 100KHz 30 Above 1GHz Peak 1MHz 31 Peak 1MHz 1 Frequency Limit (uV/m) Value 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 24000/F(KHz) QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 30MHz-88MHz 100 QP 216MHz-960MHz 200 QP 960MHz-1GHz 500 Average 5000 Peak For radiated emissions from 9kHz to 30MHz Som Average 5000 Peak For radiated emissions from 9kHz to 30MHz	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz 10Hz 0.009MHz-0.490MHz 2400/F(KHz) QP 0.490MHz-1.705MHz 2400/F(KHz) QP 1.705MHz-30MHz 30 QP 1.705MHz-30MHz 30 QP 30MHz-88MHz 100 QP 216MHz-960MHz 200 QP 216MHz-960MHz 200 QP 216MHz-960MHz 500 Average 5000 Peak 500 Average 5000 Peak		

7.10.2 Radiated Emission Method

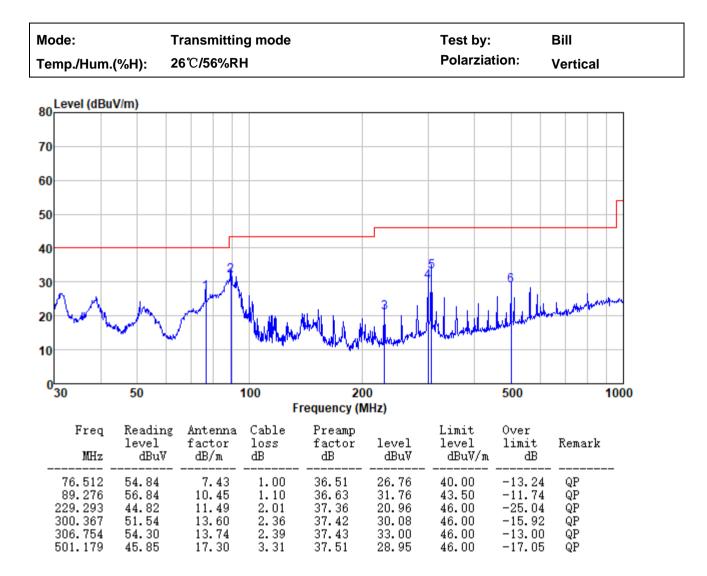
	10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	AC 120V, 60Hz
Test results:	Pass

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Model: M7500

de:Transmitting modenp./Hum.(%H):26°C/56%RH				Test by: Polarziat		Bill on: Horizontal	
V/m)							
				5		6	
w h		44 44	at .	. And Mary at	ng have been	ser anderdus	- Aller and a second second
		- Whender and	- Muselland	New Participants			
50	1					500	1000
Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛	Limit level dBuV/m	Over limit dB	Remark
41.24 40.22 45.08 42.50	12.22 11.88 11.04 7.56	0.69 0.81 1.13 1.56	35.78 36.24 36.66 37.06	18.37 16.67 20.59 14.56	40.00 40.00 43.50 43.50	-21.63 -23.33 -22.91 -28.94	QP QP QP QP QP QP QP
	V/m) V/m) 50 Reading level dBuW 41. 24 40. 22 45. 08	V/m) V/m) 50 Reading Antenna factor dBuV dB/m 41.24 12.22 40.22 11.88 45.08 11.04 42.50 7.56	V/m) V/m) V/m) 50 50 50 50 50 50 50 50 50 50	V/m) V/m) 50 100 20 Frequency (1) Reading Antenna Cable Preamp factor loss factor (1) MBuV dB/m dB Preamp factor dB breamp factor dB factor dB factor dB breamp factor dB factor dB factor dB factor dB breamp factor dB factor factor dB factor fact	V/m) V/m) 50 100 200 Frequency (MHz) Reading Antenna Cable Preamp level factor dB/m dB	V/m) V/m) 50 100 200 Frequency (MHz) Limit Reading Antenna Cable dBuV Preamp factor level dBuV Limit level dBuV 41.24 12.22 0.69 35.78 18.37 40.00 41.24 12.22 0.69 35.78 18.37 40.00 45.08 11.04 1.13 36.66 205 43.50	V/m) Image: Solution of the second

