

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA23062501001 FCC ID.....: 2AY45-MD-TWS-001

Compiled by

(position+printed name+signature)... File administrators Zoey Cao

Supervised by

(position+printed name+signature)..: Project Engineer Amy Wen

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Sep. 04, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Chengdu shuiyueyu technology Co.,Ltd.

13th Floor, Building B, Building 1, Yuetiandi Commercial Building

......Project, No.159 Haichuan Road, Wenjiang District, Chengdu City,

CTATESTIN'

Sichuan Province, China

Test specification

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description NECOCAKE

Trade Mark: N/A

Manufacturer Chengdu MOONDROP Co.,Ltd.

Model/Type reference......MD-TWS-001

Listed ModelsN/A

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 3.7V From Battery and DC 5.0V From external circuit

Result......PASS

Page 2 of 41 Report No.: CTA23062501001

TEST REPORT

NECOCAKE Equipment under Test

Model /Type **MD-TWS-001**

Listed Models N/A

CTATESTING **Applicant** Chengdu shuiyueyu technology Co.,Ltd.

13th Floor, Building B, Building 1, Yuetiandi Commercial Building Address

> Project, No.159 Haichuan Road, Wenjiang District, Chengdu City, CTA TESTING

Sichuan Province, China

Chengdu MOONDROP Co.,Ltd. Manufacturer

Address Haixia Technology Industry Park, Wenjiang District, Chengdu, China

Test Result:	STING	PASS	
	163		

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATE laboratory.

Contents

		TESTING	ntents	
	A C	TEST STANDARDS	cIN ^C	4
	311	TES		
	2	SUMMARY	TING	5
	_	(C)	in TES	
	2.1	General Remarks	CTA TE	5
	2.1	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	Tost (FIIT)	5
	2.5	EUT operation mode	rest (EOT)	6
	2.6	Block Diagram of Test Setup		6
7475	2.7	Related Submittal(s) / Grant (s)		6
CAL	2.8	Modifications		6
7		mounious TES		•
	<u>3</u>	TEST ENVIRONMENT		7
			TAIL	
	3.1	Address of the test laboratory		517
	3.2	Test Facility	CTATE	7
	3.3	Environmental conditions	C/L	7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertaint	ev .	8
	3.6	Equipments Used during the Test	•	9
		TING		_
	<u>4</u>	TEST CONDITIONS AND RESU	LTS	11
	4.1	AC Power Conducted Emission	CTA TESTING	11
	4.2	Radiated Emissions and Band Edge		14
	4.3	Maximum Peak Output Power		20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth		24
	4.6	Out-of-band Emissions		27
	4.7	Antenna Requirement		32
	CETING	TEST SETUD BUOTOS OF THE	EUT	2.2
	<u> </u>	TEST SETUP PHOTOS OF THE	EU1	33
CTATE				
	<u>6</u>	PHOTOS OF THE EUT		34
			ESTIT	
			CTATESTING CTATES	SIL
			TE	
			CTATE	

Report No.: CTA23062501001 Page 4 of 41

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

GM CTATE

Page 5 of 41 Report No.: CTA23062501001

SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Jun. 25, 2023	TING
	(TAR		TESI
Testing commenced on		Jun. 25, 2023	CIR
Testing concluded on	:	Sep. 04, 2023	

2.2 Product Description

Product Description:	NECOCAKE
Model/Type reference:	MD-TWS-001
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Adapter information (Auxiliary test suppled by test Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	V1.0
Software version:	HGD_022_BT8922E2
Testing sample ID:	CTA230625010-1# (Engineer sample) CTA230625010-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Chip antenna
Antenna gain:	1.90 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test Power supply system utilised	k		GA CTATEST!	MG	; 	ING
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
		•	Other (specified in blank be	low		

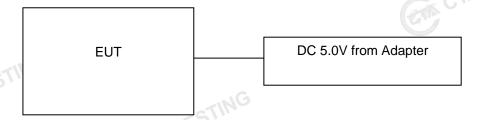
DC 3.70V From Battery and DC 5V From external circuit

Short description of the Equipment under Test (EUT)

This is a NECOCAKE.

For more details, refer to the user's manual of the EUT.

