

Radio Test Report

Report No.:STS2503016W02

Issued for

GuangDong XinYu Technology Industrial Co., Ltd Laimei Industrial zone,Chenghai District Shantou, Guangdong, China

Product Name: Remote control toy car Brand Name: XQ Model Name: RC24-6AA Series Model(s): RC24-18AA, 3812, RC24-7AA FCC ID: 2BEX8069XQ24G Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name:	GuangDong XinYu Technology Industrial Co., Ltd
Address:	Laimei Industrial zone, Chenghai District Shantou, Guangdong, China
Manufacturer's Name:	GuangDong XinYu Technology Industrial Co., Ltd
Address:	Laimei Industrial zone, Chenghai District Shantou, Guangdong, China
Product Description	
Product Name:	Remote control toy car
Brand Name:	XQ
Model Name:	RC24-6AA
Series Model(s):	RC24-18AA, 3812, RC24-7AA
Test Standards:	FCC Part15.247
Test Procedure:	ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of TestDate of receipt of test itemO4 Mar. 2025Date (s) of performance of testsO4 Mar. 2025 ~ 20 Mar. 2025Date of Issue20 Mar. 2025Test ResultPass

Testing Engineer

Jann Bu

Technical Manager

(Aaron Bu)

(Tony Liu)

Authorized Signatory :

howy

SERI

TESTING APPRO

C

NZHEN

U

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	9
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	ED 10
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.6 EQUIPMENTS LIST	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 EUT OPERATING CONDITIONS	13
3.5 TEST RESULTS	13
4. RADIATED EMISSION MEASUREMENT	14
4.1 RADIATED EMISSION LIMITS	14
4.2 TEST PROCEDURE	16
4.3 TEST SETUP	17
4.4 EUT OPERATING CONDITIONS	17
4.5 FIELD STRENGTH CALCULATION	17
4.6 TEST RESULTS	19
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	26
5.1 LIMIT	26
5.2 TEST PROCEDURE	26
5.3 TEST SETUP	26
5.4 EUT OPERATION CONDITIONS	26
5.5 TEST RESULTS	26
6. POWER SPECTRAL DENSITY TEST	27
6.1 LIMIT	27
6.2 TEST PROCEDURE	27
6.3 TEST SETUP	27

Table of Contents

6.4 EUT OPERATION CONDITIONS	27
6.5 TEST RESULTS	27
7. BANDWIDTH TEST	28
7.1 LIMIT	28
7.2 TEST PROCEDURE	28
7.3 TEST SETUP	28
7.4 EUT OPERATION CONDITIONS	28
7.5 TEST RESULTS	28
8. PEAK OUTPUT POWER TEST	29
8.1 LIMIT	29
8.2 TEST PROCEDURE	29
8.3 TEST SETUP	30
8.4 EUT OPERATION CONDITIONS	30
8.5 TEST RESULTS	30
9. ANTENNA REQUIREMENT	31
9.1 STANDARD REQUIREMENT	31
9.2 EUT ANTENNA	31
APPENDIX 1-TEST DATA	32
1. DUTY CYCLE	32
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	35
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	38
46DB BANDWIDTH	41
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	44
6. BAND EDGE	47
7. CONDUCTED RF SPURIOUS EMISSION	50
APPENDIX 2- EUT TEST PHOTO	54

Page 5 of 54

Report No.: STS2503016W02

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	20 Mar. 2025	STS2503016W02	ALL	Initial Issue
	10	1	1	1

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)(3)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	-
15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

Page 7 of 54

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name Remote control toy car			
	Remote control toy	car	
Brand Name	XQ		
Model Name	RC24-6AA		
Series Model(s)	RC24-18AA, 3812,	RC24-7AA	
Model Difference	Only the model nar	ne and exterior color differ	
	The EUT is a Remo	ote control toy car	
	Operation Frequency:	2405MHz-2475MHz	
	Modulation Type:	GFSK	
Product Description	Number Of Channel:	33	
	Antenna Type:	wire PCB	
	Antenna Gain:	0.17dBi	
Channel List	Please refer to the	Note 3.	
Power Rating	Input: Remote: DC Toy car: DC1.5 * 3(
Adapter	N/A		
Battery	N/A		
Hardware version number	V1.00		
Software version number	V1.00		
Connecting I/O Port(s)	Please refer to the	Note 1.	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

	Channel List for						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2405	10	2422	19	2445	28	2470
2	2406	11	2425	20	2446	29	2471
3	2407	12	2427	21	2452	30	2472
4	2408	13	2428	22	2453	31	2473
5	2409	14	2430	23	2454	32	2474
6	2410	15	2435	24	2456	33	2475
7	2411	16	2437	25	2459		
8	2414	17	2439	26	2462		
9	2418	18	2442	27	2469		

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH01(2405MHz)	GFSK
Mode 2	TX CH26(2439MHz)	GFSK
Mode 3	TX CH33(2475MHz)	GFSK

Note:

(1) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(2) The battery is new during the radiated and RF conducted test.

