

FCC ID - TEST REPORT

Report Number	•	709502404070-00A	Date of Issue: August 20, 2024		
Model		: BNCM			
Product Type		: Smart Access BLE			
Applicant		: Continental Automotive	Technologies GmbH		
Address		: Siemensstrasse 12 Reg	gensburg 93055 Germany		
Manufacturer		: Continental Automotive Technologies GmbH			
Address		: Siemensstrasse 12 Regensburg 93055 Germany			
Production Facility		: Continental Automotive Changchun Co., Ltd. Jingyue Branch			
Address		: 5800, Shengtai Street, Changchun, Jilin Province, P.R.China			
Test Result	:	■ Positive □ Neg	ative		
Total pages including Appendices	:	33			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	. 2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	. 7
7	Test Setups	8
8	Systems test configuration	10
9	Technical Requirement	11
9.	1 Conducted peak output power1	11
9.	2 6dB Occupied Bandwidth1	13
9.	3 Power spectral density1	15
9.	4 Spurious RF conducted emissions	17
9.	5 Band edge2	21
9.	6 Spurious radiated emissions for transmitter2	24
10	Test Equipment List	31
11	System Measurement Uncertainty	32
12	Photographs of Test Set-ups	33
13	Photographs of EUT	33

2 Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

Test Firm FCC

Registration Number:

820234

Designation

number:

CN1183

Telephone: +86 21 6141 0123 Fax: +86 21 6140 8600

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Smart Access BLE

Model No.: BNCM

FCC ID: KR5BNCM

Rating: 12VDC

RF Transmission Frequency: Bluetooth LE:2402~2480MHz

No. of Operated Channel: Bluetooth LE:40

Modulation: GFSK

Channel list:

	Bluetooth Low Energy						
Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Antenna Type: PCB Antenna

Antenna Gain: -0.34 dBi

Description of the EUT: The EUT is a Smart Access BLE supports Bluetooth functions:

2402MHz - 2480MHz for BLE (only support 1Mbps).

Test sample no.: SHA-820192-1 (Conducted sample), SHA-820192-2 (Radiated sample)

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES		
10-1-2023 Edition	Subpart C - Intentional Radiators		

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpa	art C					
Took Condition		Dana	Test	Test Result		
Test Condition		Pages	Site	Pass	Fail	N/A
§15.207	Conducted emission AC power port*					\boxtimes
§15.247 (b) (3)	Conducted peak output power	11-12	Site 1			
§15.247(a)(1)	20dB Bandwidth					\boxtimes
§15.247(a)(1)	Carrier frequency separation					
§15.247(a)(1)(iii)	Number of hopping frequencies					
§15.247(a)(1)(iii)	Dwell Time - Average Time of Occupancy					\boxtimes
§15.247(a)(2)	6dB bandwidth	13-14	Site 1			
§15.247(e)	Power spectral density	15-16	Site 1			
§15.247(d)	Spurious RF conducted emissions	17-20	Site 1			
§15.247(d)	Band edge	21-23	Site 1			
§15.247(d) & §15.209 & §15.205	Spurious radiated emissions for transmitter	24-30	Site 1			
§15.203	Antenna requirement	See no	te 1			

Note: * Conducted emission is not apply for battery operated device.

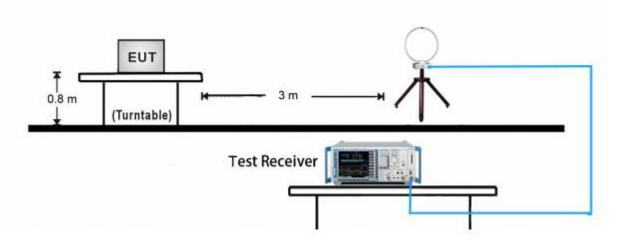
Note 1: N/A - Not Applicable.