Page 6 of 41 Report No.: CTA23062501001


2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
	STING	
TATI	19	2440
C	ESTIN	:
	37	2476
	38	2478
	39	2480
	2.6 Block Diagram of Test Setup	TATESTIN
		CIT

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, CTATE Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria. CTATESTING

Page 7 of 41 Report No.: CTA23062501001

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

	adiated Ethiopiotis	
	Temperature:	25 ° C
Č	All S	TES
	Humidity:	45 %
Ī		CVA
Ī	Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

to main conducted toothing.	
Temperature:	25 ° C
NG	
Humidity:	46 %
	~1G
Atmospheric pressure:	950-1050mbar

Conducted testing:

Attriosprierie pressure.	330 TOSOTTIBAT
Conducted testing:	CTING
Temperature:	25 ° C
100 mg/m	CIA
Humidity:	44 %
	22333
Atmospheric pressure:	950-1050mbar

Page 8 of 41 Report No.: CTA23062501001

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	11NG -/-	BLE 1Mpbs	-/-	complies
	ement uncertainty is			CTP	TESTING	

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. SI KE

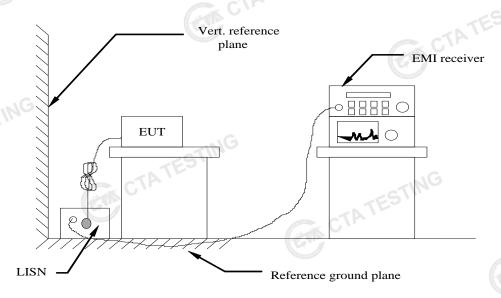
The measurement uncertainty is not included in the test result.

Report No.: CTA23062501001 Page 9 of 41

3.6 Equipments Used during the Test

Test Equipme	ent Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
EMI Test Rece	eiver R&S	ESPI	CTA-307	2022/08/03	2023/08/02
EMI Test Rece	eiver R&S	ESCI	CTA-306	2022/08/03	2023/08/02
Spectrum Ana	yzer Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
Spectrum Ana	lyzer R&S	FSP	CTA-337	2022/08/03	2023/08/02
Vector Sign generator	AMIENT	N5182A	CTA-305	2022/08/03	2023/08/02
Analog Sigr Generator	1 84.5	SML03	CTA-304	2022/08/03	2023/08/02
Universal Ra Communicat	1 (30,00,00)	R&S	CTA-302	2022/08/03	2023/08/02
Temperature humidity me		ZG-7020	CTA-326	2022/08/03	2023/08/02
Ultra-Broadba Antenna	2111	VULB9163	CTA-310	2021/08/07	2024/08/06
Horn Anteni	na Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
Loop Anteni	na Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
Horn Anteni	Beijing Hangwe Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
Amplifier	Taiwan chengy	i EMC051845B	CTA-313	2022/08/03	2023/08/02
Directional cou	upler NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
High-Pass Fi	lter XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
High-Pass Fi	Iter XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
Automated fi bank	Iter Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
Power Sens	or Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
		BBV9719	CTA-406	2022/08/03	2023/08/02

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
TE	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
ATE	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
•	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
TE	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
l	(en	CTATESTING	CT	TESTING		ATESTING


CTATESTING CTATESTING

Report No.: CTA23062501001 Page 11 of 41

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

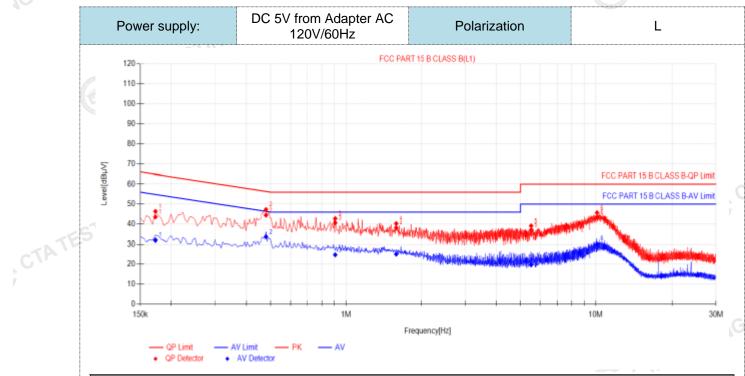
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