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
Other SRD	2.4G	GFSK	0.17	Default	The EUT has signal transmission when it is powered on

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

EUT

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
N/A	N/A	N/A	N/A	N/A
	2	14	14	

Item	Shielded Type	Ferrite Core	Length	Note
N/A	N/A	N/A	N/A	N/A
V				

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^CLength^L column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

	RF Radi	ation Test Equipme	nt		
Kind of Equipment Manufacturer		Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2025.02.2 4	2026.02.2 3
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2025.02.2 2	2026.02.2 1
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-4 5	SK201808090 1	2024.09.2 3	2025.09.2 2
Pre-Amplifier(18G-40GH z)	SKET	LNPA_1840-50	SK201810180 1	2025.02.2 2	2026.02.2 1
Active loop Antenna	ZHINAN	ZN30900C	16035	2025.02.2 5	2026.02.2 4
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.3 0	2025.09.2 9
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.2 4	2025.09.2 3
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.1 0	2025.10.0 9
Positioning Controller	MF	MF-7802	MF-78020858 7	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.2 3	2025.09.2 2
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	Filter Box BALUN Technology		BL-SZ153005 1	N/A	N/A
Antenna Mast	Antenna Mast MF		N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFEN G	DPS-305AF	17064939	2024.09.2 3	2025.09.2 2
Test SW	EZ-EMC	Ver.STSLAB-03A1 RE			
	RF	Connected Test			
Kind of Equipment	Kind of Equipment Manufacturer		Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2025.02.2 2	2026.02.2 1
Power detector group	Keysight	NW2021031	N/A	2024.09.2 3	2025.09.2 2
Switch control box	MW	MW100-RFCB	N/A	N/A	N/A
Temperature & Humidity			N/A	2025.02.2 4	2026.02.2 3
Test SW	MW		MTS 8310_2.0	0.0.0	-

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

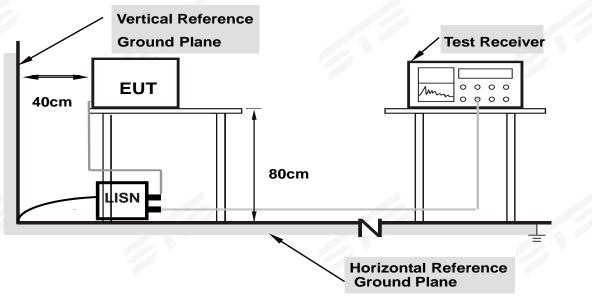
	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Note: EUT cannot be powered by DC Power and is not applicable.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 200 KHz	
band)	120 KHz / 300 KHz	

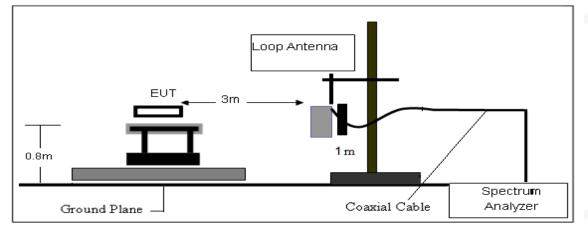
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	
For Destricted hand		

For Restricted band

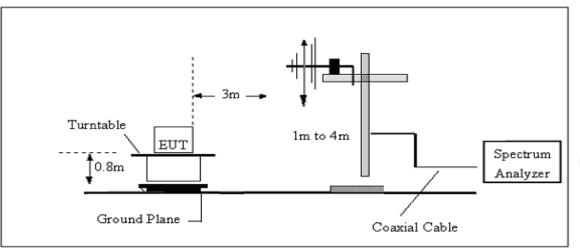
Spectrum Parameter	Setting		
Detector	Peak/AV		
Stort/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

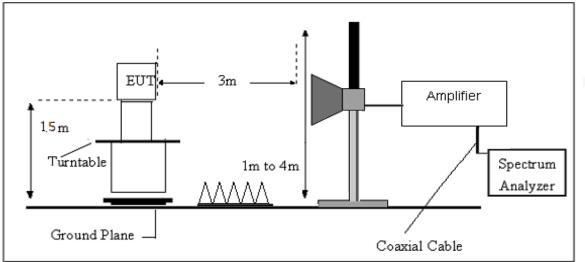
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $F\dot{S} = RA + AF + CL - AG$ Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading AmplitudeAG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Eactor-AE+CL-AG					•	

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

Temperature:	23.4 ℃	Relative Humidtity:	60%
Test Voltage:	DC 3V	Polarization:	
Test Mode:	TX Mode		

