

FCC TEST REPORT

(Part 15, Subpart C)

Applicant:	Waltero AB
Address:	Nytänkargatan 4

Manufacturer or Supplier:	Waltero AB	
Address:	Nytänkargatan 4	
Product:	W-Sensor	
Brand Name:	Waltero	
Model Name:	W-Sensor LTE	
FCC ID:	2BNXWWS-001	
Date of tests:	Dec. 27, 2024 ~ Mar. 04, 2025	
The tests have been carried out according to the requirements of the following standard:		

FCC Part 15, Subpart C, Section 15.247

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Hanwen Xu Engineer / Mobile Department

Approved by Peibo Sun Manager / Mobile Department

annen

Date: Mar. 04, 2025

Date: Mar. 04, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cops/about-us/hems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or CHaracteristics of the lot from whiCH a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement oncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into sortewith report to notify us of any material error or omission caused by our negligence or if you require measurement uncertaint with a test shall be in writing and shall specifically gaddress the issue you wish to raise. A failure to raise uch issue CH issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify upont cause to notify upont equest of the set. The constitute your unqualified acceptance of the completeness of this report to notify upont cause and the correctness of the report contents.

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Test Report No.: PSZ-QSU2412270112RF05 TABLE OF CONTENTS

RELI	EASE C	ONTROL RECORD.		5
1.	SUMM	ARY OF TEST RESU	ILTS	6
1.1	MEAS	SUREMENT UNCER	TAINTY	7
2	GENE	RAL INFORMATION.		
2.1	GENE	ERAL DESCRIPTION	OF EUT	
2.2	DESC	CRIPTION OF TEST I	MODES	
	2.2.1	CONFIGURATION	OF SYSTEM UNDER TEST	11
	2.2.2	TEST MODE APPL	ICABILITY AND TESTED CHANNEL DETAIL	11
2.3	DUTY	CYCLE OF TEST S	IGNAL	
2.4	GENE	ERAL DESCRIPTION	I OF APPLIED STANDARDS	
2.5	DESC	RIPTION OF SUPPO	ORT UNITS	
3	TEST	TYPES AND RESULT	⁻ S	
3.1	CONI	DUCTED EMISSION	MEASUREMENT	
	3.1.1	LIMITS OF CONDU	CTED EMISSION MEASUREMENT	
	3.1.2	TEST INSTRUMEN	TS	
	3.1.3	TEST PROCEDUR	ES	
	3.1.4	DEVIATION FROM	TEST STANDARD	
	3.1.5	TEST SETUP		
	3.1.6	EUT OPERATING (CONDITIONS	
	3.1.7	TEST RESULTS		
3.1	RADI	ATED EMISSION ME	ASUREMENT	21
	3.2.1	LIMITS OF RADIAT	ED EMISSION MEASUREMENT	21
	3.2.2	TEST INSTRUMEN	TS	
	3.2.3	TEST PROCEDUR	ES	24
	3.2.4	DEVIATION FROM	TEST STANDARD	24
	3.2.5	TEST SETUP		
	3.2.6	EUT OPERATING (CONDITIONS	
	3.2.7	TEST RESULTS		27
3.2	6 DB	BANDWIDTH MEAS	UREMENT	
	3.3.1	LIMITS OF 6DB BA	NDWIDTH MEASUREMENT	
	3.3.2	TEST INSTRUMEN	TS	
	3.3.3	TEST PROCEDUR	Ε	70
	3.3.4	DEVIATION FROM	TEST STANDARD	71
	3.3.5	TEST SETUP		71
	3.3.6	EUT OPERATING (CONDITIONS	71
	3.3.7	TEST RESULTS		71
3.3	CON	OUCTED OUTPUT P	OWER	72
	iarui 7laye uzhou) Co	ers High TeCHnology o., Ltd.	Tower N, Innovation Center, 88 Zuyi Road, High- teCH District, Suzhou City, Anhui Province	Tel: +86 (0557) 368 1008