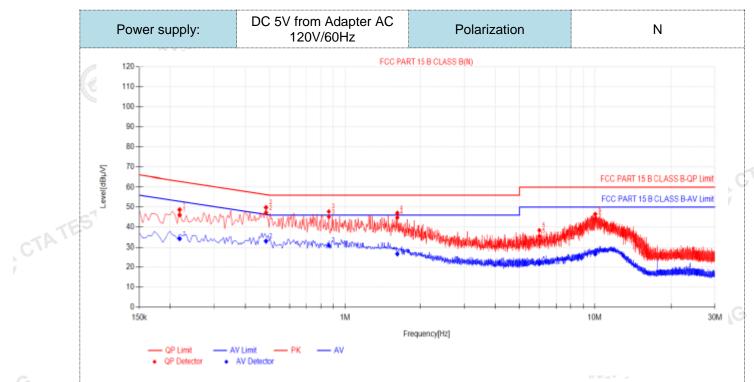

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequent		00			

TEST RESULTS

Remark:

- 1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- 1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

Page 12 of 41 Report No.: CTA23062501001


Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.1725	10.50	33.05	43.55	64.84	21.29	21.53	32.03	54.84	22.81	PASS
2	0.4785	10.50	33.97	44.47	56.37	11.90	23.14	33.64	46.37	12.73	PASS
3	0.906	10.50	30.13	40.63	56.00	15.37	14.28	24.78	46.00	21.22	PASS
4	1.5855	10.50	27.60	38.10	56.00	17.90	14.61	25.11	46.00	20.89	PASS
5	5.505	10.50	26.58	37.08	60.00	22.92	9.22	19.72	50.00	30.28	PASS
6	10.1175	10.50	32.97	43.47	60.00	16.53	19.64	30.14	50.00	19.86	PASS
2). Fa 3). QF).QP Value ctor (dB)=ir Margin(dB Margin(dB)	nsertion I) = QP Li	oss of Ll imit (dBµ	SN (dB) V) - QP	+ Cable Value (dl	loss (dB) BµV)		GI			

CTA TESTING

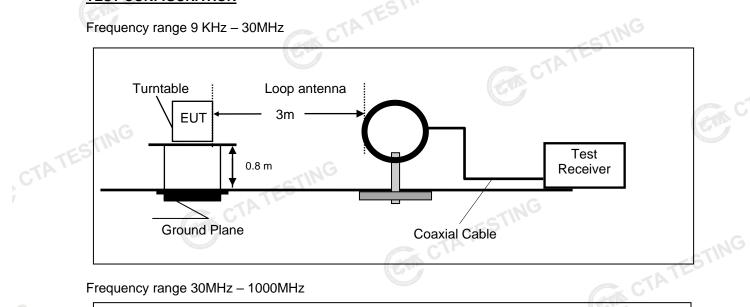
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATES

CTA TESTING

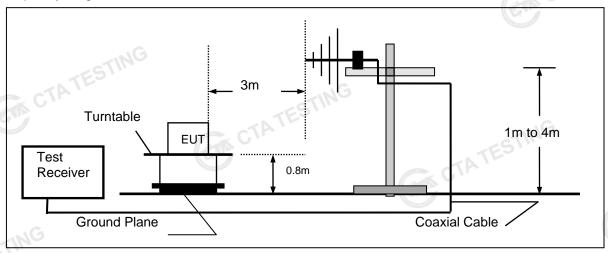
Page 13 of 41 Report No.: CTA23062501001

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.2175	10.50	35.56	46.06	62.91	16.85	23.62	34.12	52.91	18.79	PASS
2	0.483	10.50	36.68	47.18	56.29	9.11	22.41	32.91	46.29	13.38	PASS
3	0.861	10.50	34.61	45.11	56.00	10.89	20.43	30.93	46.00	15.07	PASS
4	1.617	10.50	34.25	44.75	56.00	11.25	16.21	26.71	46.00	19.29	PASS
5	6	10.50	24.94	35.44	60.00	24.56	11.31	21.81	50.00	28.19	PASS
6	10.041	10.50	33.60	44.10	60.00	15.90	16.15	26.65	50.00	23.35	PASS
											PASS
Note:1)).QP Value	e (dBµV):	= QP Rea	ading (dl	3μV)+ Fa	actor (dB)				
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)											