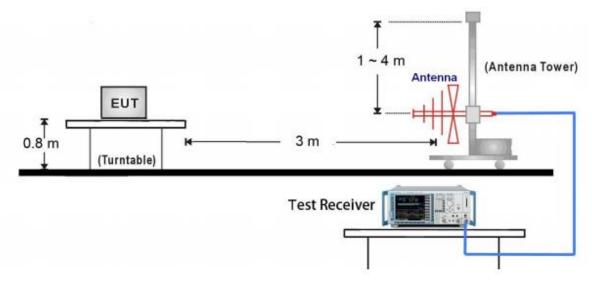
Note 2: The EUT uses a PCB antenna, which gain is -0.34dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

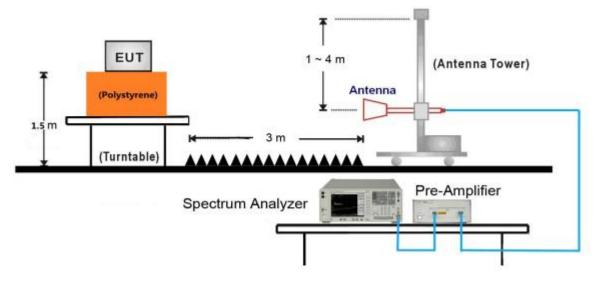
This submittal(s) (test report) is intended for FCC ID: KR5BNCM complies with Section 15.207,15.209,15.231,15.247 of the FCC Part 15, Subpart C Rules.


15.207,15.209,15.231,15.247 of	the FCC Part 15, Subpart C Rul	es.
SUMMARY:		
All tests according to the regulat	ions cited on page 5 were	
■ - Performed		
□ - Not Performed		
The Equipment under Test		
■ - Fulfills the general approval	requirements.	
☐ - Does not fulfill the general a	approval requirements.	
Sample Received Date:	June 14, 2024	
Testing Start Date:	June 14, 2024	
Testing End Date:	June 20, 2024	
-TÜV SÜD Certification and Test	ting (China) Co., Ltd. Shanghai E	Branch
Reviewed by:	Prepared by:	Tested by:
this Tone	Jiaxi XV	Tianji Xu
Hui TONG Review EMC Manager	Jiaxi XU Project Manager	Tianji XU Test Engineer

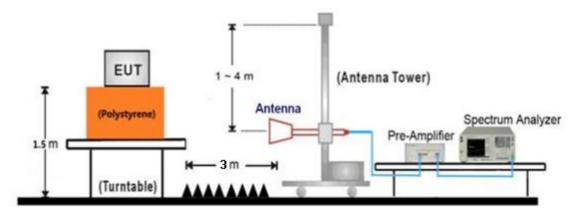

7 Test Setups

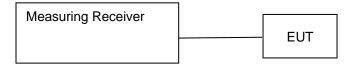
7.1 Radiated test setups

9kHz ~ 30MHz Test Setup:



30MHz ~ 1GHz Test Setup:




1GHz ~ 18GHz Test Setup:

18GHz ~ 40GHz Test Setup:

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenove	E470	PF-OU5TS7 17/09

Test software: PCANBasicExample.exe

Test Mode Applicability and Tested Channel Detail:

Mode	Tested Channel	Data Rate (Mbps)	Modulation	Power level setting
	0	1	GFSK	3E
Bluetooth LE	19	1	GFSK	3E
	39	1	GFSK	3E

The system was configured to channel 0, 19, and 39 for the test.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

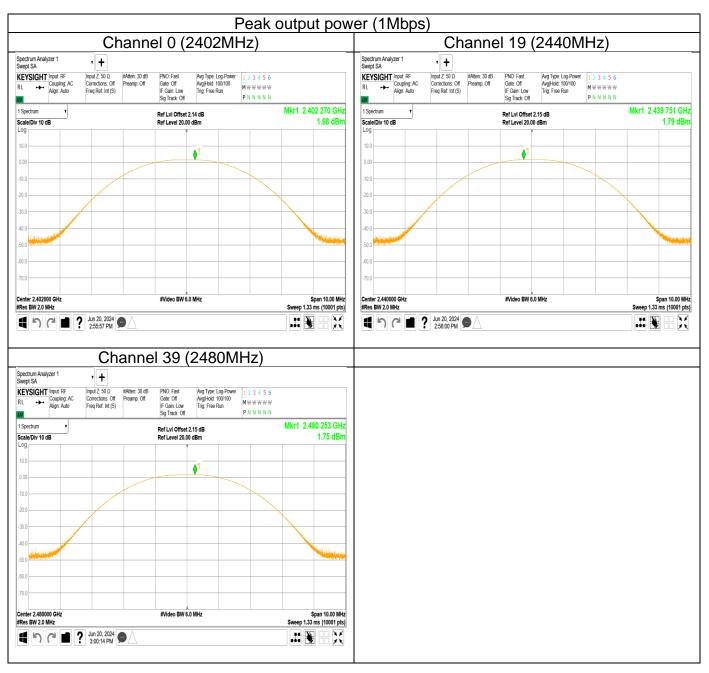
9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Use a power meter to measure the conducted peak output power.

