



FCC PART 15.247

# TEST REPORT

For

# **DGL Group LTD.**

195 Raritan Center Parkway, Edison, New Jersey, United States, 08837

# FCC ID: 2AANZSMTW

| Report Type:        |                                                                                                                                                                                                                                                                | Product Type:                     |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Original Report     |                                                                                                                                                                                                                                                                | TWS EARBUDS WITH<br>CHARGING CASE |  |
| Report Number:      | SZ3210121-027                                                                                                                                                                                                                                                  |                                   |  |
| <b>Report Date:</b> | 2021-02-22                                                                                                                                                                                                                                                     |                                   |  |
| Reviewed By:        | Jacob Kong<br>RF Engineer                                                                                                                                                                                                                                      | Jacob Gong                        |  |
| Prepared By:        | Bay Area Compliance Laboratories Corp. (Shenzhen)<br>6/F., West Wing, Third Phase of Wanli Industrial<br>Building, Shihua Road, Futian Free Trade Zone,<br>Shenzhen, Guangdong, China<br>Tel: +86-755-33320018<br>Fax: +86-755-33320008<br>www.baclcorp.com.cn |                                   |  |

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

## **TABLE OF CONTENTS**

| GENERAL INFORMATION                                           | 4  |
|---------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)            |    |
| OBJECTIVE                                                     |    |
| TEST METHODOLOGY                                              |    |
| MEASUREMENT UNCERTAINTY                                       |    |
| SYSTEM TEST CONFIGURATION                                     |    |
| DESCRIPTION OF TEST CONFIGURATION                             |    |
| Equipment Modifications<br>EUT Exercise Software              |    |
| EUT EXERCISE SOFTWARE                                         |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                            |    |
| External I/O Cable                                            | 7  |
| BLOCK DIAGRAM OF TEST SETUP                                   | 7  |
| SUMMARY OF TEST RESULTS                                       | 9  |
| TEST EQUIPMENT LIST                                           |    |
| FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE       |    |
| APPLICABLE STANDARD                                           |    |
|                                                               |    |
| FCC §15.203 - ANTENNA REQUIREMENT                             |    |
| Applicable Standard<br>Antenna Connector Construction         |    |
|                                                               |    |
| FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS                 |    |
| APPLICABLE STANDARD                                           |    |
| EUT SETUP<br>EMI Test Receiver Setup                          |    |
| TEST PROCEDURE                                                |    |
| CORRECTED FACTOR & MARGIN CALCULATION                         |    |
| TEST DATA                                                     | 14 |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS        | 17 |
| APPLICABLE STANDARD                                           |    |
| EUT SETUP                                                     |    |
| EMI Test Receiver & Spectrum Analyzer Setup<br>Test Procedure |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION                      |    |
| TEST DATA                                                     |    |
| FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH                  |    |
| APPLICABLE STANDARD                                           |    |
| Test Procedure                                                |    |
| TEST DATA                                                     |    |
| FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER           |    |
| APPLICABLE STANDARD                                           |    |
| TEST PROCEDURE                                                |    |
| TEST DATA                                                     |    |

FCC Part 15.247

Page 2 of 43

| FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE | 28 |
|-----------------------------------------------------------|----|
| APPLICABLE STANDARD                                       |    |
| Test Procedure                                            |    |
| TEST DATA                                                 |    |
| FCC §15.247(e) - POWER SPECTRAL DENSITY                   | 29 |
| APPLICABLE STANDARD                                       |    |
| Test Procedure                                            |    |
| TEST DATA                                                 | 29 |
| APPENDIX BLE                                              |    |
| APPENDIX A: DTS BANDWIDTH                                 |    |
| APPENDIX B: OCCUPIED CHANNEL BANDWIDTH                    |    |
| APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER           |    |
| APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY                |    |
| APPENDIX E: BAND EDGE MEASUREMENTS                        |    |
| Appendix F: Duty Cycle                                    | 42 |

### **GENERAL INFORMATION**

| Product                         | TWS EARBUDS WITH CHARGING CASE                     |
|---------------------------------|----------------------------------------------------|
| Tested Model                    | FB-SMTW                                            |
| Multiple Model                  | FB-SMTW-ASST                                       |
| Model Differences               | Refer to the DoS letter                            |
| UPC Number                      | 888255254467                                       |
| SKU Number                      | 3880003                                            |
| Frequency Range                 | Bluetooth LE: 2402~2480MHz                         |
| Maximum Conducted Peak<br>Power | Bluetooth LE: -3.36dBm                             |
| Modulation Technique            | Bluetooth LE: GFSK                                 |
| Antenna Specification*          | Ceramic Antenna: 2.5dBi(provided by the applicant) |
| Voltage Range                   | DC3.7V from battery                                |
| Date of Test                    | 2021-02-05 to 2021-02-19                           |
| Sample number                   | SZ3210121-02703E-RF-S1(Assigned by BACL, Shenzhen) |
| Received date                   | 2021-01-21                                         |
| Sample/EUT Status               | Good condition                                     |

#### **Product Description for Equipment under Test (EUT)**

#### Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

| Parameter                          |            | Uncertainty            |  |  |
|------------------------------------|------------|------------------------|--|--|
| Occupied Channel Bandwidth         |            | ±5%                    |  |  |
| RF Output Power with Power meter   |            | ±0.73dB                |  |  |
| RF conducted test with spectrum    |            | ±1.6dB                 |  |  |
| AC Power Lines Conducted Emissions |            | ±1.95dB                |  |  |
| Emissions,                         | Below 1GHz | ±4.75dB                |  |  |
| Radiated                           | Above 1GHz | $\pm 4.88 \mathrm{dB}$ |  |  |
| Temperature                        |            | ±1°C                   |  |  |
| Humidity                           |            | $\pm 6\%$              |  |  |
| Supply                             | voltages   | $\pm 0.4\%$            |  |  |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

#### **Test Facility**

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

### SYSTEM TEST CONFIGURATION

#### **Description of Test Configuration**

For BLE mode, 40 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 0       | 2402               | 20      | 2442               |
| 1       | 2404               | 21      | 2444               |
| 2       | 2406               | 22      | 2446               |
| 3       | 2408               | 23      | 2448               |
| 4       | 2410               | 24      | 2450               |
| 5       | 2412               | 25      | 2452               |
| 6       | 2414               | 26      | 2454               |
| 7       | 2416               | 27      | 2456               |
| 8       | 2418               | 28      | 2458               |
| 9       | 2420               | 29      | 2460               |
| 10      | 2422               | 30      | 2462               |
| 11      | 2424               | 31      | 2464               |
| 12      | 2426               | 32      | 2466               |
| 13      | 2428               | 33      | 2468               |
| 14      | 2430               | 34      | 2470               |
| 15      | 2432               | 35      | 2472               |
| 16      | 2434               | 36      | 2474               |
| 17      | 2436               | 37      | 2476               |
| 18      | 2438               | 38      | 2478               |
| 19      | 2440               | 39      | 2480               |

EUT was tested with Channel 0, 19 and 39.