	3.4.1	LIMITS OF CONDU	CTED OUTPUT POWER MEASUREMENT .		
	3.4.2	TEST SETUP	EST SETUP		
	3.4.3	TEST INSTRUMEN	TS		
	3.4.4	TEST PROCEDUR	ES		
	3.4.5	DEVIATION FROM	TEST STANDARD		
	3.4.6	EUT OPERATING C	CONDITIONS		
	3.4.7	TEST RESULTS			
	3.4.7.1	MAXIMUM PEAK	COUTPUT POWER		
	3.4.7.2	AVERAGE OUTF	PUT POWER (FOR REFERENCE)		
3.4	POW	ER SPECTRAL DEN	SITY MEASUREMENT	74	
	3.4.1	LIMITS OF POWER	SPECTRAL DENSITY MEASUREMENT	74	
	3.4.2	TEST SETUP		74	
	3.4.3	TEST INSTRUMEN	TS	74	
	3.4.4	TEST PROCEDURI	Ξ	74	
	3.4.5	DEVIATION FROM	TEST STANDARD	74	
	3.4.6	EUT OPERATING C	CONDITION	74	
	3.4.7	TEST RESULTS		74	
3.5	OUT	OF BAND EMISSION	MEASUREMENT		
	3.6.1	LIMITS OF OUT OF	BAND EMISSION MEASUREMENT		
	3.6.2	TEST SETUP			
	3.6.3	TEST INSTRUMEN	TS		
	3.6.4	TEST PROCEDUR	≣		
	3.6.5	DEVIATION FROM	TEST STANDARD		
	3.6.6	EUT OPERATING C	CONDITION		
	3.6.7	TEST RESULTS			
3.6	ANTE	NNA REQUIREMEN	TS	77	
	3.6.1	STANDARD APPLIC	CABLE		
	3.6.2	ANTENNA CONNE	CTED CONSTRUCTION	77	
	3.6.3	ANTENNA GAIN			
4	PHOTO	GRAPHS OF THE T	EST CONFIGURATION		
5	MODIF	ICATIONS RECORD	ERS FOR ENGINEERING CHANGES TO TH	IE EUT BY THE LAB 79	
6	APPEN	DIX: WLAN			
DTS					
	TEST F	RESULT			
	TEST G	BRAPHS			
00	CUPIED	CHANNEL BANDW	IDTH		
	TEST G	GRAPHS			
	iarui 7laye uzhou) Co	rs High TeCHnology ., Ltd.	Tower N, Innovation Center, 88 Zuyi Road, High- teCH District, Suzhou City, Anhui Province	Tel: +86 (0557) 368 1008	

MAXIMUM CONDUCTED OUTPUT POWER	94
TEST RESULT PEAK	94
TEST RESULT AVERAGE	95
MAXIMUM POWER SPECTRAL DENSITY	96
TEST RESULT	96
TEST GRAPHS	97
BAND EDGE MEASUREMENTS	103
TEST RESULT	103
TEST GRAPHS	104
CONDUCTED SPURIOUS EMISSION	108
TEST RESULT	108
TEST GRAPHS	110
DUTY CYCLE	128
TEST RESULT	128
TEST GRAPHS	129

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSZ-QSU2412270112RF05	Original release	Mar. 04, 2025

1. SUMMARY OF TEST RESULTS

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	TEST LAB*
15.207	AC Power Conducted Emission	Compliance	В
15.205 15.209	Radiated Emissions	Compliance	А
15.247(d)	Out of band Emission Measurement	Compliance	В
15.247(a)(2)	6dB bandwidth	Compliance	В
15.247(b)	Conducted Output power	Compliance	В
15.247(e)	Power Spectral Density	Compliance	В
15.203	Antenna Requirement	Compliance	В

The EUT has been tested according to the following specifications:

Note : Except RSE and AC Power Conducted Emission, other data please refer to Appendix.

*Test Lab Information Reference

Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

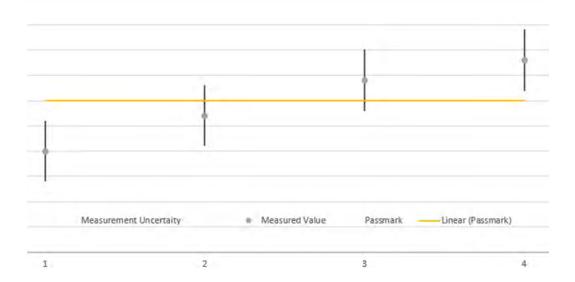
Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Lab B:

BV 7Layers Communications Technology (Shenzhen) Co. Ltd Lab Address: Room B37, Warehouse A5, No.3 Chiwan 4th Road, Zhaoshang Street, Nanshan District Shenzhen, Guangdong, People's Republic of China Accredited Test Lab Cert 3939.01

