

TEST REPORT

Applicant:	TRUSTSTONE GROUP, LLC
Address of Applicant:	1370 Broadway 9th floor, New York 10018, United States
Manufacturer/Factory:	Huizhou Shangmeijia Electronic Technology Co.,Ltd.
Address of Manufacturer/Factory:	Jiutan North Development Area, Yuanzhou Town, Boluo County, Huizhou City, GuangDong, China
Equipment Under Test (E	EUT)
Product Name:	RECORD PLAYER&WIRELESS SPEAKER
Model No.:	TB-VCDSPK2, TT-609, TT-609BT
Trade Mark:	SPINNER
FCC ID:	2BBPLTBVCDSPK2
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	October 18, 2024
Date of Test:	October 18, 2024-November 01, 2024
Date of report issued:	November 01, 2024
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description		
00	November 01, 2024	Original		
		9		

Prepared By:

handlu

Date:

November 01, 2024

Project Engineer

Check By:

oppinson lund Reviewer

Date:

November 01, 2024

GTS

Report No.: GTS2024100187F01

3 Contents

		Pa	ige
1	CO	/ER PAGE	1
2	VEF	SION	2
3	CO	NTENTS	.3
4	TES	T SUMMARY	4
5	GE	NERAL INFORMATION	5
	5.1		
	5.4		
	5.5		
	5.6		
	5.7	TEST LOCATION	7
	VERSION CONTENTS TEST SUMMARY GENERAL INFORMATION 5.1 GENERAL DESCRIPTION OF EUT 5.2 TEST MODE 5.3 DESCRIPTION OF SUPPORT UNITS 5.4 DEVIATION FROM STANDARDS 5.5 ABNORMALITIES FROM STANDARD CONDITIONS 5.6 TEST FACILITY 5.7 TEST LOCATION 5.8 ADDITIONAL INSTRUCTIONS. TEST INSTRUMENTS LIST 1 7.1 ANTENNA REQUIREMENT DATA. 1 7.2 CONDUCTED PLAK OUTPUT POWER 1 7.3 CONDUCTED PEAK OUTPUT POWER 1 7.4 20DB EMISSION BANDWIDTH 1 7.5 CARRIER FREQUENCIES SEPARATION 1 7.6 HOPPING CHANNEL NUMBER 1 7.8 SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS 1 7.8.1 Conducted Emission Method 1 7.8.2 Radiated Emission Method 2 7.8.1 EDITION OF Method 2		7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	A		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1		
	7.8.		-
8	TES	T SETUP PHOTO	35
9	EUT	CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	±7.25×10 ⁻⁸		
2	Duty cycle	±0.37%		
3	Occupied Bandwidth	±3%		
4	RF conducted power	±0.75dB		
5	RF power density	±3dB		
6	Conducted Spurious emissions	±2.58dB		
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)		
		±3.1dB (9kHz-30MHz)		
		±3.8039dB (30MHz-200MHz)		
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)		
		±4.29dB (1GHz-18GHz)		
		±3.30dB (18GHz-40GHz)		
9	Temperature test	±1°C		
10	Humidity test	±3%		
11	Time	±3%		

5 General Information

5.1 General Description of EUT

	Product Name:	RECORD PLAYER&WIRELESS SPEAKER			
	Model No.:	TB-VCDSPK2, TT-609, TT-609BT			
	Test Model No.:	TB-VCDSPK2			
	identical in the same PCB layout, interior structure and electrical circuits. ce color and model name for commercial purpose.				
	Test sample(s) ID: GTS2024100187-1				
	Sample(s) Status:	Engineer sample			
	S/N:	N/A			
	Operation Frequency:	2402MHz~2480MHz			
	Channel numbers:	79			
	Channel separation:	1MHz			
	Modulation type:	GFSK, π/4-DQPSK, 8-DPSK			
	Antenna Type:	PCB Antenna			
	Antenna gain:	0dBi(declare by applicant)			
	Power supply:	Switching power adaptor			
	Model: OBL-1201000U				
		Input: AC 100-240V, 50/60Hz, 0.5A MAX			
		Output: DC 12V, 1000mA			

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

ng mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:
Global United Technology Services Co., Ltd.
Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang
Road, Baoan District, Shenzhen, Guangdong, China 518102
Tel: 0755-27798480
Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025	
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025	
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025	
11	Horn Antenna (15GH-40GHz)	SCHWARZBECK	01296	GTS691	Mar. 07, 2024	Mar. 06, 2025	
12	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025	
13	Amplifier	1	LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025	
14	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov. 07, 2024	
15	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025	
16	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025	
17	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025	
18	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025	
19	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025	
20	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025	
21	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025	
22	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025	
23	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025	
24	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025	