QP

QΡ

QP

QΡ

-21.94

-18.13

-24.69

Model: M7600-D

199.986

250.301

451.135

550.948

46.87

47.14

45.89

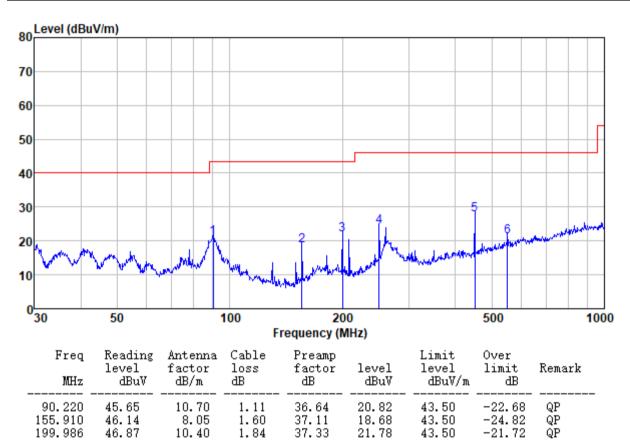
36.86

10.40

12.18

16.40

18.45


1.84

2.12

3.09

3.53

Mode:	Transmitting mode	Test by:	Bill
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Horizontal

37.33 37.38

37.51

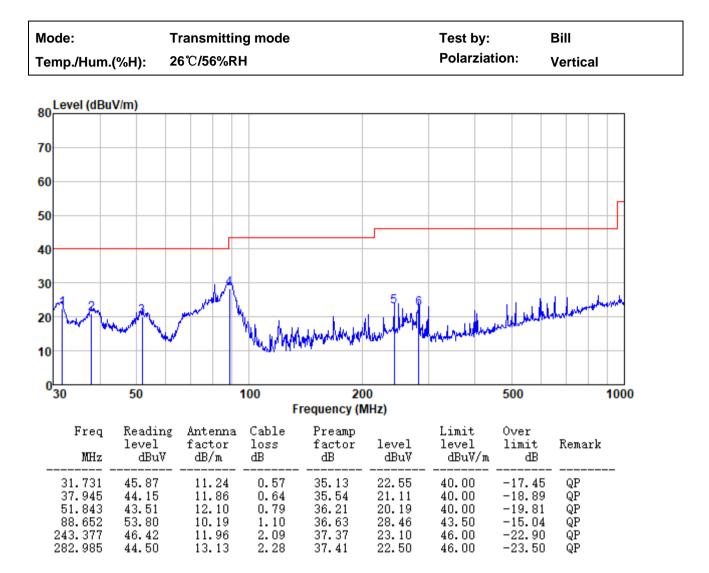
37.53

21.78

24.06

27.87

21.31


43.50

46.00

46.00

46.00

Test channel	:			Lo	west			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.55	31.78	8.60	32.09	44.84	74.00	-29.16	Vertical
7206.00	31.33	36.15	11.65	32.00	47.13	74.00	-26.87	Vertical
9608.00	31.02	37.95	14.14	31.62	51.49	74.00	-22.51	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.68	31.78	8.60	32.09	48.97	74.00	-25.03	Horizontal
7206.00	33.02	36.15	11.65	32.00	48.82	74.00	-25.18	Horizontal
9608.00	30.37	37.95	14.14	31.62	50.84	74.00	-23.16	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	25.51	31.78	8.60	32.09	33.80	54.00	-20.20	Vertical
7206.00	20.10	36.15	11.65	32.00	35.90	54.00	-18.10	Vertical
9608.00	19.22	37.95	14.14	31.62	39.69	54.00	-14.31	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.65	31.78	8.60	32.09	37.94	54.00	-16.06	Horizontal
7206.00	22.22	36.15	11.65	32.00	38.02	54.00	-15.98	Horizontal
9608.00	18.89	37.95	14.14	31.62	39.36	54.00	-14.64	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			М	iddle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.51	31.85	8.67	32.12	44.91	74.00	-29.09	Vertical
7323.00	31.30	36.37	11.72	31.89	47.50	74.00	-26.50	Vertical
9764.00	31.00	38.35	14.25	31.62	51.98	74.00	-22.02	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	40.63	31.85	8.67	32.12	49.03	74.00	-24.97	Horizontal
7323.00	32.98	36.37	11.72	31.89	49.18	74.00	-24.82	Horizontal
9764.00	30.34	38.35	14.25	31.62	51.32	74.00	-22.68	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	25.48	31.85	8.67	32.12	33.88	54.00	-20.12	Vertical
7323.00	20.08	36.37	11.72	31.89	36.28	54.00	-17.72	Vertical
9764.00	19.21	38.35	14.25	31.62	40.19	54.00	-13.81	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.62	31.85	8.67	32.12	38.02	54.00	-15.98	Horizontal
7323.00	22.20	36.37	11.72	31.89	38.40	54.00	-15.60	Horizontal
9764.00	18.87	38.35	14.25	31.62	39.85	54.00	-14.15	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Test channe	:			Н	ighest						
Peak value:	Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	36.35	31.93	8.73	32.16	44.85	74.00	-29.15	Vertical			
7440.00	31.19	36.59	11.79	31.78	47.79	74.00	-26.21	Vertical			
9920.00	30.90	38.81	14.38	31.88	52.21	74.00	-21.79	Vertical			
12400.00	*					74.00		Vertical			
14880.00	*					74.00		Vertical			
4960.00	40.44	31.93	8.73	32.16	48.94	74.00	-25.06	Horizontal			
7440.00	32.86	36.59	11.79	31.78	49.46	74.00	-24.54	Horizontal			
9920.00	30.23	38.81	14.38	31.88	51.54	74.00	-22.46	Horizontal			
12400.00	*					74.00		Horizontal			
14880.00	*					74.00		Horizontal			