#### **Equipment Modifications**

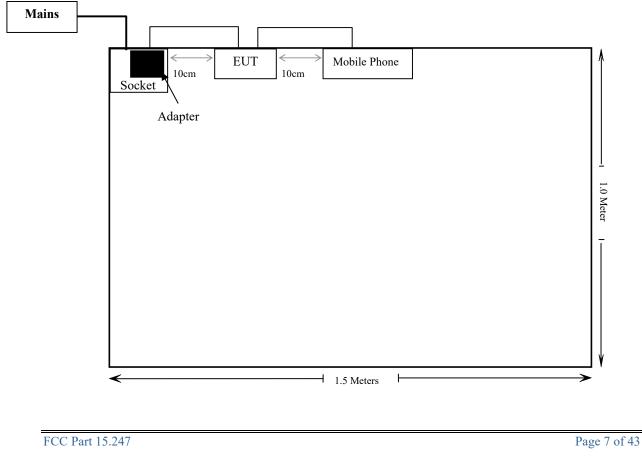
No modification was made to the EUT tested.

#### **EUT Exercise Software**

"FCC\_assist\_1.0.2.2"\* software was use to the EUT tested and power level is default\*. The software and power level was provided by the applicant.

#### **Duty cycle**

### **Support Equipment List and Details**


| Manufacturer | Description  | Model              | Serial Number   |
|--------------|--------------|--------------------|-----------------|
| BULL         | Socket       | GN-212             | A37209315081183 |
| BLU          | Adapter      | TPA-<br>46050200UU | US-WT-2000      |
| Huawei       | Mobile Phone | BAC-AL00           | BAC-AL00        |

### External I/O Cable

| Cable Description                 | Length (m) | From Port    | То    |
|-----------------------------------|------------|--------------|-------|
| Unshielded un-detachable AC cable | 1.2        | Socket       | mains |
| UnShielded detachable USB cable   | 0.2        | Adapter      | EUT   |
| UnShielded detachable USB cable   | 1.0        | Mobile Phone | EUT   |

### **Block Diagram of Test Setup**

For AC Line conducted emission:



Report No.: SZ3210121-02703E-00B

### For radiated emission:

|                                                      | EUT          | 1.0 Meter    |
|------------------------------------------------------|--------------|--------------|
| Non-Conductive Table<br>80/150 cm above Ground Plane |              |              |
|                                                      | 1.5 Meters > | $\checkmark$ |

### SUMMARY OF TEST RESULTS

| FCC Rules                                | Description of Test                      | Result     |  |
|------------------------------------------|------------------------------------------|------------|--|
| §15.247 (i), §1.1307 (b) (1)&<br>§2.1093 | RF Exposure                              | Compliance |  |
| §15.203                                  | Antenna Requirement                      | Compliance |  |
| §15.207 (a)                              | AC Line Conducted Emissions              | Compliance |  |
| §15.205, §15.209,<br>§15.247(d)          | Spurious Emissions                       | Compliance |  |
| §15.247 (a)(2)                           | 6 dB Emission Bandwidth                  | Compliance |  |
| §15.247(b)(3)                            | Maximum Conducted Output Power           | Compliance |  |
| §15.247(d)                               | 100 kHz Bandwidth of Frequency Band Edge | Compliance |  |
| §15.247(e)                               | Power Spectral Density                   | Compliance |  |

Note: the left earbud and right erabud are electric identical, the left earbud was selected to test.

### **TEST EQUIPMENT LIST**

| Manufacturer             | Description                     | Model                           | Serial<br>Number           | Calibration<br>Date | Calibration<br>Due Date |  |
|--------------------------|---------------------------------|---------------------------------|----------------------------|---------------------|-------------------------|--|
| Conducted Emissions Test |                                 |                                 |                            |                     |                         |  |
| Rohde & Schwarz          | EMI Test Receiver               | ESCI                            | 101120                     | 2020/08/04          | 2021/08/03              |  |
| Rohde & Schwarz          | LISN                            | ENV216                          | 101613                     | 2020/08/04          | 2021/08/03              |  |
| Rohde & Schwarz          | Transient Limitor               | ESH3Z2                          | DE25985                    | 2020/11/29          | 2021/11/28              |  |
| Unknown                  | CE Cable                        | CE Cable                        | UF A210B-1-<br>0720-504504 | 2020/11/29          | 2021/11/28              |  |
| Rohde & Schwarz          | CE Test software                | EMC 32                          | V8.53.0                    | NCR                 | NCR                     |  |
|                          | Radia                           | ated Emission T                 | est                        |                     |                         |  |
| R&S                      | EMI Test Receiver               | ESR3                            | 102455                     | 2020/08/04          | 2021/08/03              |  |
| Sonoma instrument        | Pre-amplifier                   | 310 N                           | 186238                     | 2020/08/04          | 2021/08/03              |  |
| Sunol Sciences           | Broadband Antenna               | JB1                             | A040904-2                  | 2020/12/22          | 2023/12/21              |  |
| Unknown                  | Cable 2                         | RF Cable 2                      | F-03-EM197                 | 2020/11/29          | 2021/11/28              |  |
| Unknown                  | Cable                           | Chamber<br>Cable 1              | F-03-EM236                 | 2020/11/29          | 2021/11/28              |  |
| Rohde & Schwarz          | Auto test software              | EMC 32                          | V9.10                      | NCR                 | NCR                     |  |
| Rohde & Schwarz          | Spectrum Analyzer               | FSV40-N                         | 102259                     | 2020/08/04          | 2021/08/03              |  |
| COM-POWER                | Pre-amplifier                   | PA-122                          | 181919                     | 2020/11/29          | 2021/11/28              |  |
| Quinstar                 | Amplifier                       | QLW-<br>18405536-J0             | 15964001002                | 2020/11/29          | 2021/11/28              |  |
| Sunol Sciences           | Horn Antenna                    | DRH-118                         | A052604                    | 2020/12/22          | 2023/12/21              |  |
| Insulted Wire Inc.       | RF Cable                        | SPS-2503-<br>3150               | 02222010                   | 2020/11/29          | 2021/11/28              |  |
| Unknown                  | RF Cable                        | W1101-EQ1<br>OUT                | F-19-EM005                 | 2020/11/29          | 2021/11/28              |  |
| SNSD                     | Band Reject filter              | BSF2402-<br>2480MN-<br>0898-001 | 2.4G filter                | 2020/04/20          | 2021/04/20              |  |
| Ducommun<br>Technolagies | Horn antenna                    | ARH-4223-<br>02                 | 1007726-02<br>1304         | 2020/12/06          | 2023/12/05              |  |
| RF Conducted Test        |                                 |                                 |                            |                     |                         |  |
| Tonscend Corporation     | RF control Unit                 | JS0806-2                        | 19D8060154                 | 2020/08/04          | 2021/08/03              |  |
| Rohde & Schwarz          | Signal and Spectrum<br>Analyzer | FSV40                           | 101473                     | 2020/08/04          | 2021/08/03              |  |
| Unknown                  | RF Cable                        | Unknown                         | 2301 276                   | 2020/11/29          | 2021/11/28              |  |

\* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

### FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

#### **Applicable Standard**

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances  $\leq$  50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

#### **Measurement Result**

For worst case:

| Mode | Frequency<br>(MHz) | Max Tune-up<br>Conducted<br>Power<br>(dBm) | Max Tune-up<br>Conducted<br>Power<br>(mW) | Calculated<br>Distance<br>(mm) | Calculated<br>value | Threshold<br>(1-g SAR) | SAR Test<br>Exclusion |
|------|--------------------|--------------------------------------------|-------------------------------------------|--------------------------------|---------------------|------------------------|-----------------------|
| BLE  | 2480               | -3.0                                       | 0.5                                       | 5                              | 0.2                 | 3.0                    | Yes                   |

**Result: No SAR test is required** 

### FCC §15.203 - ANTENNA REQUIREMENT

#### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

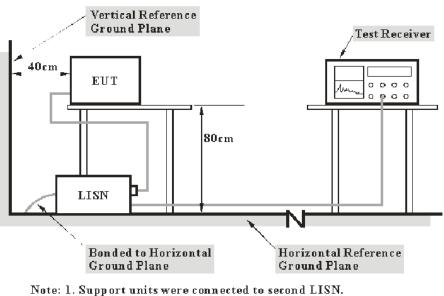
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **Antenna Connector Construction**

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 2.5 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

### FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

#### Applicable Standard

FCC§15.207

### **EUT Setup**



Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

#### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |  |  |  |
|------------------|--------|--|--|--|
| 150 kHz – 30 MHz | 9 kHz  |  |  |  |

#### **Test Procedure**

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

#### **Corrected Factor & Margin Calculation**

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

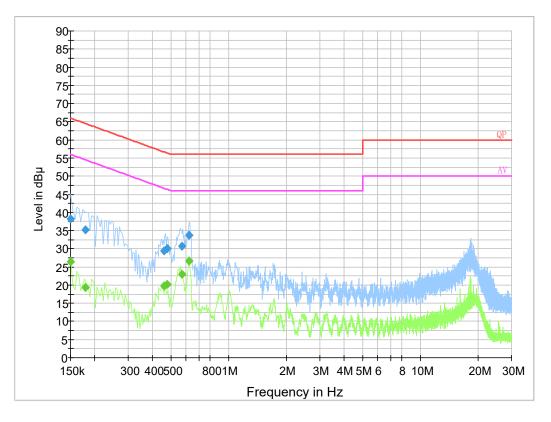
Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

#### **Test Data**

#### **Environmental Conditions**


| Temperature:              | 25 ℃      |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 65 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Haiguo Li on 2021-02-05.

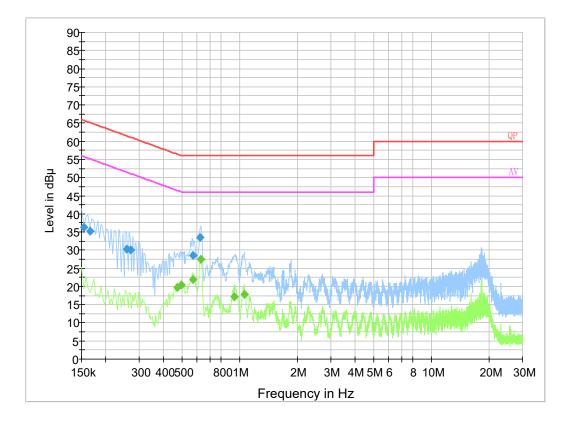
EUT operation mode: Charging

#### Report No.: SZ3210121-02703E-00B

#### AC 120V/60 Hz, Line



### **Final Result 1**


| Frequency<br>(MHz) | QuasiPeak<br>(dB | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB µ V) |
|--------------------|------------------|--------------------|------|---------------|----------------|-------------------|
| 0.150000           | 38.3             | 0.200              | L1   | 19.8          | 27.7           | 66.0              |
| 0.178500           | 35.2             | 9.000              | L1   | 19.9          | 29.4           | 64.6              |
| 0.462950           | 29.3             | 9.000              | L1   | 19.8          | 27.3           | 56.6              |
| 0.478770           | 30.0             | 9.000              | L1   | 19.8          | 26.4           | 56.4              |
| 0.569570           | 30.8             | 9.000              | L1   | 19.8          | 25.2           | 56.0              |
| 0.624550           | 33.7             | 9.000              | L1   | 19.8          | 22.3           | 56.0              |

### **Final Result 2**

| Frequency<br>(MHz) | Average<br>(dB µ V) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB µ V) |
|--------------------|---------------------|--------------------|------|---------------|----------------|-------------------|
| 0.150000           | 26.5                | 9.000              | L1   | 19.8          | 29.5           | 56.0              |
| 0.178500           | 19.3                | 9.000              | L1   | 19.9          | 35.3           | 54.6              |
| 0.462950           | 19.8                | 9.000              | L1   | 19.8          | 26.8           | 46.6              |
| 0.478770           | 20.2                | 9.000              | L1   | 19.8          | 26.2           | 46.4              |
| 0.569570           | 23.0                | 9.000              | L1   | 19.8          | 23.0           | 46.0              |
| 0.624550           | 26.6                | 9.000              | L1   | 19.8          | 19.4           | 46.0              |

#### Report No.: SZ3210121-02703E-00B

#### AC 120V/60 Hz, Neutral:

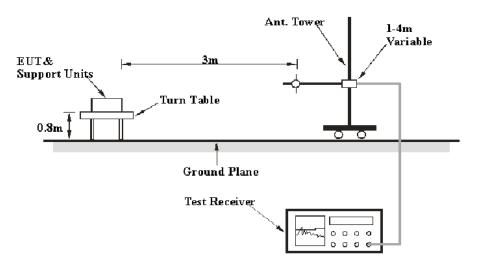


### **Final Result 1**

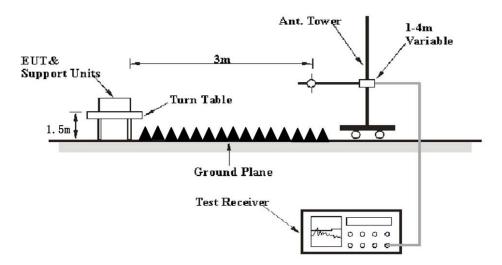
| Frequency<br>(MHz) | QuasiPeak<br>(dB | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB µ V) |
|--------------------|------------------|--------------------|------|---------------|----------------|-------------------|
| 0.154500           | 36.3             | 9.000              | Ν    | 19.8          | 29.5           | 65.8              |
| 0.165500           | 35.3             | 9.000              | Ν    | 19.8          | 29.9           | 65.2              |
| 0.258500           | 30.2             | 9.000              | N    | 19.8          | 31.3           | 61.5              |
| 0.270500           | 30.0             | 9.000              | Ν    | 19.7          | 31.1           | 61.1              |
| 0.569510           | 28.5             | 9.000              | Ν    | 19.8          | 27.5           | 56.0              |
| 0.624550           | 33.5             | 9.000              | Ν    | 19.8          | 22.5           | 56.0              |