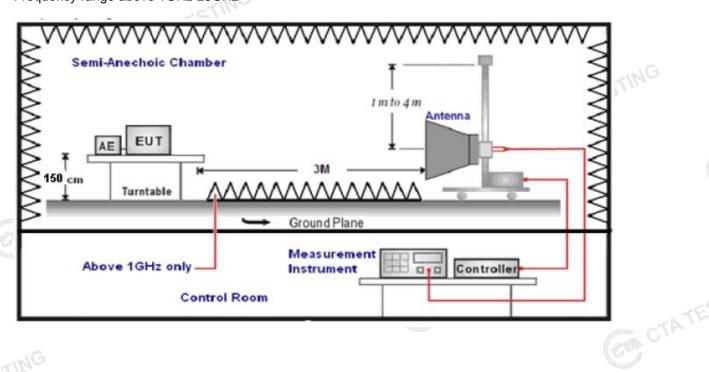
CTA TESTING


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 14 of 41 Report No.: CTA23062501001


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 15 of 41 Report No.: CTA23062501001

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)					
RA = Reading Amplitude	AG = Amplifier Gain	The second state of the second				
AF = Antenna Factor						
ansd=AF +CL-AG						
ATION LIMIT	ESTING					

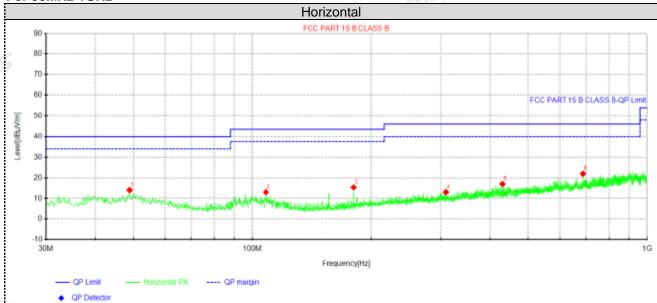
CTATESTING Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500
-	TING			The state of the s
CTATES		-ING		


Report No.: CTA23062501001 Page 16 of 41

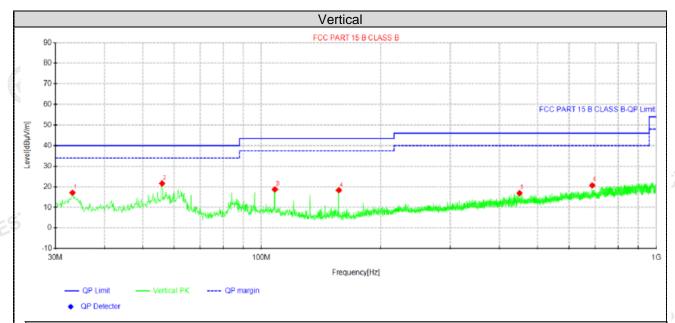
TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Sus	pected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevite
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	48.915	30.10	13.95	-16.15	40.00	26.05	100	64	Horizontal
2	108.206	31.72	12.95	-18.77	43.50	30.55	100	283	Horizontal
3	180.35	35.87	15.35	-20.52	43.50	28.15	100	292	Horizontal
4	308.996	30.21	12.98	-17.23	46.00	33.02	100	171	Horizontal
5	430.488	32.27	17.06	-15.21	46.00	28.94	100	214	Horizontal
6	687.538	33.68	21.94	-11.74	46.00	24.06	100	144	Horizontal


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CT CT

CTA TESTIN

Report No.: CTA23062501001 Page 17 of 41

	Suspected Data List											
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
	1	33.1525	35.32	17.14	-18.18	40.00	22.86	100	238	Vertical		
	2	55.9475	38.95	21.61	-17.34	40.00	18.39	100	135	Vertical		
	3	108.206	37.48	18.71	-18.77	43.50	24.79	100	0	Vertical		
	4	156.463	39.96	18.30	-21.66	43.50	25.20	100	315	Vertical		
331	5	449.646	32.00	16.91	-15.09	46.00	29.09	100	8	Vertical		
á	6	687.538	32.42	20.68	-11.74	46.00	25.32	100	332	Vertical		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

CTA TESTING

Report No.: CTA23062501001

For 1GHz to 25GHz

GFSK (above 1GHz)