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	25.40	31.93	8.73	32.16	33.90	54.00	-20.10	Vertical
7440.00	20.03	36.59	11.79	31.78	36.63	54.00	-17.37	Vertical
9920.00	19.16	38.81	14.38	31.88	40.47	54.00	-13.53	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.53	31.93	8.73	32.16	38.03	54.00	-15.97	Horizontal
7440.00	22.14	36.59	11.79	31.78	38.74	54.00	-15.26	Horizontal
9920.00	18.82	38.81	14.38	31.88	40.13	54.00	-13.87	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Model: M7600-D

Test channe	:			Lo	west				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	36.44	31.78	8.60	32.09	44.73	74.00	-29.27	Vertical	
7206.00	31.26	36.15	11.65	32.00	47.06	74.00	-26.94	Vertical	
9608.00	30.96	37.95	14.14	31.62	51.43	74.00	-22.57	Vertical	
12010.00	*					74.00		Vertical	
14412.00	*					74.00		Vertical	
4804.00	40.55	31.78	8.60	32.09	48.84	74.00	-25.16	Horizontal	
7206.00	32.94	36.15	11.65	32.00	48.74	74.00	-25.26	Horizontal	
9608.00	30.30	37.95	14.14	31.62	50.77	74.00	-23.23	Horizontal	
12010.00	*					74.00		Horizontal	
14412.00	*					74.00		Horizontal	

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	25.42	31.78	8.60	32.09	33.71	54.00	-20.29	Vertical
7206.00	20.04	36.15	11.65	32.00	35.84	54.00	-18.16	Vertical
9608.00	19.17	37.95	14.14	31.62	39.64	54.00	-14.36	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	29.55	31.78	8.60	32.09	37.84	54.00	-16.16	Horizontal
7206.00	22.16	36.15	11.65	32.00	37.96	54.00	-16.04	Horizontal
9608.00	18.83	37.95	14.14	31.62	39.30	54.00	-14.70	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Μ	Middle				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	36.56	31.85	8.67	32.12	44.96	74.00	-29.04	Vertical	
7323.00	31.33	36.37	11.72	31.89	47.53	74.00	-26.47	Vertical	
9764.00	31.03	38.35	14.25	31.62	52.01	74.00	-21.99	Vertical	
12205.00	*					74.00		Vertical	
14646.00	*					74.00		Vertical	
4882.00	40.69	31.85	8.67	32.12	49.09	74.00	-24.91	Horizontal	
7323.00	33.02	36.37	11.72	31.89	49.22	74.00	-24.78	Horizontal	
9764.00	30.38	38.35	14.25	31.62	51.36	74.00	-22.64	Horizontal	
12205.00	*					74.00		Horizontal	
14646.00	*					74.00		Horizontal	