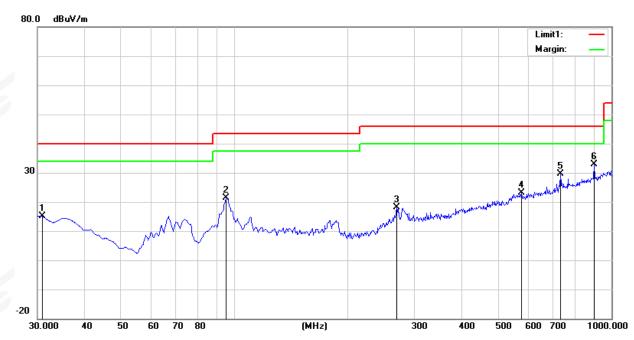
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

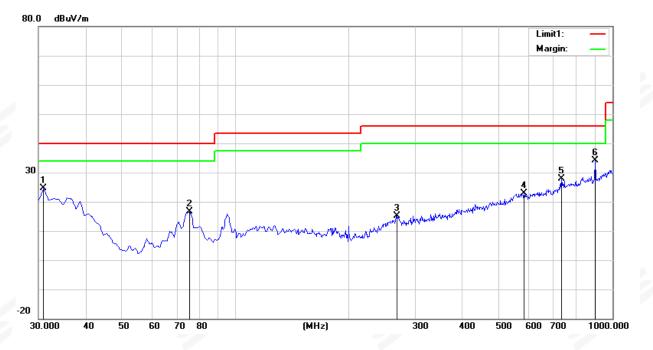

(30MHz -1000MHz)

Temperature:	23.4 ℃	Relative Humidity:	60%	
Test Voltage:	DC 3V	Phase:	Horizontal	
Test Mode:	Mode 1/2/3 (Mode 2 worst mode)			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	28.46	-13.35	15.11	40.00	-24.89	peak
2	94.9900	42.27	-20.78	21.49	43.50	-22.01	peak
3	269.5900	33.49	-15.29	18.20	46.00	-27.80	peak
4	577.0800	28.79	-5.71	23.08	46.00	-22.92	peak
5	733.2500	31.90	-2.35	29.55	46.00	-16.45	peak
6	901.0600	33.31	-0.43	32.88	46.00	-13.12	peak

Remark:

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 2.
- All modes have been tested, only show the worst case. 3.


Report No.: STS2503016W02

Temperature:	23.4 ℃	Relative Humidity:	60%		
Test Voltage:	DC 3V	Phase:	Vertical		
Test Mode:	Mode 1/2/3 (Mode 2 worst mo	Mode 1/2/3 (Mode 2 worst mode)			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	37.91	-13.35	24.56	40.00	-15.44	peak
2	75.5900	40.35	-23.78	16.57	40.00	-23.43	peak
3	267.6500	30.25	-15.06	15.19	46.00	-30.81	peak
4	582.9000	28.59	-5.78	22.81	46.00	-23.19	peak
5	733.2500	30.32	-2.35	27.97	46.00	-18.03	peak
6	901.0600	34.53	-0.43	34.10	46.00	-11.90	peak

Remark:

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 2.
- All modes have been tested, only show the worst case. 3.