Frequency(MHz):			24	02	Polarity: HORIZO			IORIZONTA	NTAL	
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.14	PK	74 C	12.86	65.41	32.33	5.12	41.72	-4.27	
4804.00	43.90	AV	54	10.10	48.17	32.33	5.12	41.72	-4.27	
7206.00	52.79	PK	74	21.21	53.31	36.6	6.49	43.61	-0.52	
7206.00	43.36	AV	54	10.64	43.88	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL		-
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.03	PK	574	13.97	64.30	32.33	5.12	41.72	-4.27
4804.00	41.98	AV	54	12.02	46.25	32.33	5.12	41.72	-4.27
7206.00	51.54	PK	74	22.46	52.06	36.6	6.49	43.61	-0.52
7206.00	40.02	AV	54	13.98	40.54	36.6	6.49	43.61	-0.52

Freque	ncy(MHz):	24	40	Polarity:		HORIZONTAL		\L	
Frequency (MHz)	Le	ssion vel ıV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	60.75	PK	74	13.25	64.63	32.6	5.34	41.82	-3.88	
4880.00	45.36	AV	54	8.64	49.24	32.6	5.34	41.82	-3.88	
7320.00	53.20	PK	74	20.80	53.31	36.8	6.81	43.72	-0.11	
7320.00	42.21	AV	54	11.79	42.32	36.8	6.81	43.72	-0.11	

SAIN.				TES.					
Freque	ncy(MHz)	:	24	40	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.78	PK	74	14.22	63.66	32.6	5.34	41.82	-3.88
4880.00	43.10	AV	54	10.90	46.98	32.6	5.34	41.82	-3.88
7320.00	51.57	PK	74	22.43	51.68	36.8	6.81	43.72	-0.11
7320.00	41.45	AV	54	12.55	41.56	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	24	80	Polarity:		HORIZONTAL		\L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.42	PK	74	13.58	63.50	32.73	5.66	41.47	-3.08
4960.00	44.32	AV	54	9.68	47.40	32.73	5.66	41.47	-3.08
7440.00	54.47	PK	74	19.53	54.02	37.04	7.25	43.84	0.45
7440.00	42.00	PK	54	12.00	41.55	37.04	7.25	43.84	0.45

Freque	ency(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.53	PK	74	14.47	62.61	32.73	5.66	41.47	-3.08
4960.00	43.87	AV	54	10.13	46.95	32.73	5.66	41.47	-3.08
7440.00	51.95	PK	74	22.05	51.50	37.04	7.25	43.84	0.45
7440.00	40.54	PK	54	13.46	40.09	37.04	7.25	43.84	0.45

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: CTA23062501001

- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	Н	IORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.93	PK	74	13.07	71.35	27.42	4.31	42.15	-10.42
2390.00	42.34	AV	54	11.66	52.76	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.83	PK	574	15.17	69.25	27.42	4.31	42.15	-10.42
2390.00	41.52	AV	54	12.48	51.94	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	P ola	arity:	Н	IORIZONTA	\L
	-) (
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency	Emis Le	vel			Value	Factor	Factor	amplifier	Factor
Frequency (MHz)	Emis Lev (dBu	vel V/m)	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
Frequency (MHz) 2483.50 2483.50	Emis Lev (dBu	vel V/m) PK AV	(dBuV/m) 74	(dB) 13.45 12.14	Value (dBuV) 70.66 51.97	Factor (dB/m) 27.7	Factor (dB) 4.47	amplifier (dB) 42.28	Factor (dB/m) -10.11 -10.11
Frequency (MHz) 2483.50 2483.50	Emis Lev (dBu 60.55 41.86	vel V/m) PK AV :	(dBuV/m) 74 54	(dB) 13.45 12.14	Value (dBuV) 70.66 51.97	Factor (dB/m) 27.7 27.7	Factor (dB) 4.47	amplifier (dB) 42.28 42.28	Factor (dB/m) -10.11 -10.11
Frequency (MHz) 2483.50 2483.50 Freque Frequency	Emis Lev (dBu 60.55 41.86 ncy(MHz) Emis Lev	vel V/m) PK AV :	(dBuV/m) 74 54 24 Limit	(dB) 13.45 12.14 80 Margin	Value (dBuV) 70.66 51.97 Pola Raw Value	Factor (dB/m) 27.7 27.7 arity: Antenna Factor	Factor (dB) 4.47 4.47 Cable Factor	amplifier (dB) 42.28 42.28 VERTICAL Preamplifier	Factor (dB/m) -10.11 -10.11 Correction Factor

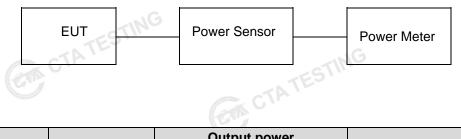
REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level.