The FCC Site Registration No. is 525120; The Designation No. is CN1171.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

dict
sed
sed
ed
ed
se

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

Huarui 7layers High TeCHnology	Tower N, Innovation Center, 88 Zuyi Road, High-	Tel: +86 (0557) 368 1008
(Suzhou) Co., Ltd.	teCH District, Suzhou City, Anhui Province	

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	W-Sensor		
BRAND NAME*	Waltero		
MODEL NAME*	W-Sensor LT	E	
NOMINAL VOLTAGE*	5.0Vdc (Adapter) 3.0Vdc (battery)		
MODULATION *	2.4G WIFI	DSSS,OFDM	
	802.11b: 11/5	.5/2.0/1.0 Mbps	
	802.11g: 54/48/36/24/18/9/6 Mbps		
TRANSMISSION RATE*	802.11n(HT20): up to 72.2 Mbps		
	802.11n(HT40): up to 150 Mbps		
OPERATING FREQUENCY	2412-2462MHz for 11b/g/n(HT20/40)		
MAX. OUTPUT POWER	307.61mW (Maximum)		
ANTENNA GAIN*	2.4G WIFI 2.99dBi		
ANTENNA TYPE*	2.4G WIFI	PCB antenna on module	
HW VERSION*	5		
SW VERSION*	1.4.021		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	USB Cable: shielded cable, with ferrite core, 1 meter		

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

3. The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX/1RX
802.11g	1TX/1RX
802.11n(HT20)	1TX/1RX
802.11n(HT40)	1TX/1RX

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

6. List of Accessory:

ACCESSORIES	BRAND	MANUFACTURER	MODEL	SPECIFICATION
Battery 1	GP	Ningbo GP Energy Co., Ltd	GPCR123A	Capacity: 3.0Vdc, 1500mAh
Battery 2	PROCELL	PROCELL	CR123A	Capacity: 3.0Vdc, 1600mAh
Battery 3	Panasonic	Panasonic Corporation	CR123A	N/A
USB Cable	Waltero	Waltero	W-CABLE-01	Signal Line,1.0meter

2.2 DESCRIPTION OF TEST MODES

11 Channels are provided for 802.11b, 802.11g and 802.11n20 (HT20):

802.11b/802.11g/802.11n20 (HT20)					
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY		
1	2412 MHz	7	2442 MHz		
2	2417 MHz	8	2447 MHz		
3	2422 MHz	9	2452 MHz		
4	2427 MHz	10	2457 MHz		
5	2432 MHz	11	2462 MHz		
6	2437 MHz				

802.11n40 (HT40)					
CHANNEL FREQUENCY CHANNEL FREQUENCY					
3	2422 MHz	7	2442 MHz		
4	2427 MHz	8	2447 MHz		
5	2432 MHz	9	2452 MHz		
6	2437 MHz				

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE	
MODE	RE<1G	RE≥1G	PLC	APCM		
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where	RE<1G:	Radiated En	nission below	/ 1GHz	RE≥1G: Radiated Emission above 1GHz	

Where

PLC: Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11 g	1 to 11	6	OFDM	6.0

RADIATED EMISSION TEST (ABOVE 1GHz):

 \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following Channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

POWER LINE CONDUCTED EMISSION TEST

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The following Channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11 g	1 to 11	6	OFDM	6.0

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The following Channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of eaCH mode, but only includes spectrum plot of worst value of eaCH mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The following Channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0

	TEST CONDITION					
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY			
RE<1G	23deg. C, 70%RH	DC 5.0V By Adapter	Hanwen Xu			
RE≥1G	23deg. C, 70%RH	DC 5.0V By Adapter	Hanwen Xu			
PLC	25deg. C, 52%RH	DC 5.0V By Adapter	Carl xie			
АРСМ	25deg. C, 60%RH	DC 3.0V By Battery	James Fu			

2.3 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix Of this test report.