(1GHz-25GHz) Spurious emission Requirements

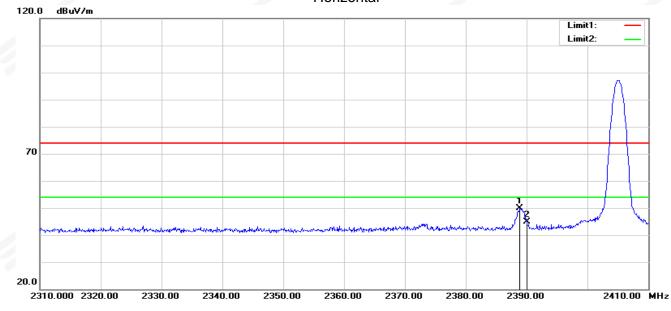
GFSK Corrected Meter Antenna Emission Frequency Amplifier Loss Limits Margin Detector Reading Factor Factor Level Comment (MHz) (dBµV/m) (dB) (dBµV) (dB) (dB) (dB/m) (dB) (dBµV/m) Туре Low Channel (GFSK/2405 MHz) PK 3264.67 60.90 44.70 6.70 28.20 -9.80 51.10 74.00 -22.90 Vertical 44.70 3264.67 50.13 6.70 28.20 -9.80 40.33 54.00 -13.67 Aν Vertical 44.70 ΡK 3264.65 61.68 6.70 28.20 -9.80 51.88 74.00 -22.12 Horizontal 3264.65 50.44 44.70 6.70 28.20 -9.80 40.64 54.00 -13.36 AV Horizontal ΡK 4804.39 58.92 44.20 9.04 31.60 -3.56 55.36 74.00 -18.64 Vertical 4804.39 50.61 44.20 9.04 31.60 -3.56 47.05 54.00 -6.95 AV Vertical 4804.37 58.73 44.20 9.04 31.60 -3.56 55.17 74.00 -18.83 ΡK Horizontal 4804.37 49.46 44.20 9.04 31.60 -3.56 45.90 54.00 -8.10 AV Horizontal 5359.88 48.95 44.20 9.86 32.00 -2.34 46.60 74.00 -27.40 ΡK Vertical 5359.88 39.99 44.20 9.86 32.00 -2.34 37.64 54.00 -16.36 AV Vertical 5359.83 47.90 44.20 9.86 32.00 -2.34 45.55 74.00 -28.45 ΡK Horizontal 5359.83 38.63 44.20 9.86 32.00 -2.34 36.28 54.00 -17.72 AV Horizontal 7205.83 53.72 43.50 11.40 35.50 3.40 57.12 74.00 -16.88 PK Vertical 7205.83 43.51 43.50 11.40 35.50 3.40 46.91 54.00 -7.09 AV Vertical 7205.85 54.50 43.50 11.40 35.50 3.40 57.90 74.00 -16.10 PK Horizontal 7205.85 43.48 43.50 11.40 35.50 3.40 46.88 54.00 -7.12 AV Horizontal Middle Channel (GFSK/2439 MHz) Vertical 3263.15 61.74 44.70 6.70 28.20 -9.80 51.94 74.00 -22.06 ΡK 3263.15 49.88 44.70 6.70 28.20 -9.80 40.08 54.00 -13.92 AV Vertical 3263.18 61.79 44.70 6.70 28.20 -9.80 51.99 74.00 -22.01 ΡK Horizontal 3263.18 50.80 44.70 6.70 28.20 -9.80 41.00 54.00 -13.00 AV Horizontal Vertical 4879.92 58.89 44.20 9.04 31.60 -3.56 55.33 74.00 -18.67 ΡK 4879.92 49.37 44.20 9.04 31.60 -3.56 45.81 54.00 -8.19 AV Vertical 4880.03 59.06 44.20 9.04 31.60 -3.56 55.50 74.00 -18.50 ΡK Horizontal 4880.03 50.06 44.20 9.04 31.60 -3.56 46.50 54.00 -7.50 AV Horizontal 5357.06 48.60 44.20 9.86 32.00 -2.34 46.26 74.00 -27.74 PK Vertical 44.20 9.86 36.97 54.00 -17.03 AV 5357.06 39.31 32.00 -2.34 Vertical 48.09 44.20 9.86 45.74 74.00 -28.26 ΡK 5357.39 32.00 -2.34 Horizontal 54.00 5356.99 38.71 44.20 9.86 32.00 -2.34 36.37 -17.63 AV Horizontal ΡK 7320.85 54.96 43.50 11.40 35.50 3.40 58.36 74.00 -15.64 Vertical 43.50 11.40 3.40 54.00 AV 7320.85 44.18 35.50 47.58 -6.42 Vertical -16.49 43.50 11.40 3.40 74.00 ΡK 7320.44 54.11 35.50 57.51 Horizontal 44.47 7320.44 43.50 11.40 35.50 3.40 47.87 54.00 -6.13 AV Horizontal