Limits

According to §15.247 (b) (3), conducted peak output power limit as below:


Conducted peak output power

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

Data transmission	Frequency	Conducted Peak Output Power (dBm) §15.247 (b) (3)			
Rate	(MHz)	Result	limit	Verdict	
	2402MHz	1.68	≤30	Pass	
1Mbps	2440MHz	1.79	≤30	Pass	
	2480MHz	1.75	≤30	Pass	

9.2 6dB Occupied Bandwidth

Test Method

- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit	Limit [kHz]
	≥500

Test result

Data	Frequency	6dB bandw	Result	
transmission rate	MHz	result	limit	verdict
	2402	0.701	≥0.5	Pass
1Mbps	2440	0.705	≥0.5	Pass
	2480	0.707	≥0.5	Pass

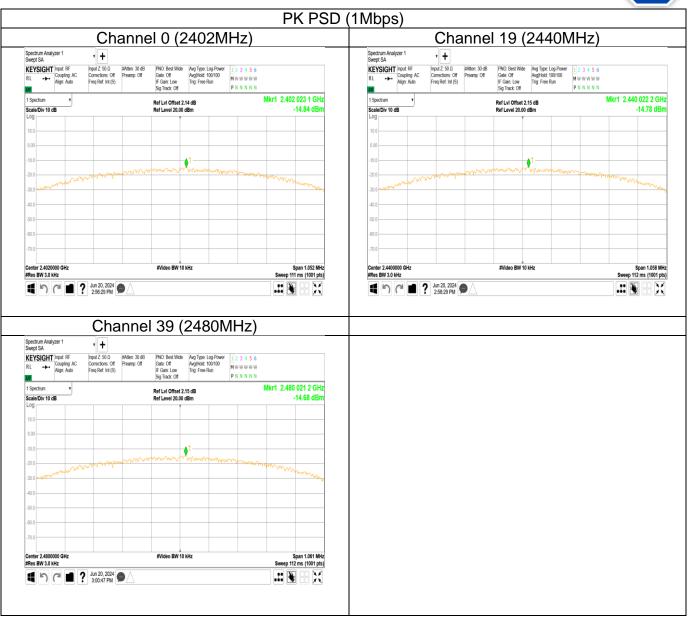
6dB Bandwidth

9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.