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025			
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025			
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025			
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025			
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025			
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025			
10	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025			

RF Co	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025		
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025		
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025		

Ger	General used equipment:							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

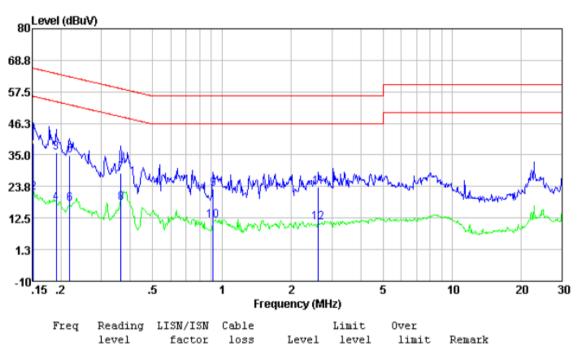
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

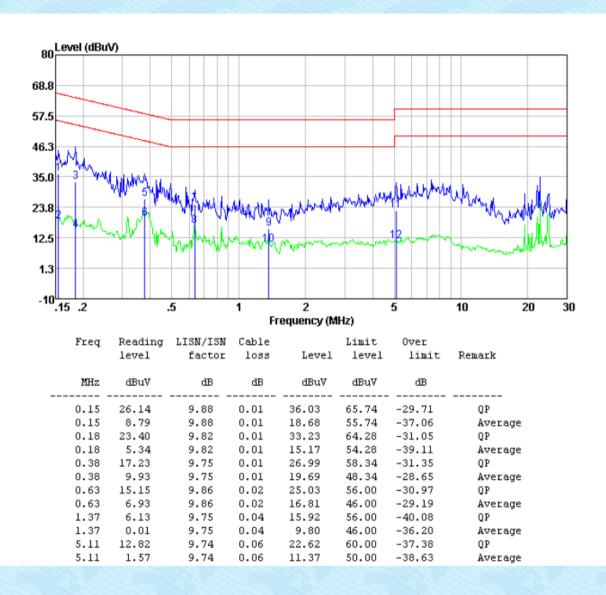
The antenna is PCB antenna, reference to the appendix II for details.


Report No.: GTS2024100187F01

7.2 Conducted Emissions								
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Frequency range (MHz)							
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5 5-30	56 60	46 50					
	* Decreases with the logarithm		00					
Test setup:	Reference Plane							
Test procedure:	Image: stable / lnsulation plane 40 cm Remark: E.U.T E.U.T Filter AUX E.U.T Filter AC power Filter AC power E.U.T EMI Remark: E.U.T E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a							
	 line impedance stabilization 50ohm/50uH coupling imper 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10: 	edance for the measured also connected to the n/50uH coupling imp o the block diagram checked for maximum d the maximum emist all of the interface c	uring equipment. The main power through a bedance with 50ohm of the test setup and m conducted ssion, the relative sables must be changed					
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							
		The second second second						

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it Line:



MHz	dBuV	dB	dB	dBu∛	dBuV	dB	
0.15	29.00	10.04	0.01	39.05	65.91	-26.86	QP
0.15	11.61	10.04	0.01	21.66	55.91	-34.25	Average
0.19	26.32	9.64	0.01	35.97	64.02	-28.05	QP
0.19	8.22	9.64	0.01	17.87	54.02	-36.15	Average
0.22	25.30	9.56	0.01	34.87	62.88	-28.01	QP
0.22	7.97	9.56	0.01	17.54	52.88	-35.34	Average
0.36	19.03	9.61	0.01	28.65	58.65	-30.00	QP
0.36	8.31	9.61	0.01	17.93	48.65	-30.72	Average
0.91	13.22	9.67	0.03	22.92	56.00	-33.08	QP
0.91	1.98	9.67	0.03	11.68	46.00	-34.32	Average
2.62	13.84	9.61	0.05	23.50	56.00	-32.50	QP
2.62	1.23	9.61	0.05	10.89	46.00	-35.11	Average

GTS

Neutral:

Report No.: GTS2024100187F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)				
Test Method:	ANSI C63.10:2013				
Limit:	GFSK:30dBm				
	π/4-DQPSK, 8-DPSK:20.97dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Limit:	J/A				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.4 20dB Emission Bandwidth

Test Deve increat					
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=300KHz, VBW=300KHz, detector=Peak				
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Carrier Frequencies Separation