### **Final Result 2**

| Frequency<br>(MHz) | Average<br>(dB µ V) | Bandwidth<br>(kHz) | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dB µ V) |
|--------------------|---------------------|--------------------|------|---------------|----------------|-------------------|
| 0.474000           | 19.8                | 9.000              | N    | 19.8          | 26.6           | 46.4              |
| 0.498000           | 20.3                | 9.000              | N    | 19.8          | 25.7           | 46.0              |
| 0.570000           | 22.0                | 9.000              | N    | 19.8          | 24.0           | 46.0              |
| 0.630000           | 27.5                | 9.000              | N    | 19.8          | 18.5           | 46.0              |
| 0.938000           | 17.1                | 9.000              | N    | 19.8          | 28.9           | 46.0              |
| 1.062000           | 17.8                | 9.000              | Ν    | 19.8          | 28.2           | 46.0              |


### FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

#### Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

### **EUT Setup**

Below 1 GHz:



#### Above 1GHz:



The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

#### EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W               | IF B/W  | Measurement |
|-------------------|---------|-------------------------|---------|-------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz                 | 120 kHz | QP          |
|                   | 1MHz    | 3 MHz                   | /       | РК          |
| Above 1 GHz       | 1MHz    | 10 Hz <sup>Note 1</sup> | /       | Average     |
|                   | 1MHz    | $> 1/T^{Note 2}$        | /       | Average     |

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

#### **Corrected Amplitude & Margin Calculation**

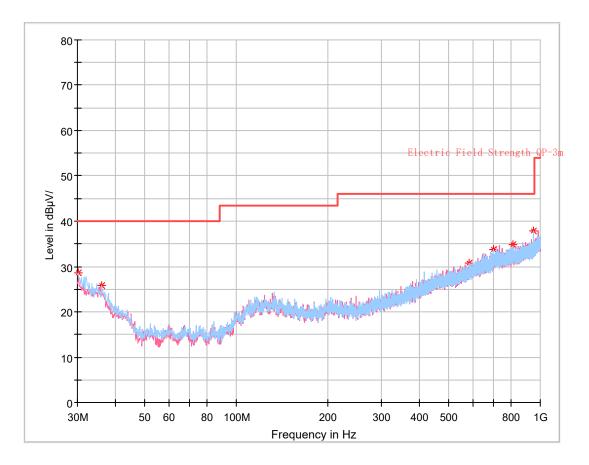
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

#### **Test Data**


#### **Environmental Conditions**

| Temperature:       | 20.8~23 ℃       |
|--------------------|-----------------|
| Relative Humidity: | 41~55 %         |
| ATM Pressure:      | 101.0~101.1 kPa |

*The testing was performed by Kilroy Deng on 2021-02-19 for below 1GHz and Troy Wang on 2021-02-05 for above 1GHz.* 

EUT operation mode: Transmitting

#### 30 MHz~1 GHz (BLE 1M mode, low channel is worst case):



### **Critical\_Freqs**

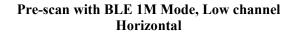
| Frequency<br>(MHz) | MaxPeak<br>(dB µ V/m) | Limit<br>(dB µ V/m) | Margin<br>(dB) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|---------------------|----------------|----------------|-----|------------------|---------------|
| 30.121250          | 28.61                 | 40.00               | 11.39          | 200.0          | Н   | 15.0             | 2.4           |
| 36.062500          | 25.85                 | 40.00               | 14.15          | 200.0          | Н   | 0.0              | -2.0          |
| 584.355000         | 30.82                 | 46.00               | 15.18          | 100.0          | Н   | 0.0              | 2.5           |
| 704.028750         | 33.77                 | 46.00               | 12.23          | 100.0          | Н   | 212.0            | 4.6           |
| 814.123750         | 34.76                 | 46.00               | 11.24          | 200.0          | V   | 202.0            | 5.7           |
| 947.620000         | 37.77                 | 46.00               | 8.23           | 100.0          | Н   | 232.0            | 7.6           |

### 1 GHz-25 GHz (BLE 1M):

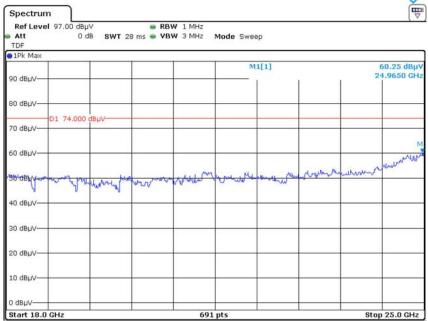
| Frequency | Re                     | eceiver    | Turntable | Rx An         | tenna          | Corrected        | Corrected             | Limit    | Margin |  |  |
|-----------|------------------------|------------|-----------|---------------|----------------|------------------|-----------------------|----------|--------|--|--|
| (MHz)     | Reading<br>(dBµV)      | PK/QP/Ave. | Degree    | Height<br>(m) | Polar<br>(H/V) | Factor<br>(dB/m) | Amplitude<br>(dBµV/m) | (dBµV/m) | (dB)   |  |  |
|           | Low Channel (2402 MHz) |            |           |               |                |                  |                       |          |        |  |  |
| 2348.65   | 29.35                  | РК         | 164       | 1.4           | V              | 31.64            | 60.99                 | 74       | 13.01  |  |  |
| 2348.65   | 17.42                  | Ave.       | 164       | 1.4           | V              | 31.64            | 49.06                 | 54       | 4.94   |  |  |
| 2484.51   | 29.59                  | PK         | 295       | 1.6           | V              | 32.13            | 61.72                 | 74       | 12.28  |  |  |
| 2484.51   | 17.72                  | Ave.       | 295       | 1.6           | V              | 32.13            | 49.85                 | 54       | 4.15   |  |  |
| 4804.00   | 48.17                  | PK         | 267       | 1.7           | V              | 6.28             | 54.45                 | 74       | 19.55  |  |  |
| 4804.00   | 41.39                  | Ave.       | 267       | 1.7           | V              | 6.28             | 47.67                 | 54       | 6.33   |  |  |
|           |                        |            | Middle C  | hannel (      | (2440 M        | fHz)             |                       |          | _      |  |  |
| 4880.00   | 47.31                  | РК         | 167       | 1.8           | V              | 6.76             | 54.07                 | 74       | 19.93  |  |  |
| 4880.00   | 39.86                  | Ave.       | 167       | 1.8           | V              | 6.76             | 46.62                 | 54       | 7.38   |  |  |
|           |                        |            | High Cł   | nannel (2     | 2480 MI        | Hz)              |                       |          |        |  |  |
| 2347.34   | 29.25                  | РК         | 240       | 1.1           | V              | 31.64            | 60.89                 | 74       | 13.11  |  |  |
| 2347.34   | 17.33                  | Ave.       | 240       | 1.1           | V              | 31.64            | 48.97                 | 54       | 5.03   |  |  |
| 2483.75   | 34.58                  | РК         | 2         | 2.1           | V              | 32.13            | 66.71                 | 74       | 7.29   |  |  |
| 2483.75   | 18.23                  | Ave.       | 2         | 2.1           | V              | 32.13            | 50.36                 | 54       | 3.64   |  |  |
| 4960.00   | 47.37                  | РК         | 333       | 2.0           | V              | 6.80             | 54.17                 | 74       | 19.83  |  |  |
| 4960.00   | 40.39                  | Ave.       | 333       | 2.0           | V              | 6.80             | 47.19                 | 54       | 6.81   |  |  |