Limit

Limit [dBm/3kHz]	
 ≤ 8	

Test result

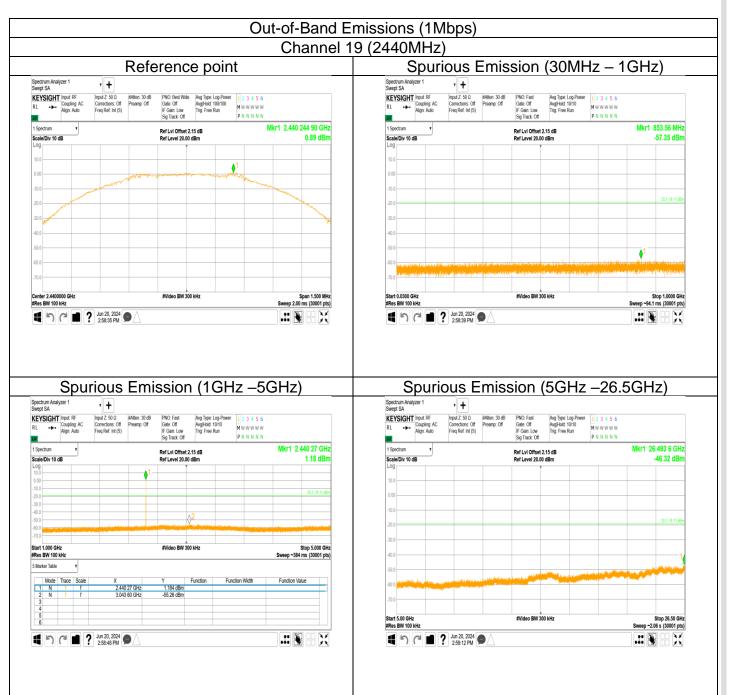
Data transmission rate	Frequency	Power spectral density	Result
	MHz	dBm/3kHz	
1Mbps	Top channel 2402MHz	-14.84	Pass
1Mbps	Middle channel 2440MHz	-14.78	Pass
	Bottom channel 2480MHz	-14.69	Pass

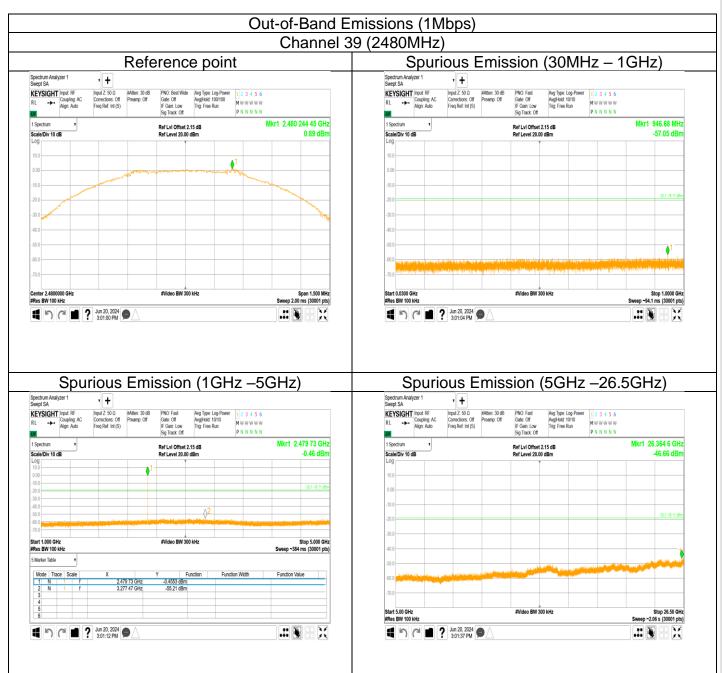
9.4 Spurious RF conducted emissions

Test Method


- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

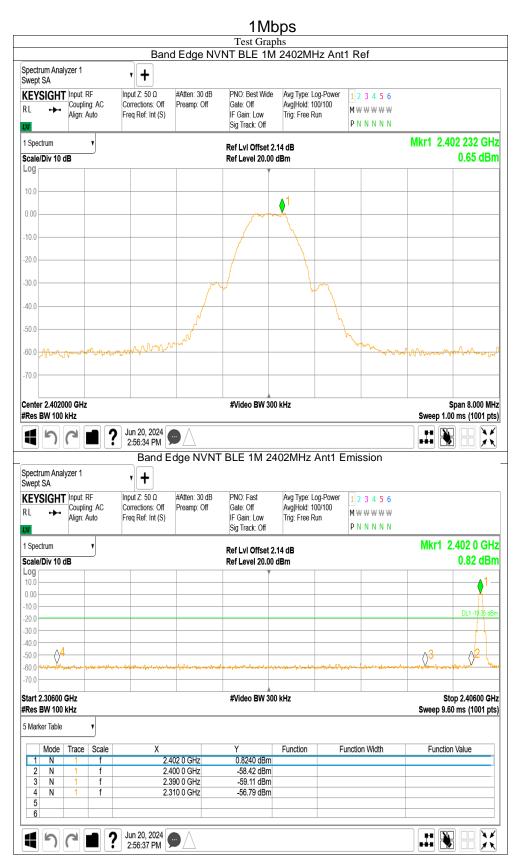
Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