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note :

- 1. All test items have been performed and recorded as per the above standards.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Cable: shielded cable, with ferrite core, 1 meter

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

Lab B:

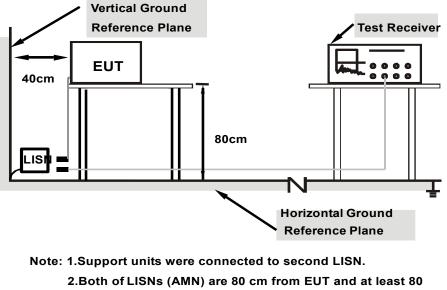
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 13,24	Feb. 12,25
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 12,25	Feb. 11,27
EMI Test Receiver	Rohde&Schwarz	ESR3	101900	Feb. 12,25	Feb. 11,26
EMC32 test software	Rohde&Schwarz	EMC32	NA	NA	NA
LISN network	Rohde&Schwarz	ENV216	101922	Mar. 09,24	Mar. 08,25

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were CHecked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searCHed. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

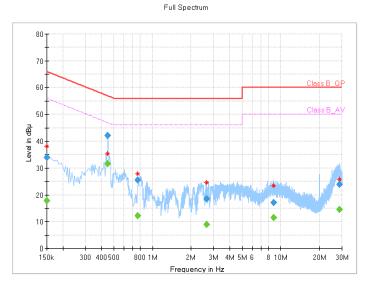
3.1.5 TEST SETUP

from other units and other metal planes

For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.



3.1.7 TEST RESULTS

			CONDUC	TED W	ORS	T-CASE DA	TA		
Frequency Ra	ange	150KH	z ~ 30MHz			ector Funct olution Ba			eak (QP) / (AV), 9 kHz
Input Power	ut Power 120Vac, 60Hz					ironmental ditions		26deg. C	, 51%RH
Tested By		Carl xie	e						
Frequency	Quas	iPeak	CAverage	Lim	it	Margin	Line	Filter	Corr.
(MHz)	(dB	uV)	(dBuV)	(dBu	V)	(dB)	Line	Filler	(dB)
0.150000			17.71	56.0	0	38.29	L1	ON	9.8
0.150000	34	.04		66.0	0	31.96	L1	ON	9.8
0.447000	-		31.53	46.9	3	15.40	L1	ON	9.8
0.447000	42	.20		56.9	3	14.73	L1	ON	9.8
0.767000			12.11	46.0	0	33.89	L1	ON	9.8
0.767000	25	.40		56.0	0	30.60	L1	ON	9.8
2.635000			8.99	46.0	0	37.01	L1	ON	9.9
2.635000	18	.47		56.0	0	37.53	L1	ON	9.9
8.771000	-		11.42	50.0	0	38.58	L1	ON	10.3
8.771000	17	.19		60.0	0	42.81	L1	ON	10.3
28.783000			14.60	50.0	0	35.40	L1	ON	11.3
28.783000	23	.86		60.0	0	36.14	L1	ON	11.3

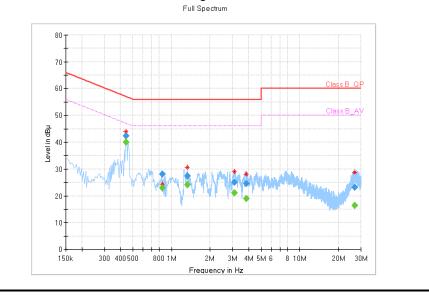
REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, HighteCH District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

Frequency Ra	ange	150KH	lz ~ 30MHz			ector Funct olution Ba			Quasi-Peak (QP) / Average (AV), 9 kHz	
Input Power	nput Power 120Vac, 6		c, 60Hz	, 60Hz Environmental Conditions			26deg. C	, 51%RH		
Tested By		Carl xi	e							
Frequency (MHz)		iPeak uV)	CAverage (dBuV)	Lim (dBu		Margin (dB)	Line	Filter	Corr. (dB)	
0.442000	-		40.03	47.0)2	6.99	Ν	ON	9.6	
0.442000	42	.42		57.02	14.62	Ν	ON	9.6		
0.846000			22.86	46.0	0	23.14	Ν	ON	9.7	
0.846000	27	.95		56.0	0	28.05	Ν	ON	9.7	
1.326000			24.16	46.00		21.84	Ν	ON	9.7	
1.326000	27	.46		56.0	0	28.54	Ν	ON	9.7	
3.090000			21.09	46.0	0	24.91	Ν	ON	9.8	
3.090000	25	.01		56.0	0	30.99	Ν	ON	9.8	
3.810000			18.98	46.0	0	27.02	Ν	ON	9.7	
3.810000	24	.55		56.0	0	31.45	Ν	ON	9.7	
26.766000			16.48	50.0	0	33.52	Ν	ON	11.4	
26.766000	23	.12		60.0	0	36.88	Ν	ON	11.4	


REMARKS:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.