· · · · · · · · · · · · · · · · · · ·					
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=VBW=300kHz, Frequency range=2398MHz-2485.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=VBW=0.91MHz, Span=0Hz, Detector=Peak RBW=VBW=100kHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.8 Spurious Emission in Non-restricted & restricted Bands

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector			RBV	V	VBW	Value	
	9KHz-150KHz	Qu	uasi-peak	200H	lz 6	600Hz	Quasi-peak	
	150KHz-30MHz	Qu	lasi-peak	9KH	z 3	30KHz	Quasi-peak	
	30MHz-1GHz	Qu	lasi-peak	120K	Hz 30	00KHz	Quasi-peak	
	Above 1GHz		Peak	1MH	Iz 3	3MHz	Peak	
			Peak	1MH	lz ·	10Hz	Average	
	Note: For Duty cyc cycle < 98%, avera			-				
Limit:	Frequency		Limit (u\	//m)	Valu	ue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	PK/QP/AV		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m	
	1.705MHz-30MH	z	30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz	2	150		QP			
	216MHz-960MH	z	200	QP			3m	
	960MHz-1GHz		500		QF			
	Above 1GHz		500		Average			
			5000		Pea	ak		
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz			
	< 3m >							

7.8.2 Radiated Emission Method

Report No.: GTS2024100187F01 For radiated emissions from 30MHz to1GHz < 3m Test Antenna 4m > < 1m EUT. Turn Table+ 80cm Receiver Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna-<1m...4m> EUT. Tum Table <150cm> 2 Receiver+ Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

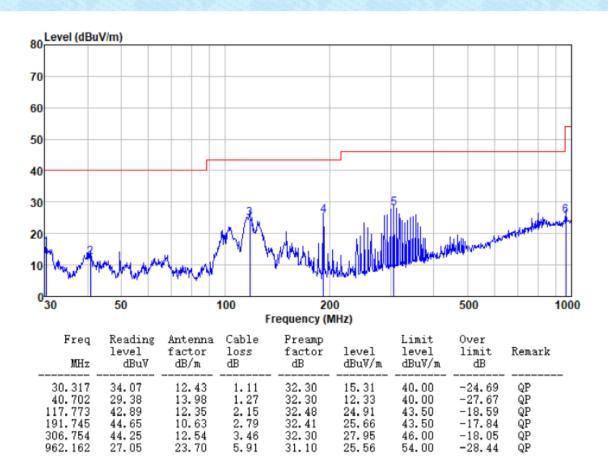
GTS

				Report No	.: GTS20241	00187F01
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it Horizontal:

31.10

25.56

46.00

54.00

-18.05

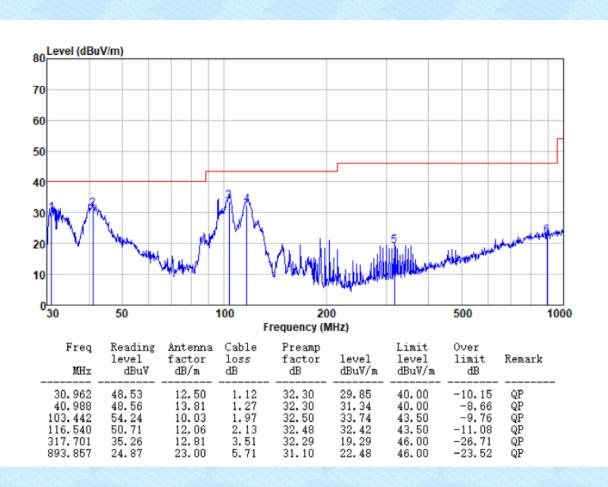
-28.44

QP

44.25

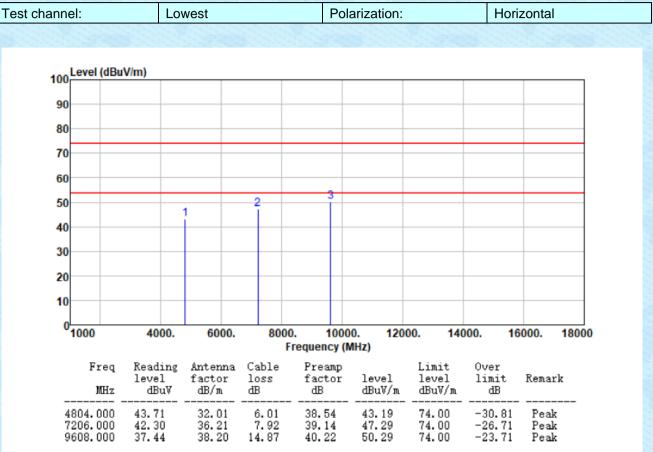
27.05

962.162


12.54

23.70

Vertical:


Report No.: GTS2024100187F01

Above 1GHz

Unwanted Emissions in Non-restricted Frequency Bands

Report No.: GTS2024100187F01

Fest channel:	Lowest		Pola	rization:		Vertica	al
Level (dBu	V/m)						
100							
90							
80							
70							
60							
50		2	3				
40	1						
30							
20							
10							
01000	4000. 6000.		1000 equency (N		00. 140	00. 16	000. 18000
Freq MHz	Reading Antenna level factor dBuV dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
4804.000 7206.000 9608.000	42.15 32.01 42.80 36.21 36.51 38.20	6.01 7.92 14.87	38.54 39.14 40.22	41.63 47.79 49.36	74.00 74.00 74.00 74.00	-32.37 -26.21 -24.64	Peak Peak Peak

Report No.: GTS2024100187F01

est channel:	Middle		Polaria	zation:		Horizor	ntal
100 Level (dBuV	/m)						
90							
80							
70							
60							
50		2	3				
40	1						
30							
20							
10							
0	4000. 600		1000 equency (N)0. 140	00. 16	i000. 18000
Freq	Reading Anten	na Cable	Preamp		Limit	Over	
MHz	level facto dBuV dB/m		factor dB	level dBu∛/m	level dBu∛/m	limit dB	Remark
4882.000 7323.000 9764.000	42.33 32.1 42.92 36.3 40.53 38.2	0 8.04	38.52 39.23 40.25	41.94 48.03 49.74	74.00 74.00 74.00 74.00	-32.06 -25.97 -24.26	Peak Peak Peak

Report No.: GTS2024100187F01

est channel:	Mid	dle		Pola	rization:		Vertica	al
100 Level (dBuV	//m)							
90								
80								
70								
60								
50			2	3				
40								
30								
20								
10								
0 ¹ 1000	4000.	6000.	800	0. 1000 Frequency (N		00. 140	00. 16	000. 1800
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
4882.000 7323.000 9764.000	41.98 41.67 40.19	32.10 36.30 38.20	6.03 8.04 11.26	38.52 39.23 40.25	41.59 46.78 49.40	74.00 74.00 74.00	-32.41 -27.22 -24.60	Peak Peak Peak

30 20 10

> 0^L 1000

> > Freq

MHz

4960.000

7440.000 9920.000 4000.

Reading

dBu∛

level

41.99 43.70 41.51 6000.

Antenna

factor

dB/m

32.20 36.30 38.24 8000.

Cable

loss

6.05

8.16 10.76

dB

10000.

Frequency (MHz)

Preamp

factor

dB

38.51 39.31 40.28 12000.

level

41.73

48.85

dBu∛/m

Limit

level

dBu∛/m

74.00

74.00 74.00

14000.

Over

limit

dB

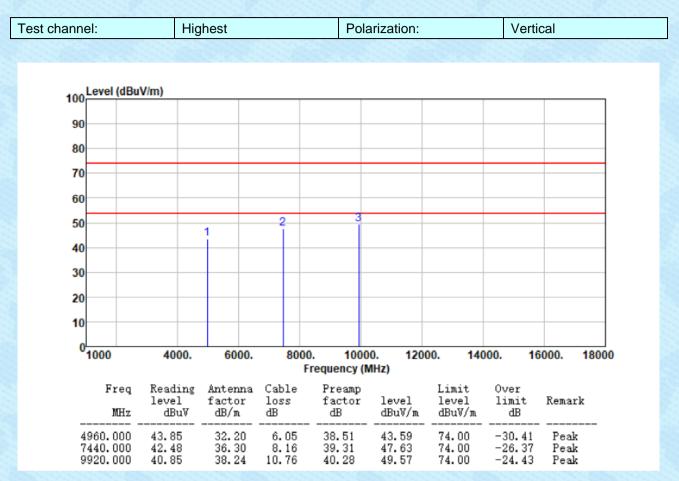
-32.27 -25.15 -23.77

16000.