Page 23 of 54

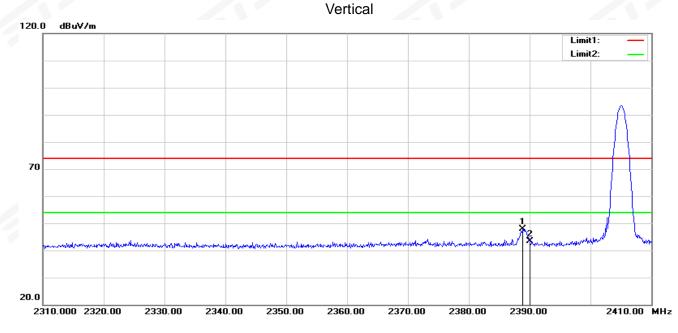
Report No.: STS2503016W02

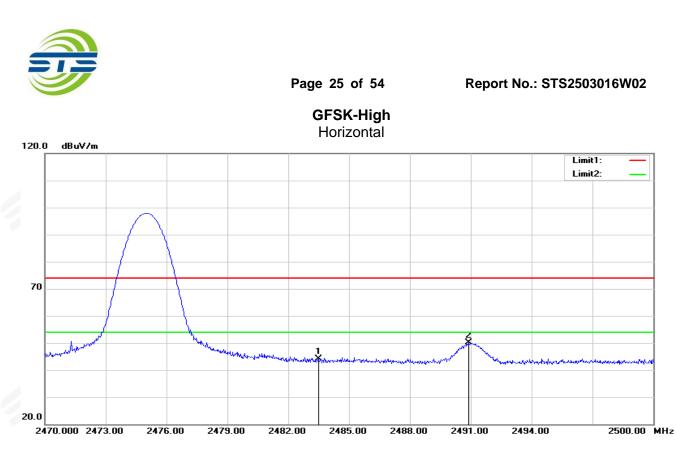
				High Char	nnel (GFSK/	2475 MHz)				
3264.72	62.31	44.70	6.70	28.20	-9.80	52.51	74.00	-21.49	PK	Vertical
3264.72	51.41	44.70	6.70	28.20	-9.80	41.61	54.00	-12.39	AV	Vertical
3264.85	60.87	44.70	6.70	28.20	-9.80	51.07	74.00	-22.93	PK	Horizontal
3264.85	51.15	44.70	6.70	28.20	-9.80	41.35	54.00	-12.65	AV	Horizontal
4960.39	58.42	44.20	9.04	31.60	-3.56	54.86	74.00	-19.14	PK	Vertical
4960.39	49.16	44.20	9.04	31.60	-3.56	45.60	54.00	-8.40	AV	Vertical
4960.44	59.48	44.20	9.04	31.60	-3.56	55.92	74.00	-18.08	PK	Horizontal
4960.44	49.61	44.20	9.04	31.60	-3.56	46.05	54.00	-7.95	AV	Horizontal
5359.61	48.39	44.20	9.86	32.00	-2.34	46.05	74.00	-27.95	PK	Vertical
5359.61	39.47	44.20	9.86	32.00	-2.34	37.12	54.00	-16.88	AV	Vertical
5359.72	47.08	44.20	9.86	32.00	-2.34	44.74	74.00	-29.26	PK	Horizontal
5359.72	38.77	44.20	9.86	32.00	-2.34	36.43	54.00	-17.57	AV	Horizontal
7439.70	53.82	43.50	11.40	35.50	3.40	57.22	74.00	-16.78	PK	Vertical
7439.70	44.46	43.50	11.40	35.50	3.40	47.86	54.00	-6.14	AV	Vertical
7439.73	54.07	43.50	11.40	35.50	3.40	57.47	74.00	-16.53	PK	Horizontal
7439.73	43.60	43.50	11.40	35.50	3.40	47.00	54.00	-7.00	AV	Horizontal

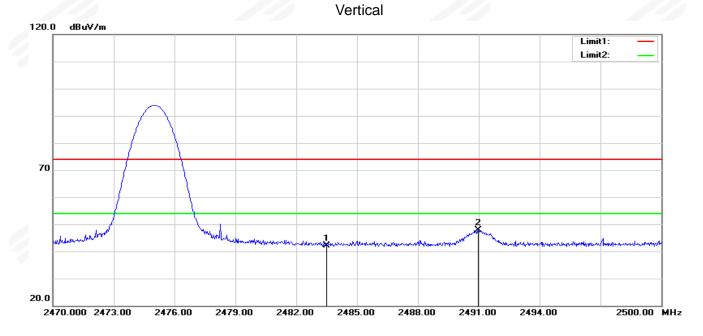
Note:


1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor


2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.


4.6 TEST RESULTS (Restricted Bands Requirements) GFSK-Low Horizontal


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.900	45.59	4.32	49.91	74.00	-24.09	peak
2	2390.000	40.54	4.34	44.88	74.00	-29.12	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.900	43.54	4.32	47.86	74.00	-26.14	peak
2	2390.000	39.14	4.34	43.48	74.00	-30.52	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.43	4.60	44.03	74.00	-29.97	peak
2	2490.880	45.38	4.63	50.01	74.00	-23.99	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.44	4.60	42.04	74.00	-31.96	peak
2	2490.970	43.15	4.63	47.78	74.00	-26.22	peak

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold
For Band edge	
Spectrum Parameter	Setting
Detector	Peak

Detector	Peak		
Stort/Stop Eroquopov	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

6. POWER SPECTRAL DENSITY TEST


6.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section Test Item Limit		Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW \geq [3 × RBW].

e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector modeh) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span ≥ [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

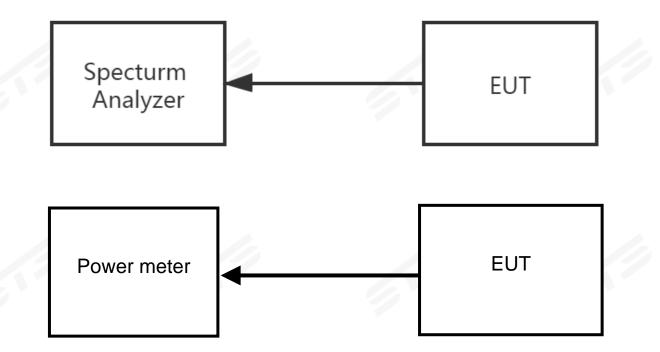
b) Set the VBW \geq [3 × RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