 -- Mean the PK detector measured value is below average limit. 2.
- 3. 4.

Page 20 of 41 Report No.: CTA23062501001

Maximum Peak Output Power


Limit CAP

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	4.46		
GFSK 1Mbps	3 19	4.08	30.00	Pass
TATESI	39	4.36		
N. C.	00	4.47		
GFSK 2Mbps	19	4.10	30.00	Pass
	39	4.38	TATES	

Page 21 of 41 Report No.: CTA23062501001

Power Spectral Density

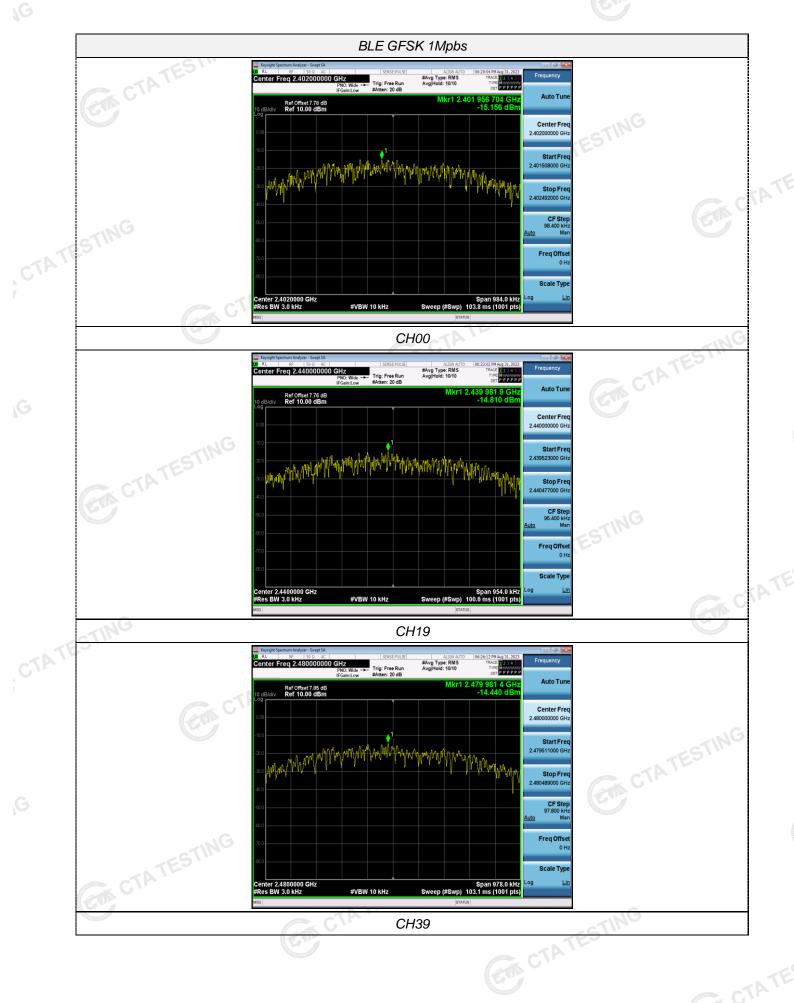
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