#### 1 GHz-25 GHz (BLE 2M):

| Frequency              | Re                | eceiver    | Turntable | Rx An         | tenna          | Corrected        | Corrected             | Limit    | Margin |  |
|------------------------|-------------------|------------|-----------|---------------|----------------|------------------|-----------------------|----------|--------|--|
| (MHz)                  | Reading<br>(dBµV) | PK/QP/Ave. | Degree    | Height<br>(m) | Polar<br>(H/V) | Factor<br>(dB/m) | Amplitude<br>(dBµV/m) | (dBµV/m) | (dB)   |  |
| Low Channel (2402 MHz) |                   |            |           |               |                |                  |                       |          |        |  |
| 2367.71                | 29.12             | РК         | 263       | 1.7           | V              | 31.87            | 60.99                 | 74       | 13.01  |  |
| 2367.71                | 18.82             | Ave.       | 263       | 1.7           | V              | 31.87            | 50.69                 | 54       | 3.31   |  |
| 2483.95                | 29.30             | PK         | 116       | 1.5           | V              | 32.13            | 61.43                 | 74       | 12.57  |  |
| 2483.95                | 18.76             | AV         | 116       | 1.5           | V              | 32.13            | 50.89                 | 54       | 3.11   |  |
| 4804.00                | 47.25             | PK         | 257       | 1.4           | V              | 6.28             | 53.53                 | 74       | 20.47  |  |
| 4804.00                | 40.15             | Ave.       | 257       | 1.4           | V              | 6.28             | 46.43                 | 54       | 7.57   |  |
|                        |                   | _          | Middle C  | hannel (      | (2440 M        | fHz)             |                       |          | _      |  |
| 4880.00                | 45.01             | РК         | 111       | 2.0           | V              | 6.76             | 51.77                 | 74       | 22.23  |  |
| 4880.00                | 31.95             | Ave.       | 111       | 2.0           | V              | 6.76             | 38.71                 | 54       | 15.29  |  |
|                        |                   |            | High Ch   | annel (2      | 2480 MI        | Hz)              |                       |          |        |  |
| 2361.48                | 29.10             | РК         | 302       | 1.2           | V              | 31.87            | 60.97                 | 74       | 13.03  |  |
| 2361.48                | 18.76             | Ave.       | 302       | 1.2           | V              | 31.87            | 50.63                 | 54       | 3.37   |  |
| 2484.31                | 29.42             | РК         | 200       | 2.4           | V              | 32.13            | 61.55                 | 74       | 12.45  |  |
| 2484.31                | 18.82             | AV         | 200       | 2.4           | V              | 32.13            | 50.95                 | 54       | 3.05   |  |
| 4960.00                | 47.18             | РК         | 300       | 1.3           | V              | 6.80             | 53.98                 | 74       | 20.02  |  |
| 4960.00                | 39.26             | Ave.       | 300       | 1.3           | V              | 6.80             | 46.06                 | 54       | 7.94   |  |

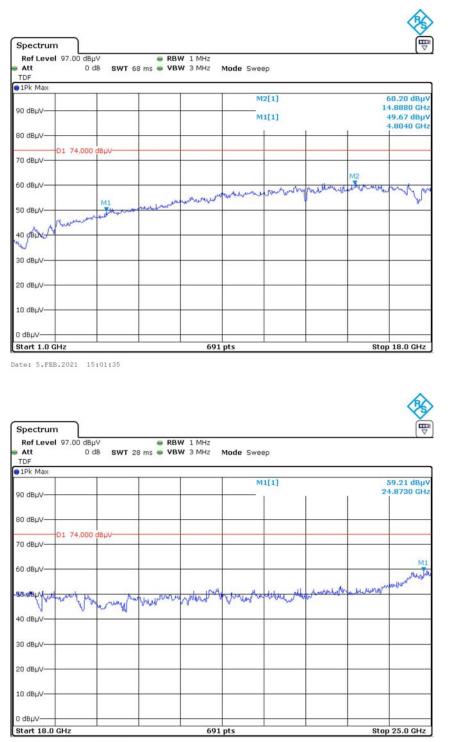

#### Note:

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

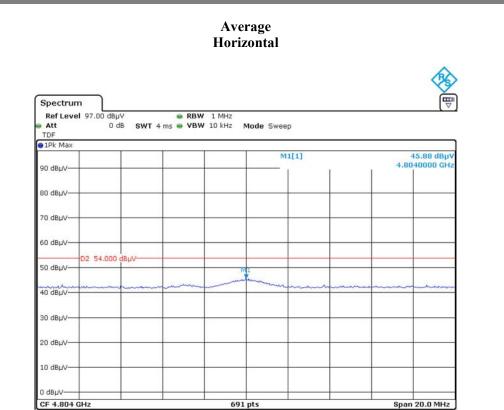

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

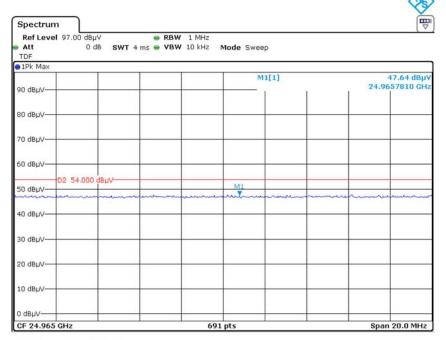
The other spurious emission which is 20dB to the limit was not recorded.