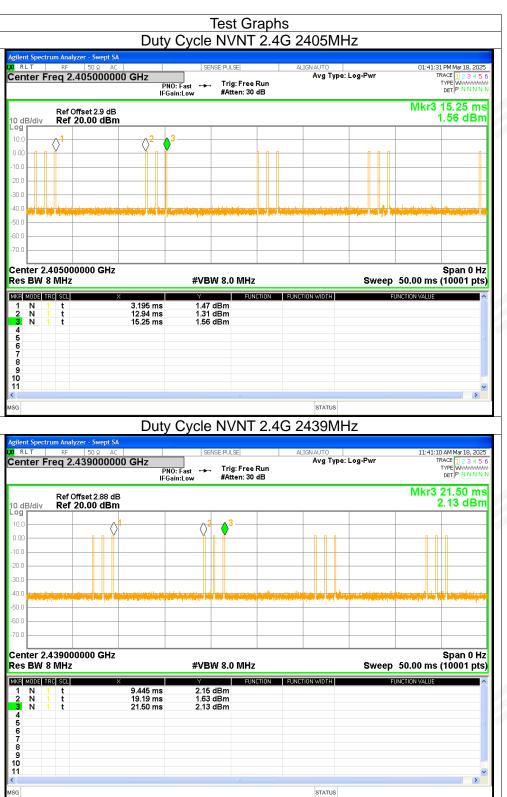
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is wire PCB Antenna. It comply with the standard requirement.


APPENDIX 1-TEST DATA

1. Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	2.4G	2405	19.16	7.18	5.26
NVNT	2.4G	2439	19.16	7.18	5.26
NVNT	2.4G	2475	19.15	7.18	5.26

101, Building B, Zhuoke Science Park, No. 190 Chongqing Road, Zhancheng Shequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail:sts@stsapp.com

Γ

٦

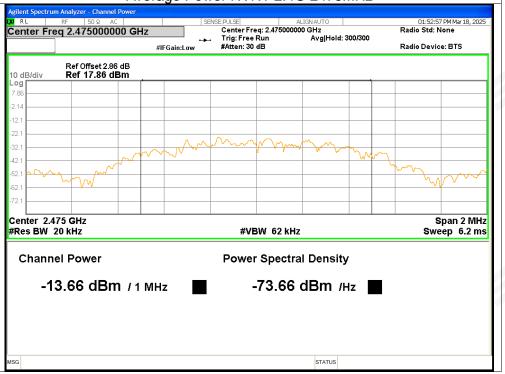
Duty Cycle NVNT 2 4G 2475MHz

Page 34 of 54

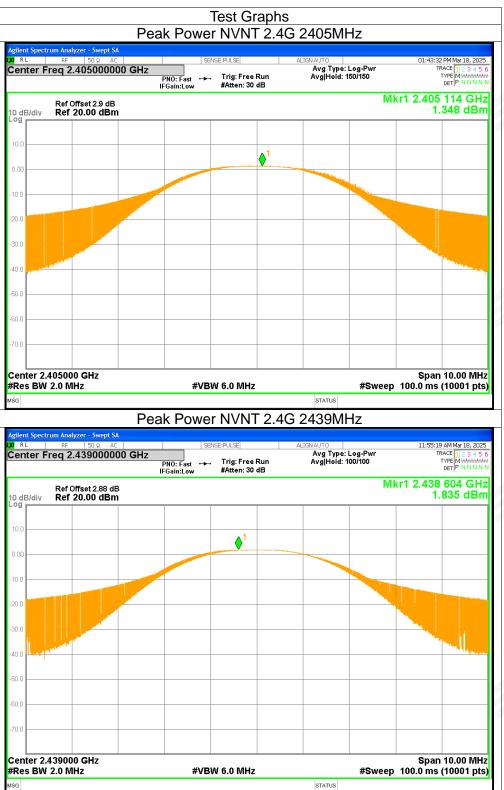
Spectrum Analyzer - Swept SA T RF 50 Ω AC	SENSE:PULSE	ALIGNAUTO	12:03:11 PM Mar 18, 2025
er Freq 2.475000000 GHz PN0: Fa IFGain:L	nst 🛶 Trig: Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N
Ref Offset 2.86 dB /div Ref 20.00 dBm			Mkr3 21.38 ms 1.56 dBm
er 2.475000000 GHz BW 8 MHz	#VBW 8.0 MHz	Sweep 5	Span 0 Hz 50.00 ms (10001 pts)
XIDDE TRC SCL X N 1 t 9.320 ms N 1 t 19.07 ms N 1 t 21.38 ms	Y FUNCTION 1.45 dBm 1.26 dBm 1.56 dBm	FUNCTION WIDTH FUN	
		STATUS	

Report No.: STS2503016W02

2. Maximum Average Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	2.4G	2405	-12.26	7.18	-5.08	<=30	Pass
NVNT	2.4G	2439	-11.68	7.18	-4.5	<=30	Pass
NVNT	2.4G	2475	-13.66	7.18	-6.48	<=30	Pass