Remark

Peak

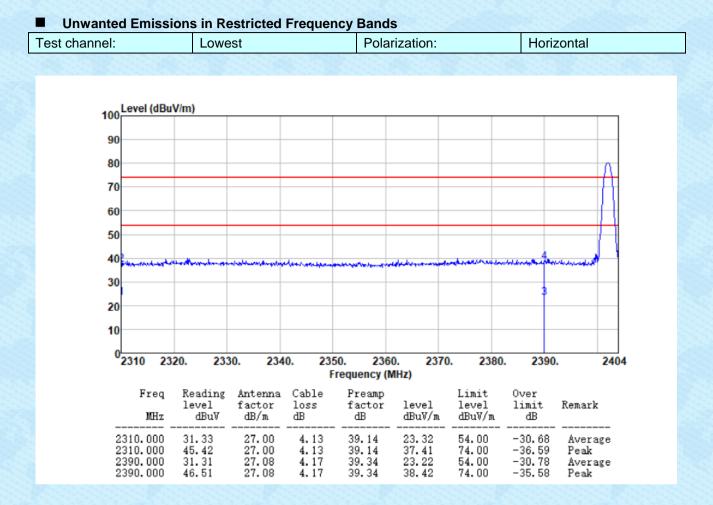
Peak Peak


18000

Report No.: GTS2024100187F01

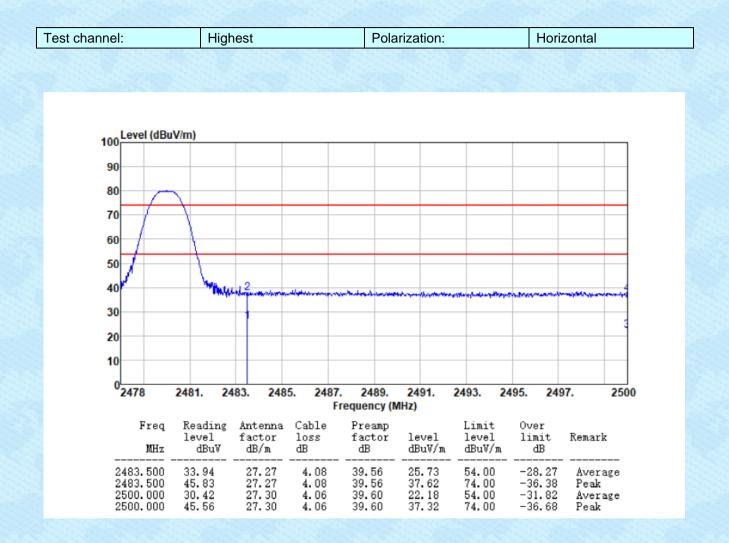
est channel:	Highest	Polarization:	Horizontal
100 Level (dB	uV/m)		
90			
80			
70			
60			
50		2 3	
40	1		

GTS

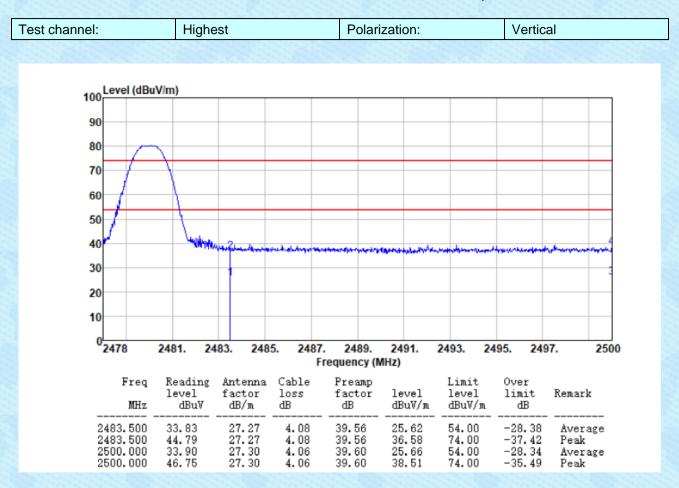

Report No.: GTS2024100187F01

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Report No.: GTS2024100187F01


Test channel:	Lowest	Pol	arization:	Vertio	cal
100 Level (dBuV	//m)				
90					
80					
70					
60					
50					
				4	
40 minutes from	ereneration have been an and a second second	water and a second and a second	eel.,ydramarianartee-ab		and the second of the second o
30	erenerenenen fan ferstaarseppernaars	higenerskerestreseeres as a so	eel	4 	ana
And the second	***************************************	Million and an and an	eel	4 	encontration and the
30	***************************************	****		4 ,	
30			360. 2370.	2380. 239	10. 2404
30 20 10				2380. 239	0. 2404
30 20 10 0 2310 2320		0. 2350. 2 Frequenc	y(MHz) p l pr level i	2380. 239 Limit Over level limit dBuV/m dB	00. 2404 Remark

GTS

Report No.: GTS2024100187F01

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

GTS

Report No.: GTS2024100187F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----