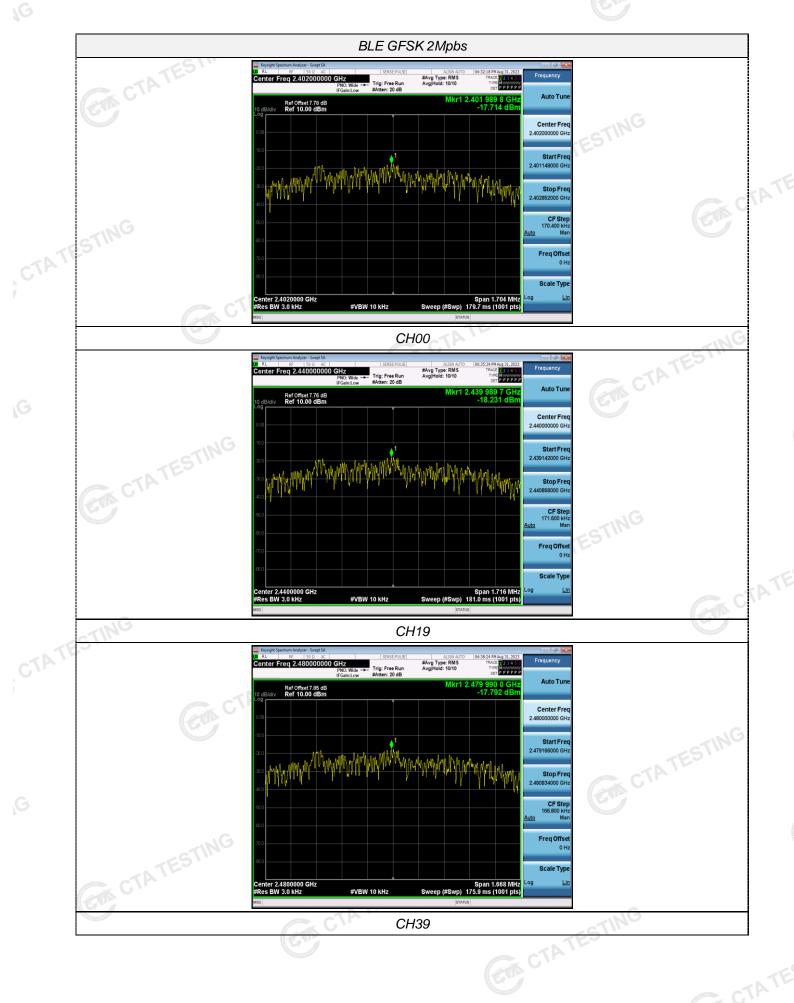
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth. CTA TESTING
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration



Test Results


		EUT	SPECTR ANALYZ	RUM ER	
	Test Results			ER CTATESTING	
	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	ING	00	-15.16		
-F	GFSK 1Mbps	19	-14.81	8.00	Pass
CTATE		39	-14.44		
		00	-17.71		_
,	GFSK 2Mbps	19	-18.23	8.00	Pass
		39	-17.79	711-	
	Test plot as follo	ws:			CTATESTING
,G					C.,

Report No.: CTA23062501001 Page 22 of 41

Report No.: CTA23062501001 Page 23 of 41

Page 24 of 41 Report No.: CTA23062501001

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

est Results		CTATE CTATE		TATESTI
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.656		
GFSK 1Mbps	G 19	0.636	≥500	Pass
-ESTI	39	0.652		
CTA	00	1.136		
GFSK 2Mbps	19	1.144	≥500	Pass
To you will be	39	1.112	-11/	G
Test plot as follows:	C.		CTATEST	