Average Power NVNT 2.4G 2475MHz


3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2.4G	2405	1.35	<=30	Pass
NVNT	2.4G	2439	1.84	<=30	Pass
NVNT	2.4G	2475	-0.02	<=30	Pass

101, Building B, Zhuoke Science Park, No. 190 Chongqing Road, Zhancheng Shequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail:sts@stsapp.com

ilent Spectrum Analyzer - Swept SA						
RL RF 50 Ω AC enter Freq 2.475000000 GHz	PNO: Fast	SE:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: L Avg Hold: 30	.og-Pwr)0/300	01:52:3	36 PM Mar 18, 2025 IRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
Ref Offset 2.86 dB				Mł	(r1 2.475 -0	5 101 GHz .016 dBm
0.0						
		● ¹				
.0						
10 10				Lii,		
. o vince and the second secon						A Standard Andrews
.0						
.0						
.0						
enter 2.475000 GHz tes BW 2.0 MHz	#\/B\/	V 6.0 MHz		#Sween	Spar 100.0 ms	10.00 MHz (10001 pts)

Page 40 of 54

4. -6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	2.4G	2405	0.6389	>=0.5	Pass
NVNT	2.4G	2439	0.6851	>=0.5	Pass
NVNT	2.4G	2475	0.7295	>=0.5	Pass

x dB Bandwidth

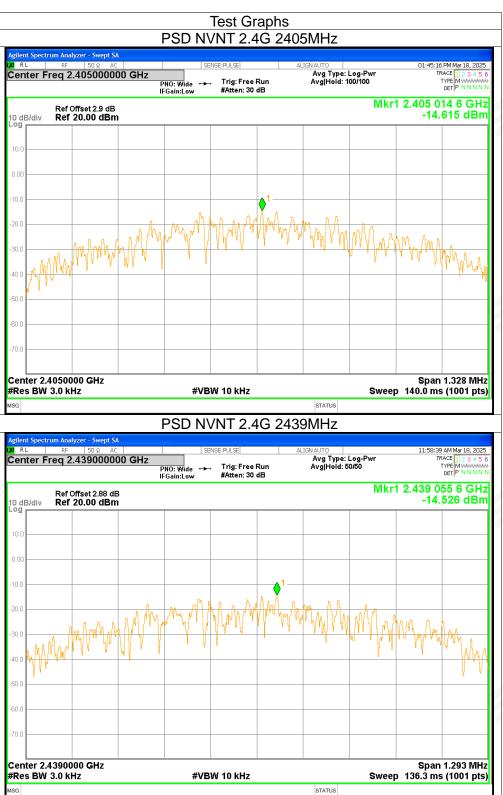
685.1 kHz

x dB

-6.00 dB

STATUS

-6dB Bandwidth NVNT 2.4G 2475MHz

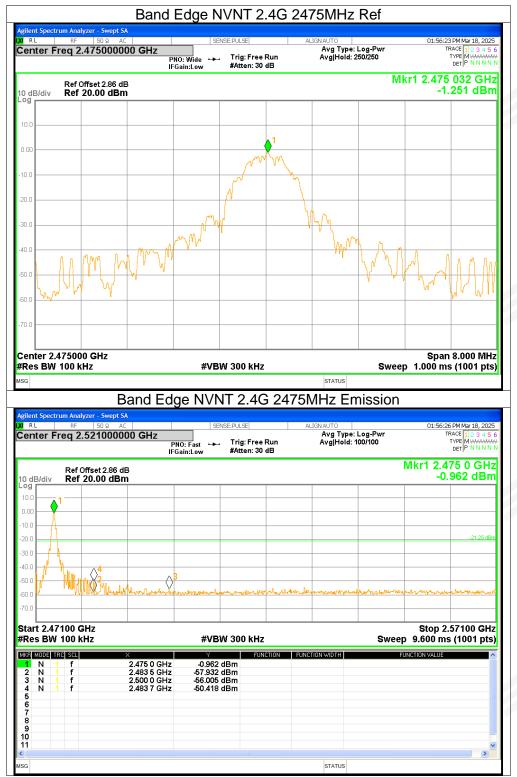

5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	2.4G	2405	-14.62	<=8	Pass
NVNT	2.4G	2439	-14.53	<=8	Pass
NVNT	2.4G	2475	-16.7	<=8	Pass