3. The emission levels of other frequencies were very low against the limit.

- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.1 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Lab A

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	ток	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	ТDК	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,25	Aug.20,27
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,23	Aug.21,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,23	Feb.22,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Sep.06,23	Sep.05,25
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	R&S	HF290-NMNM-	N/A	N/A	N/A
AMI18843A(CABLE)		7.00M			
TMC- AMI18843A(CABLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

NOTE:

1. The calibration interval of the above test instruments is 12/24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

Tower N, Innovation Center, 88 Zuyi Road, HighteCH District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

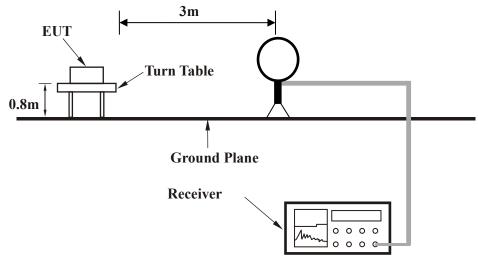
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

3.2.3 TEST PROCEDURES

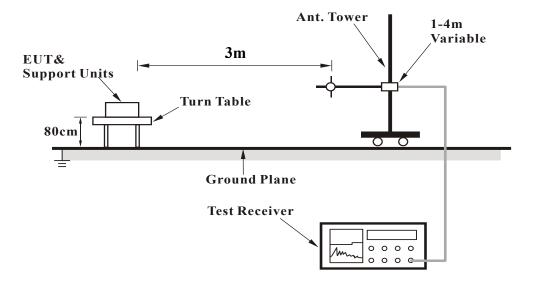
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter CHamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whiCH was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For eaCH suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, eaCH emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

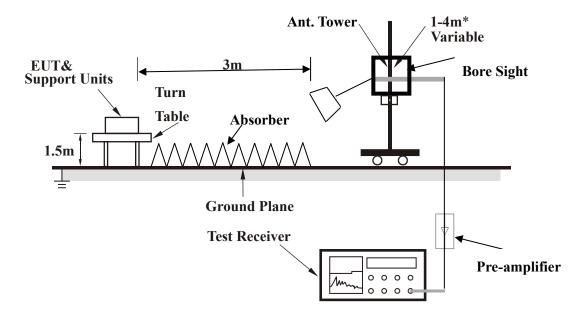

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

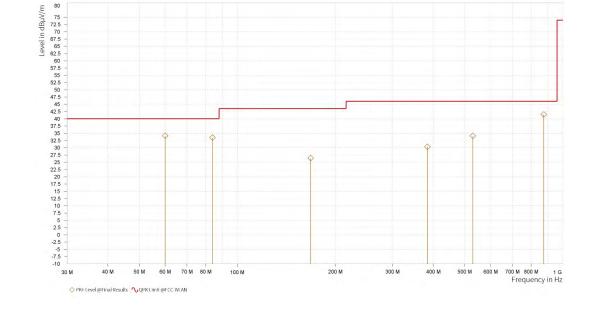
Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attaCHed file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific Channel frequency.
- c. The necessary accessories enable the EUT in full functions.



3.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

	L	TX Ch	annel 6		DETECTO	R						
		E 30MHz	z ~ 1GHz		FUNCTIO	N	Quasi-	Quasi-Peak (QP				
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]				
1	60.022	34.16	40.00	5.84	-13.88	H.	0.9	2.00				
1	83.932	33.51	40.00	6.49	-17.06	Н	1.6	2.00				
1	168.031	26.43	43.50	17.07	-15.80	Ĥ	96.5	2.00				
1	384.002	30.33	46.00	15.67	-9.45	H	358.4	1.00				
1	528.774	34.08	46.00	11.92	-8.09	H	96.5	2.00				
	874.628	41.47	46.00	4.53	-2.13	Ĥ	1	1.00				