Report No.: CTA23062501001 Page 25 of 41

TESTING

Report No.: CTA23062501001 Page 26 of 41

TESTING

Page 27 of 41 Report No.: CTA23062501001

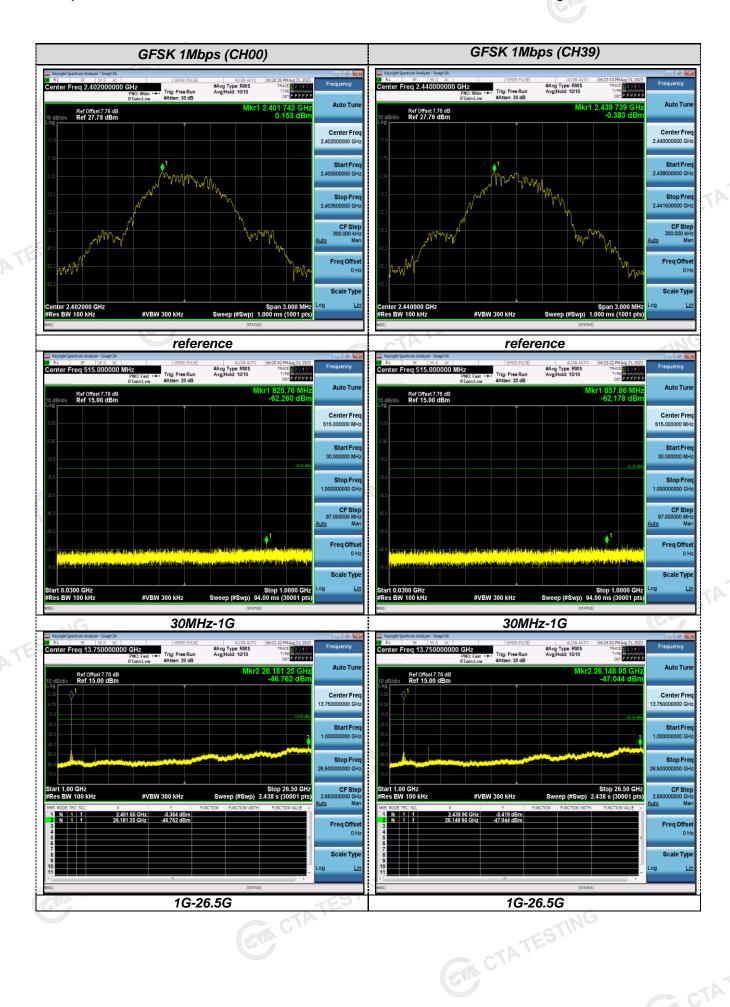
Out-of-band Emissions

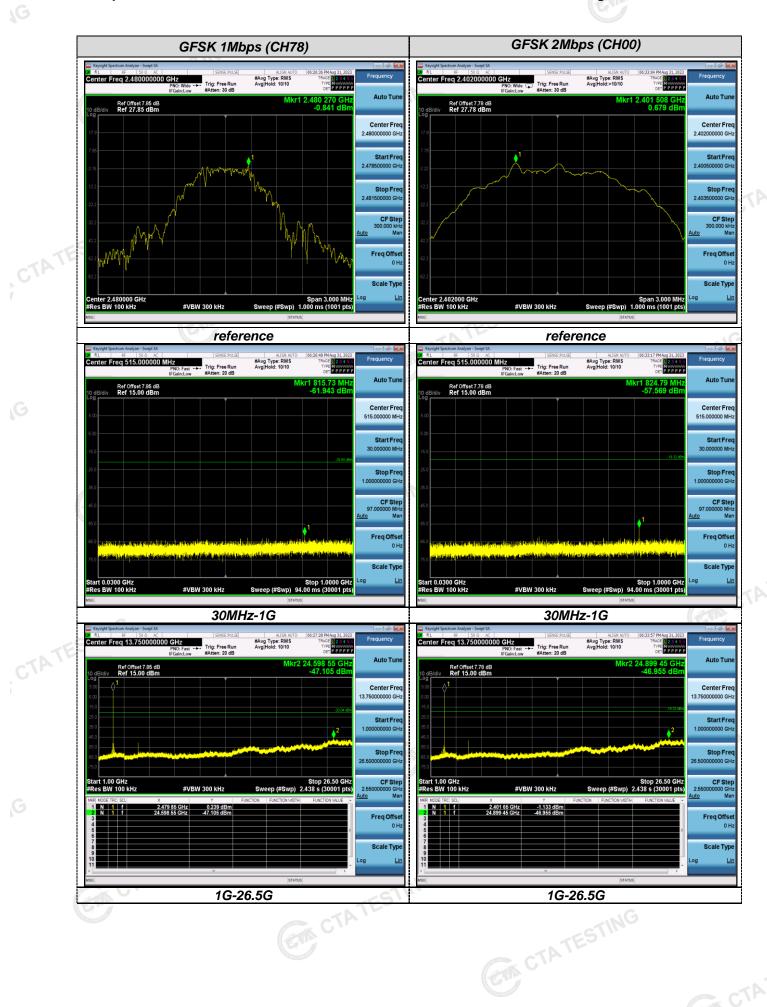
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Report No.: CTA23062501001 Page 30 of 41

CTA CTA