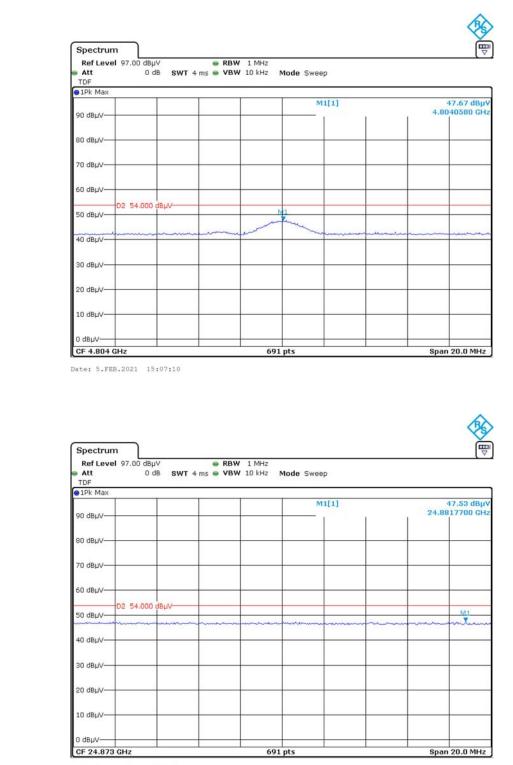



Date: 5.FEB.2021 15:50:38







Date: 5.FEB.2021 15:59:54



Date: 5.FEB.2021 15:17:37

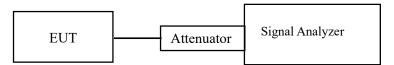


Date: 5.FEB.2021 15:55:24



Vertical

Date: 5.FEB.2021 16:05:25


### FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

#### **Applicable Standard**

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.



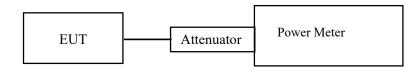
#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 24 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 56 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Bravos Zhao on 2021-02-06.

EUT operation mode: Transmitting


### FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

#### **Applicable Standard**

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

#### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 24 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 56 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Bravos Zhao on 2021-02-06.

EUT operation mode: Transmitting

### FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

#### **Applicable Standard**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.



### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 24 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 56 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Bravos Zhao on 2021-02-06.

EUT operation mode: Transmitting

### FCC §15.247(e) - POWER SPECTRAL DENSITY

#### **Applicable Standard**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

#### **Test Procedure**

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to:  $3kHz \le RBW \le 100 kHz$ .
- 3. Set the VBW  $\geq 3 \times RBW$ .
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

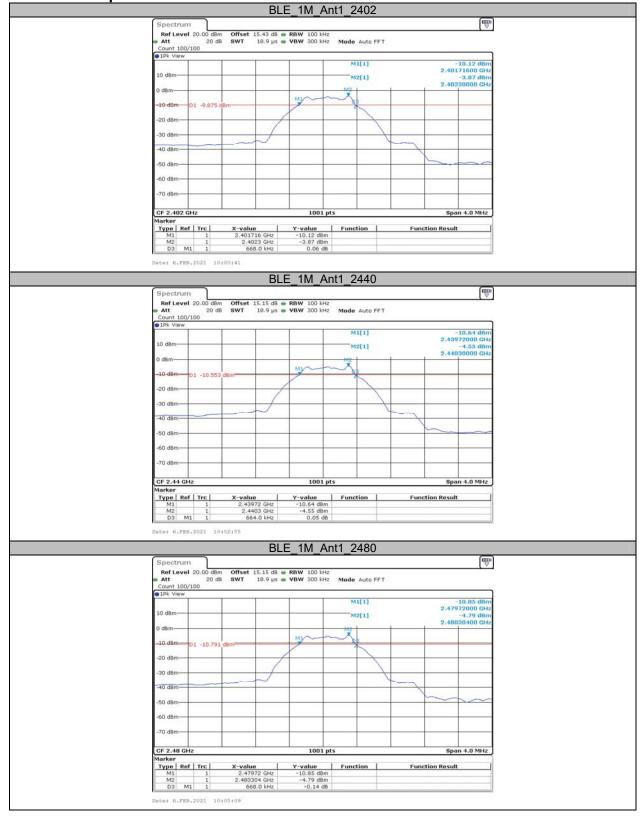


#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 24 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 56 %      |
| ATM Pressure:             | 101.0 kPa |

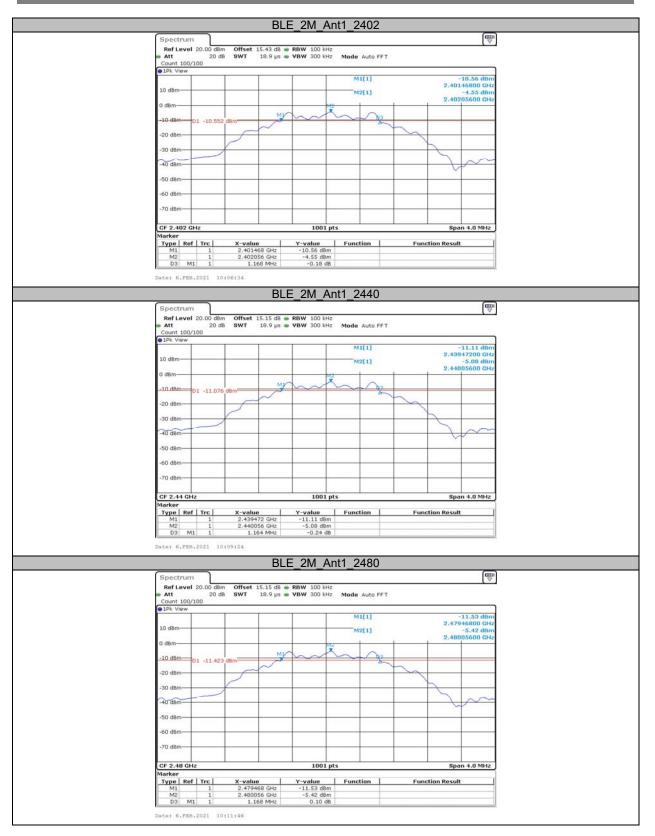
The testing was performed by Bravos Zhao on 2021-02-06.