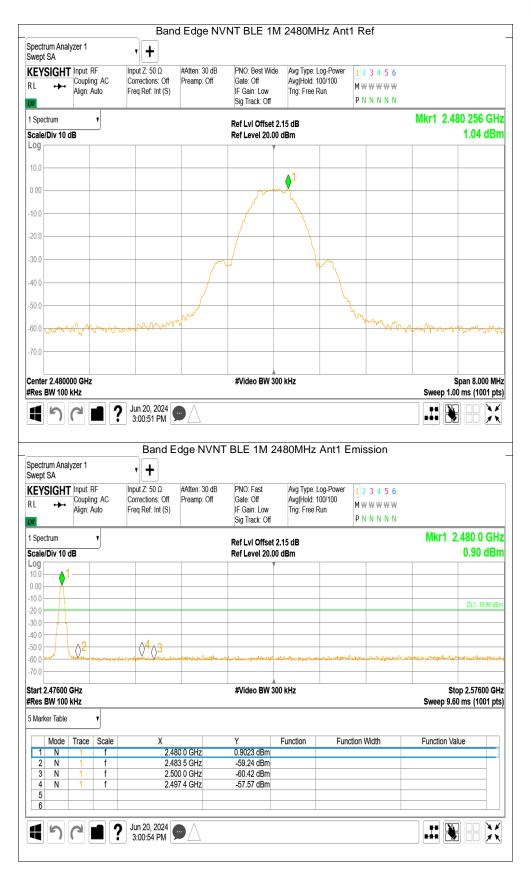

Spurious RF conducted emissions

9.5 Band edge

Test Method


- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit


According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

TÜV

Test result

9.6 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120 kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1MHz.
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength μV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit $3m(dB\mu V/m)=Limit 300m(dB\mu V/m)+40Log(300m/3m)$ (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)=Limit 30m(dB\mu V/m)+40Log(30m/3m)$ (Below 30MHz)

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. The only worse case test result is listed in the report.

Test result

	Test mode:GFSK 1Mbps (2402MHz)						
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M	Margin (dB)	Detector	Polarization		
2384.88	40.35	74.00	33.65	PK	Horiznotal		
4804.56	41.72	74.00	32.28	PK	Horiznotal		
2385.24	41.72	74.00	32.28	PK	Vertical		
4804.06	41.44	74.00	32.56	PK	Vertical		

Test mode:GFSK 1Mbps (2440MHz)						
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M	Margin (dB)	Detector	Polarization	
4879.71	41.03	74.00	32.97	PK	Horiznotal	
4880.50	41.64	74.00	32.36	PK	Vertical	

	Test mode:GFSK 1Mbps (2480MHz)						
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M	Margin (dB)	Detector	Polarization		
2483.51	44.70	74.00	29.30	PK	Horiznotal		
4959.40	43.01	74.00	30.99	PK	Horiznotal		
2483.91	42.68	74.00	31.32	PK	Vertical		
4959.34	43.15	74.00	30.85	PK	Vertical		

Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
 (3) Margin = limit Corrected Reading

The worst case of Radiated Emission below 1GHz:

30-1000MHz Radiated Emission

EUT Information

EUT Name: Smart Access BLE

Model: BNCM

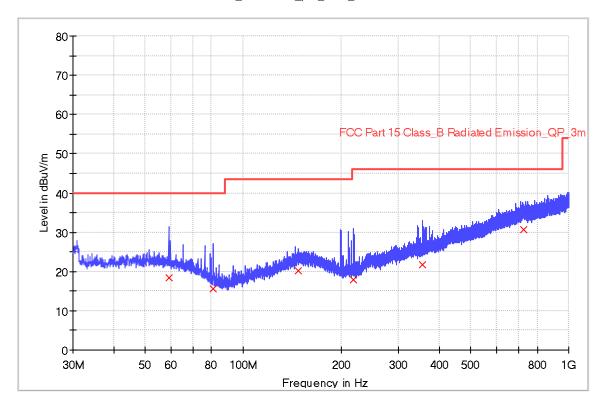
Client: Continental Automotive Technologies GmbH