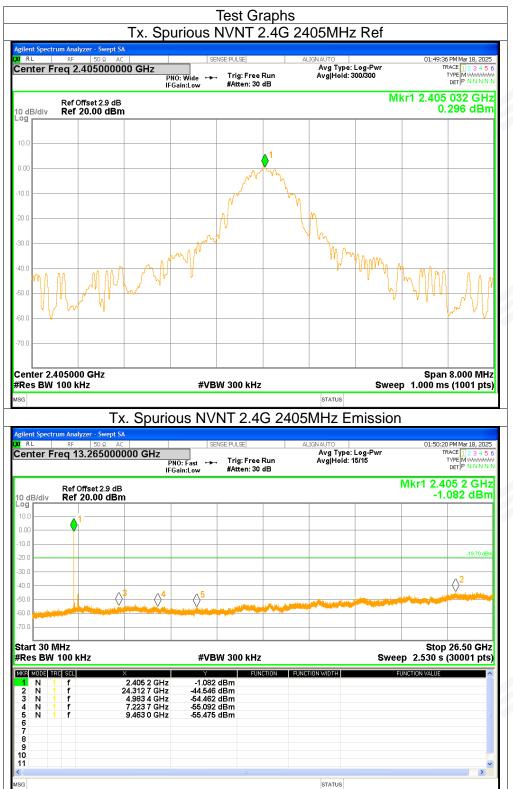
101, Building B, Zhuoke Science Park, No. 190 Chongqing Road, Zhancheng Shequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail:sts@stsapp.com

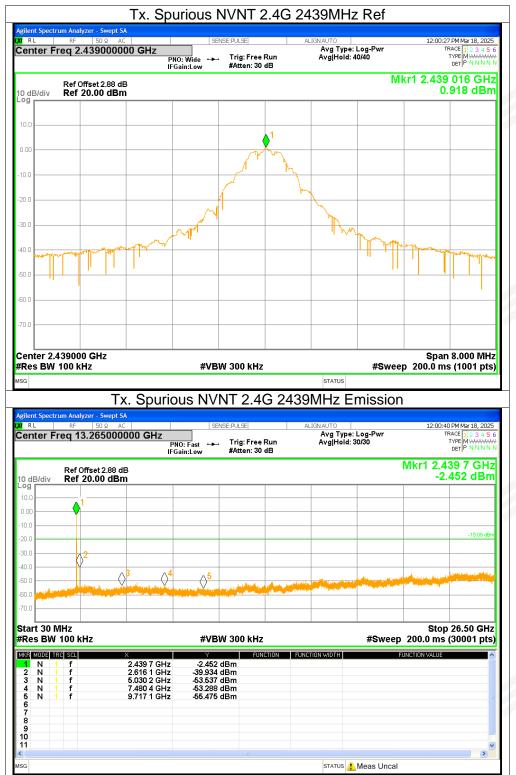
PSD NVNT 2.4G 2475MHz D1:54:08 PM M TRACE TYPE DET F B L Center Freq 2.475000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low -----Mkr1 2.475 014 6 GHz Ref Offset 2.86 dB Ref 20.00 dBm -16.701 dBm 10 dB/div 0.0 20.0 30.0 40 r 50.0 60 Center 2.4750000 GHz Span 1.326 MHz #VBW 10 kHz Sweep 139.8 ms (1001 pts) #Res BW 3.0 kHz STATUS SG

Page 46 of 54


6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G	2405	-46.13	<=-20	Pass
NVNT	2.4G	2475	-49.16	<=-20	Pass


Page 49 of 54


7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2.4G	2405	-44.84	<=-20	Pass
NVNT	2.4G	2439	-40.85	<=-20	Pass
NVNT	2.4G	2475	-41.58	<=-20	Pass

Page 52 of 54

Tx. Spurious NVNT 2.4G 2475MHz Ref 56 PM Mar 18, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R L Center Freq 2.475000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low ------Mkr1 2.475 016 GHz Ref Offset 2.86 dB Ref 20.00 dBm -1.076 dBm 10 dB/div 0.0 20.0 30.0 40 r 50.0 60.0 Center 2.475000 GHz Span 8.000 MHz #VBW 300 kHz #Sweep 200.0 ms (1001 pts) #Res BW 100 kHz STATUS SG Tx. Spurious NVNT 2.4G 2475MHz Emission Swept SA 01:59:08 PM Mar 18, 2 B L TYPE M War 18, 2025 Center Freg 13.265000000 GHz Avg Type: Log-Pw Avg|Hold: 25/25 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.474 9 GHz Ref Offset 2 86 dB -4.176 dBm 10 dB/div Ref 20.00 dBm 0.0 י חכ 21.08 d 30.0 $\langle \rangle^2$ 40.0 $\langle \rangle$ {}⁵ \Diamond^4 60 Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz #Sweep 200.0 ms (30001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE -4.176 dBm -42.666 dBm -50.930 dBm -53.705 dBm -54.783 dBm 2.474 9 GHz 25.659 1 GHz 4.950 8 GHz 7.544 8 GHz 9.908 6 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N N STATUS 🔔 Meas Uncal SG

Page 53 of 54

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * END OF THE REPORT * * * *