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	25.52	31.85	8.67	32.12	33.92	54.00	-20.08	Vertical
7323.00	20.11	36.37	11.72	31.89	36.31	54.00	-17.69	Vertical
9764.00	19.23	38.35	14.25	31.62	40.21	54.00	-13.79	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.67	31.85	8.67	32.12	38.07	54.00	-15.93	Horizontal
7323.00	22.24	36.37	11.72	31.89	38.44	54.00	-15.56	Horizontal
9764.00	18.90	38.35	14.25	31.62	39.88	54.00	-14.12	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			H	lighest				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	36.24	31.93	8.73	32.16	44.74	74.00	-29.26	Vertical	
7440.00	31.13	36.59	11.79	31.78	47.73	74.00	-26.27	Vertical	
9920.00	30.84	38.81	14.38	31.88	52.15	74.00	-21.85	Vertical	
12400.00	*					74.00		Vertical	
14880.00	*					74.00		Vertical	
4960.00	40.31	31.93	8.73	32.16	48.81	74.00	-25.19	Horizontal	
7440.00	32.79	36.59	11.79	31.78	49.39	74.00	-24.61	Horizontal	
9920.00	30.16	38.81	14.38	31.88	51.47	74.00	-22.53	Horizontal	
12400.00	*					74.00		Horizontal	
14880.00	*					74.00		Horizontal	

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	25.31	31.93	8.73	32.16	33.81	54.00	-20.19	Vertical
7440.00	19.97	36.59	11.79	31.78	36.57	54.00	-17.43	Vertical
9920.00	19.11	38.81	14.38	31.88	40.42	54.00	-13.58	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.43	31.93	8.73	32.16	37.93	54.00	-16.07	Horizontal
7440.00	22.08	36.59	11.79	31.78	38.68	54.00	-15.32	Horizontal
9920.00	18.75	38.81	14.38	31.88	40.06	54.00	-13.94	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Model No.:M7500 Radiated Emission



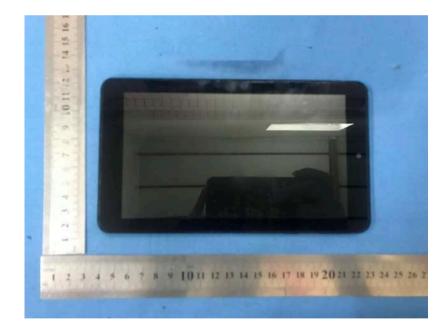
Conducted Emission

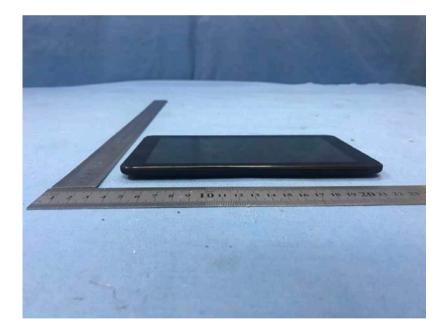
Model No.: M7600-D Radiated Emission

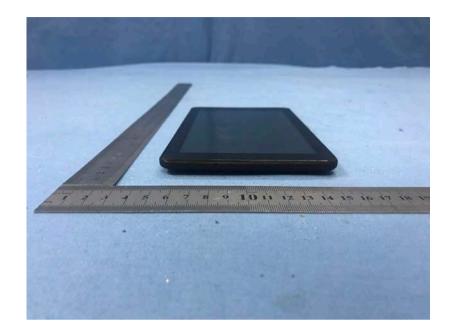
Conducted Emission

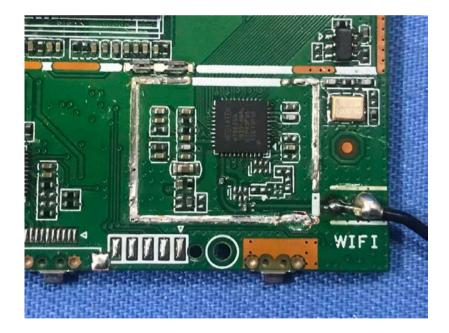
9 EUT Constructional Details

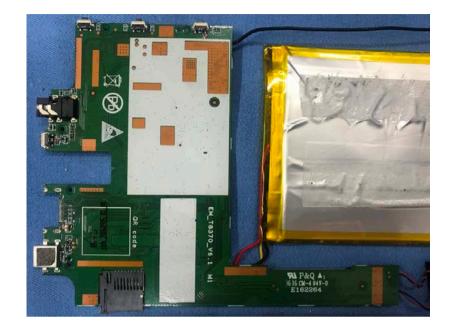
Model No.:M7600-D




Model No.: M7500







-----End------