EUT operation mode: Transmitting

### **APPENDIX BLE**

# Appendix A: DTS Bandwidth Test Result

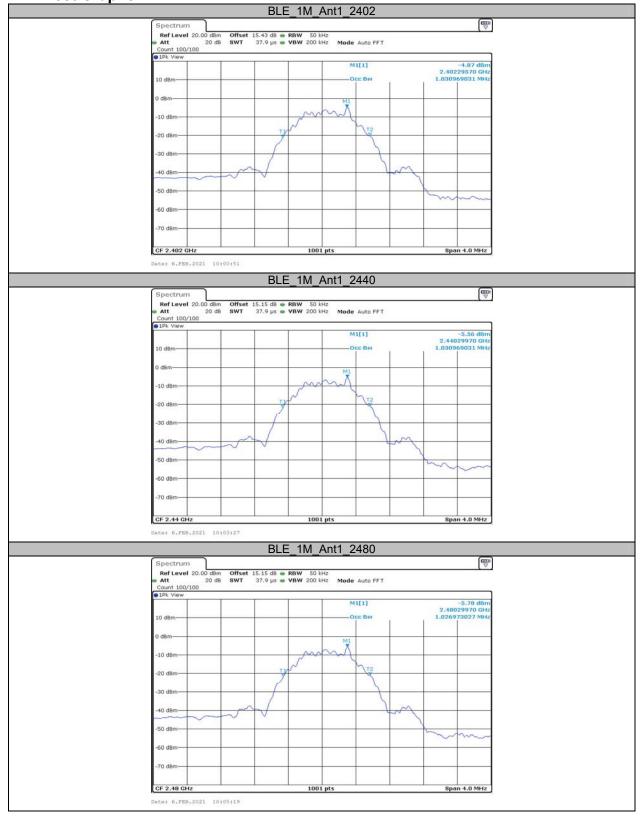
| TestMode | Antenna | Channel | DTS BW [MHz] | Limit[MHz] | Verdict |
|----------|---------|---------|--------------|------------|---------|
|          |         | 2402    | 0.668        | 0.5        | PASS    |
| BLE_1M   | Ant1    | 2440    | 0.664        | 0.5        | PASS    |
|          |         | 2480    | 0.668        | 0.5        | PASS    |
|          |         | 2402    | 1.168        | 0.5        | PASS    |
| BLE_2M   | Ant1    | 2440    | 1.164        | 0.5        | PASS    |
|          |         | 2480    | 1.168        | 0.5        | PASS    |


### **Test Graphs**



FCC Part 15.247

Page 31 of 43


#### Report No.: SZ3210121-02703E-00B



### Appendix B: Occupied Channel Bandwidth Test Result

| TestMode | Antenna | Channel | OCB [MHz] | Limit[MHz] | Verdict |
|----------|---------|---------|-----------|------------|---------|
|          |         | 2402    | 1.031     |            | PASS    |
| BLE_1M   | Ant1    | 2440    | 1.031     |            | PASS    |
|          |         | 2480    | 1.027     |            | PASS    |
|          |         | 2402    | 2.042     |            | PASS    |
| BLE_2M   | Ant1    | 2440    | 2.046     |            | PASS    |
|          |         | 2480    | 2.046     |            | PASS    |

### **Test Graphs**



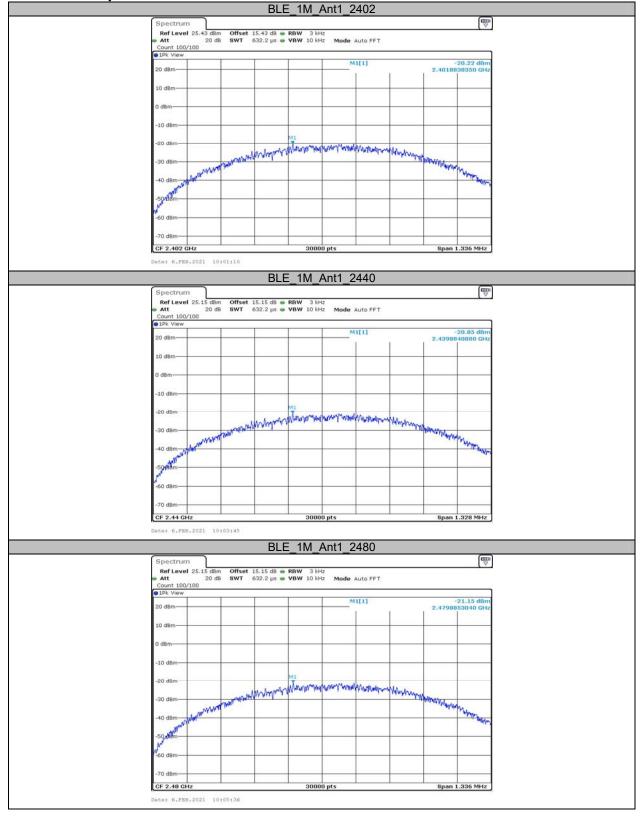
FCC Part 15.247

Page 34 of 43

#### Report No.: SZ3210121-02703E-00B



### Appendix C: Maximum conducted Peak output power Test Result

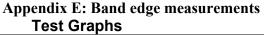

| TestMode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|---------|-------------|------------|---------|
|          |         | 2402    | -3.36       | <=30       | PASS    |
| BLE_1M   | Ant1    | 2440    | -3.53       | <=30       | PASS    |
|          |         | 2480    | -3.87       | <=30       | PASS    |
|          |         | 2402    | -3.36       | <=30       | PASS    |
| BLE_2M   | Ant1    | 2440    | -3.53       | <=30       | PASS    |
|          |         | 2480    | -3.69       | <=30       | PASS    |

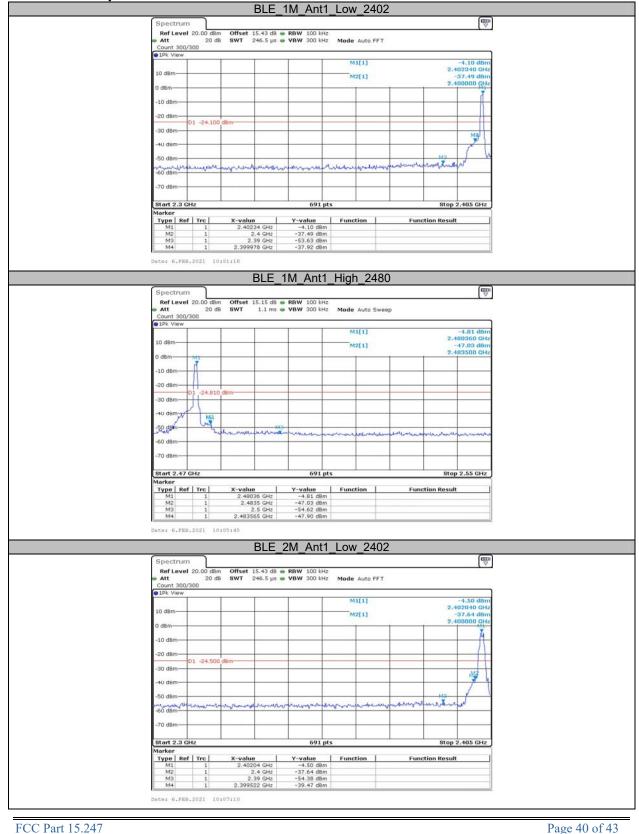
### Appendix D: Maximum power spectral density Test Result