Op Cond: Power on, Tx at 2440MHz

Operator: Tianji XU

Test Spec: FCC Part 15.207(a)

Comment: Horizontal Sample No: SHA-820192-2


Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
59.040000	18.4	1000.0	120.000	152.0	٧	352.0	20.3	21.6	40.0
80.680000	15.5	1000.0	120.000	220.0	٧	15.0	15.6	24.5	40.0
147.920000	20.2	1000.0	120.000	200.0	V	301.0	20.9	23.3	43.5
217.640000	17.8	1000.0	120.000	150.0	V	117.0	17.5	28.2	46.0
355.760000	21.6	1000.0	120.000	100.0	٧	256.0	22.7	24.4	46.0
729.120000	30.7	1000.0	120.000	180.0	٧	118.0	31.4	15.3	46.0

EUT Information

EUT Name: Smart Access BLE

Model: BNCM

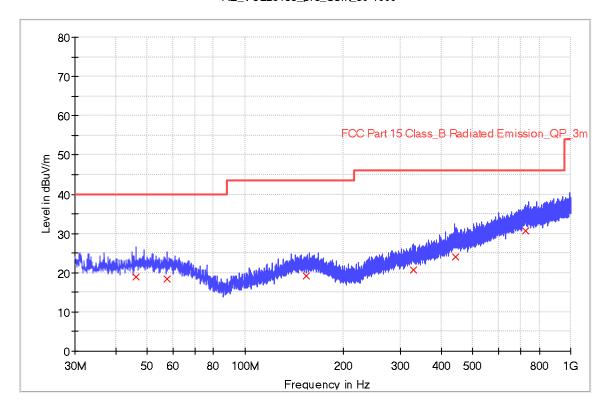
Client: Continental Automotive Technologies GmbH

Op Cond: Power on, Tx at 2440MHz

Operator: Tianji XU

Test Spec: FCC Part 15.207(a)

Comment: Vertical Sample No: SHA-820192-2


Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
46.120000	18.8	1000.0	120.000	100.0	٧	136.0	20.4	21.2	40.0
57.480000	18.4	1000.0	120.000	112.0	٧	225.0	20.3	21.6	40.0
154.360000	19.2	1000.0	120.000	200.0	٧	31.0	21.0	24.3	43.5
328.240000	20.6	1000.0	120.000	150.0	٧	176.0	22.6	25.4	46.0
444.160000	24.1	1000.0	120.000	160.0	٧	198.0	25.7	21.9	46.0
729.320000	30.7	1000.0	120.000	180.0	٧	347.0	31.4	15.3	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

10 Test Equipment List

List of Test Instruments Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
С	Signal spectrum analyzer	Agilent	N9020B	MY59050168	2024-2-19	2025-2-18
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2023-8-1	2024-7-31
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2021-9-23	2024-9-22
DE	Double-ridged waveguide horn antenna	Rohde & Schwarz	HF907	102868	2024-4-14	2027-4-13
RE	Pre-amplifier	Shenzhen HzEMC	HPA- 081843	HYPA23026	2024-4-16	2025-4-15
	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2024-6-14	2025-6-13
	Double Ridged Horn Antenna	ETS-Lindgren	3116C	00246076	2023-7-7	2026-7-6
	3m Semi-anechoic chamber	TDK	9X6X6		2025-4-15	2027-5-7

	Measurement Software Information					
Test Item	Software	Manufacturer	Version			
С	MTS 8310	MWRFtest	3.0.0.0			
RE	EMC 32	Rohde & Schwarz	V10.50.40			

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, 3.16dB
Radiated Disturbance	9kHz to 30MHz, 3.52dB
	30MHz to 1GHz, 5.03dB (Horizontal)
	5.12dB (Vertical)
	1GHz to 18GHz, 5.49dB
	18GHz to 40GHz, 5.63dB
RF Conducted Measurement	Power related: 1.16dB
	Frequency related: 6.00×10 ⁻⁸

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

-----End of Test Report------