ANNE	L	TX Ch	annel 6		DETECTO		Quasi-	Peak (QP)
QUE		SE 30MHz	z ~ 1GHz		FUNCTIO	N		
	AN	ITENNA P	OLARITY	& TEST [DISTANCE	: VERTICAL	AT 3 M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	44.647	31.31	40.00	8.70	-11.96	v	128.6	1.00
1	60.022	30.73	40.00	9.27	-13.88	v	97.5	2.00
1	167.886	23.06	43.50	20.44	-15.81	v	1.8	2.00
1	261.782	28.34	46.00	17.66	-11.76	v	355.5	2.00
1	456.024	29.38	46.00	16.62	-9.06	v	128.6	1.00
1	874.628	35.49	46.00	10.51	-2.13	v	262.5	1.00
2. Ma	mission Lev argin value				tor + Cable	Loss- Prear	np Factor	
1. Er 2. Ma u/\ntgp ui labar revel in day so	mission Lev argin value ⁶⁰ 75 - 25 - 75 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 2				tor + Cable	Loss- Prear	np Factor	
1. Er 2. M: ⁷⁷ ⁷⁶ ⁶⁶ ⁶⁶ ⁶⁶ ⁶⁷ ⁷³	mission Lev argin value ⁸⁰ 75 25 5 70 75 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				tor + Cable	Loss- Prear	np Factor	
1. Er 2. Ma u//tfgpui ex 55 55 55 55 55 55 55 55 55 55 55 55 55	mission Lev argin value ⁸⁰ 75 - 25 - 70 - 77 - 56 - 55 - 55 - 55 - 55 - 55 - 55 - 55				tor + Cable	Loss- Prear	np Factor	
1. Er 2. Ma u//rtgp ul 66 55 55 44 42 33 32 22 11	mission Lev argin value ⁸⁰ 75 25 25 66 22 5 5 5 5 5 5 5 5 5 5 5 5 5				tor + Cable	Loss- Prear	np Factor	
1. Er 2. Ma u//rfgp ui javar 55 55 44 42 33 32 22 11 12	mission Lev argin value ⁸⁰ 75 - 25 - 70 - 77 - 86 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25				tor + Cable	Loss- Prear	np Factor	

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

ABOVE 1GHz WORST-CASE DATA

Note:

- 1. For radiated emissions testing [,] the full testing range of different modes have been scanned [,] only the worst case harmonic data is reported in the sheet.
- 2. All other emissions greater than 20dB below the limit were not recorded

				802.	11b			
NNEI	_	TX CI	hannel 1		DETECTOR			(PK)
QUEN	ICY RANG	E 1GHz	1GHz ~ 25GHz			N	Averaç	ge (AV)
	ANT	ENNA PO	LARITY &	TEST DI	STANCE: I	HORIZONTA	AL AT 3 M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,371.868	45.79	74.00	28.21	6.07	н	359.1	1.00
1	2,390.000	44.94	74.00	29.06	6.39	н	354.9	2.00
_	1.5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	00.70			a mantan a			
1 m//\nfgp ui loss 1125 1125 1125 1125 102.6 97.5 95		93.72			6.77	н	1.7	2.00
للله 120 لله 120 لله 120 115 110 110 110 110 110 107.5 95 90 90.5 87.5 90 90 90 90 90 90 90 90 90 90		93.72			6.77	Н	1.7	2.00
μ 120 μ 115 110 110 100 105 97.5 95 97.5 90 90 90 97.5 85 82.5 80 77.5 85 72.5 70 67.5 60		93.72			6.77	Н	1.7	2.00
ш/ 112 ш/ 112 10 10 10 10 10 10 10 95 95 90 97 75 75 75 7 65 625		93.72			6.77	Н	1.7	2.00
Line 120 Line 120 Lin		93.72			6.77	Н	1.7	2.00
LII 120 LII 1105 LII 107.5 905 905 905 905 905 905 905 905 905 90		93.72			6.77	H	1.7	2.00
LII 120 LII 125 LII 12		93.72			6.77	н	1.7	2.00
LU/NT61 120 112.5		93.72			6.77	H	1.7	2.00
LII 120 LII 125 LII 12		93.72			6.77	н	1.7	2.00

Rg F	requency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2	,383.168	31.04	54.00	22.96	6.27	Н	1	1.00
1 2	,390.000	31.05	54.00	22.95	6.39	Н	359	2.00
1 2	,411.135	84.50			6.75	Н	359	2.00
	2.315 G 2.320 G AVG Level @CriticalPoin		3 2 340 G 2 345 G 2 350 evet @Spectrum Overview		2395 G 2370 G 2375 G 2 GWH111811G 11N20 CH	2380 G 2385 G 2390 G 239	56 2400 6 2405 6 2	4106 2.415 G 2.423 G Frequency in Hz

