RF Exposure Evaluation

According to *KDB* 447498 *D01 General RF Exposure Guidance v06* and part 2.1093, Unless specifically required by the *published RF exposure KDB procedures*, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding *SAR Test Exclusion Threshold* condition(s), listed below, is (are) satisfied.

For 100 MHz to 6 GHz and test separation distances \leq 5 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, where

 $f_{(GHz)}$ is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison

Mode	Frequen	Field	Max	Target power	Max tune	Max Power	Min.	Calc.	limit
	су	strength	Power	W/ tolerance	up power	(mW)	Distance	thresholds	
	(MHz)	(dBuV/m)	(dBm)	(dBm)	tolerance		(mm)		
					(dBm)				
GFSK	2420	85.96	-9.24	-10±1.0	-9	0.126	5.00	0.039	3.0
	2440	85.33	-9.87	-10±1.0	-9	0.126	5.00	0.039	3.0
	2460	83.68	-11.52	-12±1.0	-11	0.079	5.00	0.025	3.0

Here,

Remark:

 $1.EIRP=E_{meas}+20Log(d_{meas})-104.7$

EIRP is the equivalent isotropically radiated power, in dBm

 E_{meas} is the field strength of the emission at the measurement distance, in dBuV/m

 d_{meas} is the measurement distance. in m

So a SAR test is not required