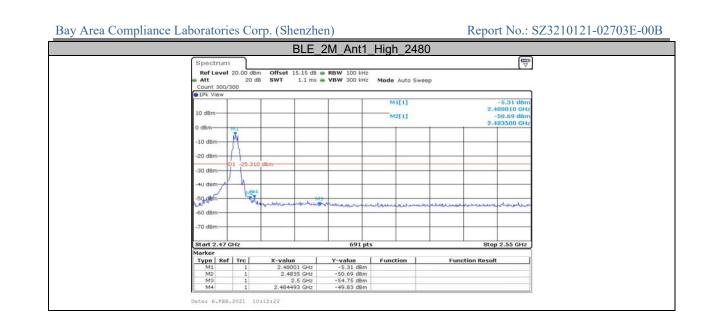
| TestMode | Antenna | Channel | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|----------|---------|---------|------------------|-----------------|---------|
|          |         | 2402    | -20.22           | <=8             | PASS    |
| BLE_1M   | Ant1    | 2440    | -20.85           | <=8             | PASS    |
|          |         | 2480    | -21.15           | <=8             | PASS    |
|          |         | 2402    | -23.13           | <=8             | PASS    |
| BLE_2M   | Ant1    | 2440    | -23.67           | <=8             | PASS    |
|          |         | 2480    | -24.02           | <=8             | PASS    |

#### Report No.: SZ3210121-02703E-00B


### **Test Graphs**





FCC Part 15.247


Page 38 of 43

#### Report No.: SZ3210121-02703E-00B









### Appendix F: Duty Cycle Test Result

| TestMode | Antenna | Channel | Transmission<br>Duration [ms] | Transmission<br>Period [ms] | Duty Cycle [%] |
|----------|---------|---------|-------------------------------|-----------------------------|----------------|
| BLE_1M   | Ant1    | 2440    | 2.12                          | 2.50                        | 84.80          |
| BLE_2M   | Ant1    | 2440    | 1.07                          | 2.50                        | 42.80          |

FCC Part 15.247

Page 42 of 43

### **Test Graphs**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | E 1M Ant1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2440     |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        |                                                    |
| Ref Level 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 dBm Offset 15.15 dB | BBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | $\nabla$                                           |
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | <ul> <li>KBW 10 MHz</li> <li>VBW 10 MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                    |
| SGL TRG: VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | e contrato contratorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                    |
| • 1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11[1]    | -8.13 dBm<br>0.00000000 s                          |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1[1]     | 0.00000000 s<br>3.83 dB                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 2.12000 ms                                         |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -10.100 dBm            | A CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                    |
| -10 dom 11kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,100 000             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| ~30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| 40 dem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | whensey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L        | Line,                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +        | + +                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| 70 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| CF 2.44 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 500.0 µs/                                          |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 500.0 µs/                                          |
| Type   Ref   Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c X-value              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ction Fi | unction Result                                     |
| M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0.0 s                | -8.13 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2.12 ms<br>1 2.5 ms  | 3.83 dB<br>0.58 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                    |
| UZ MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5 ms                 | 0.00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                    |
| Date: 6.FEB.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 10:02:46             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P.D. 44880.007483.04   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BL                     | E_2M_Ant1_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :440     |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | (m)                                                |
| Spectrum<br>Ref Level 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 dBm Offset 15 15 db  | RBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                    |
| Spectrum<br>Ref Level 20.0<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | <ul> <li>RBW 10 MHz</li> <li>VBW 10 MHz</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                    |
| Ref Level 20.0<br>Att<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                    |
| Ref Level 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | ■ VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                    |
| Ref Level 20.0<br>Att<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | ■ VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11[1]    | -4.19 dBm                                          |
| Ref Level 20.0<br>Att<br>SGL TRG:VID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | • VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -4.19 dBm<br>0.00000000 s                          |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>1Pk Clrw<br>10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | • VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11[1]    | -4.19 dBm                                          |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>1Pk Cinw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | • VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>PIPk Cinw<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 dB • SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>1Pk Cirw<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 dB • SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>1Pk Cirw<br>10 dBm<br>0 cBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 dB • SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0           Att           SGL TRG: VID           IPR Cinw           10 dBm           0 ctem           -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 dB • SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0           Att           SGL TRG: VID           IPK Cirw           10 dBm           0 dBm           10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 dB • SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.0           Att           SGL TRG: VID           ID dBm           0 dBm           -20 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6           Att           SGL TRG: VID           1Pk Clrw           10 dBm           0 dBm           -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4,19 dBm<br>0.00000000 s<br>0.02 dB               |
| Ref Level 20.6           Att           ScL TRG: VID           1 Dk Cirw           1 D dBm           0 CEn           -10 dBm           -20 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6<br>Att<br>SGL TRG:VID<br>1Pk CIrw<br>10 dBm<br>0 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6<br>Att<br>SGL TRG:VID<br>IPK CIrw<br>10 dBm<br>0 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6           Att           SGL TRG:VID           ● 1Pk CInw           10 dBm           0 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6           Att           SGL TRG: VID           ID dBm           0 dBm           -20 dBm           -30 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.0<br>Att<br>SGL TRG: VID<br>SGL TRG: VID<br>TRG: VID<br>D dBm<br>-20 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | 4.19 dBm<br>0.00000000 s<br>0.02 db<br>1.06500 ms  |
| Ref Level 20.0           Att           Sol. TRG: VID           ID dBm           10 dBm           0 cBm           -20 dBm           -30 dBm           -60 dBm           -70 dBm           -70 dBm           -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 dB   SWT 5 ms       | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pa[1]    | -4.19 dBm<br>0.00000000 s<br>0.02 dB<br>1.00500 ms |
| Ref Level 20.6           Att           SGL TRG:VID           I D4 Bm           10 dBm           0 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           -60 dBm           -70 dBm           -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 dB   SWT  5 ms      | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 4.19 dBm<br>0.000000005<br>0.02 dB<br>1.00500 ms   |
| Ref Level 20.6           Att           SGL TRG:VID           ID dBm           10 dBm           0 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm           CF 2.44 GHz           Narker           Type   Ref   Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 dB • SWT 5 ms -     | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 4.19 dBm<br>0.00000000 s<br>0.02 db<br>1.06500 ms  |
| Ref Level 20.6         Att         SGL TRG: VID         ID dBm         0 dBm         -20 dBm         -30 dBm         -30 dBm         -50 dBm         -50 dBm         -60 dBm         -70 dBm         -70 dBm         -80 dBm         -80 dBm         -80 dBm         -80 dBm         -70 dBm | 20 dB                  | VBW 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 4.19 dBm<br>0.000000005<br>0.02 dB<br>1.00500 ms   |
| Ref Lovel 20.0           Att           SoL TRG: VID           ID dBm           ID dBm           O ctan           -20 dBm           -30 dBm           -60 dBm           -70 dBm           CF 2.44 GHz           Marker           Yype         Ref           Marker           Yype         Ref           ID IM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 dB                  | VBW 10 MHz      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N |          | 4.19 dBm<br>0.000000005<br>0.02 dB<br>1.00500 ms   |
| Ref Level 20.6           Att           SGL TRG:VID           ID dBm           10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 dB                  | VBW 10 MHz      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N      N |          | 4.19 dBm<br>0.000000005<br>0.02 dB<br>1.00500 ms   |

### \*\*\*\*\* END OF REPORT \*\*\*\*\*