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,336.273	48.77	74.00	25.23	5.84	v	1	1.00
1	2,390.000	44.99	74.00	29.01	6.39	v	4.5	1.00
1	2,411.983	87.39			6.77	v	108.3	2.00
1200 100 100 100 100 100 100 100 100 100	31 G 2315 G 2320 G		3 2 340 G 2 345 G 2 350 wel @Spectrum Dverview		2.385 G 2.370 G 2.375 G 2 WHI III BIN 20 GI	2380 G 2385 G 2390 G 238	56 2400 6 2405 6 2	410 G 2415 G 2423 Frequency in H

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg Frequence [MHz]	y AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2,389.38	3 30.75	54.00	23.25	6.38	v	276.8	1.00
1 2,390.00	0 30.79	54.00	23.21	6.39	v	176.5	1.00
1 2,412.83	0 78.53			6.78	v	33	1.00
120 115 - 1125 - 110 - 105 - 1025 - 100 - 95 - 95 - 95 - 90 - 87.5 - 90 - 85 - 82.5 - 90 - 85 - 8	16 2 325 6 2 330 G 2 335	6 2340 6 2345 6 2350		2.965 G 2.370 G 2.375 G 3 GWEI 118 11G 11620 CM	2380 G 2385 G 2390 G 238	56 2400 6 2405 6 2	4108 24156 2423 Frequency in h

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

NNEL			TX Channel 6 1GHz ~ 25GHz				DETECT	OR		Peak (PK) Average (AV)		
							UNCTIO	N				
		ANTEN	NA POL	ARITY	& TEST	DIST	ANCE:	HORIZO	NTAL A	AT 3 M		
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Lim [dBµV/n		Correction [dB]	Polarizatio	n Azimuth [deg]	Antenna Height [m]	
3	4,874.000	49.37	74.00	24.63	39.36	54.00	14.64	13.85	н	239.9	1.00	
3	7,311.000	53.47	74.00	20.53	44.12	54.00	9.88	19.48	н	9.4	2.00	
57. 5 52. 5 47. 4 42. 4 37.	0 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 0 -					Θ		ф •				
32	5 - 0 - 5 - 5 - 5 -											
17. 1 12 1 7.	5 - 5 - 5 - 0 -											
2												
1 12	0 1G		26	3	G 40	5 G	6G 7	G 8G 9G 1	. C.,		20 G 25 G	

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,874.000	49.16	74.00	24.84	38.82	54.00	15.18	13.85	V	359	2.00
3	7,311.000	56.08	74.00	17.92	44.16	54.00	9.84	19.48	v	129.8	2.00
E 8	0						1				1
evel in dBµV/m 8 2 2 2 4 9 9 9	5 -										_
8 72	5 -										_
⊆ 7											
67. 67.	5 -										
62	5 -										
	0										
	5 -							Φ			
5								Ψ			_
52											
	5 -					φ					
4								6			
42	5 -							Ψ			
	0					d d					
37.	5 -					T					
	5 -										
3											
	5 -										
2											
22						1					
2	0 - 5 -										
	5 -										
	5 -										
	0 -										
	5 -										
	5 -										
	0										_
	1 G		2 G	3	G 40	3 5 G	6G 7G	8G 9G 1	G	E.	20 G 25 G
					WLAN OPK Limit	of or the set				Fr	equency in H

REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor 1.
- 2. Margin value = Limit value- Emission level.
- 2437MHz: Fundamental frequency. 3.

	-	TX C	nannel 11		DETECTO		Peak (Peak (PK)	
QUEN	ICY RANG	E 1GHz	~ 25GHz		FUNCTIC	N	Averaç	ge (AV)	
	ANT	ENNA PO	LARITY &	TEST DI	STANCE: I	HORIZONTA	L AT 3 M		
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	2,462.000	92.97			7.42	Н	1	1.00	
2	2,483.500	45.80	74.00	28.20	7.18	Н	348	1.00	
2	2,495.280	46.81	74.00	27.19	7.00	Н	359	2.00	
80 77.5 72.5 70 67.5 62.5 60 57.5 55 52.5 50 47.5 50 47.5 45 42.5 40 37.5 35 32.5					mm.m.Mn	ur Mat Çerî er anîte a re		mq	
30 27.5 25 22.5									
22.5			The second	1 1					
20	452 G 2	458 G 2.462 G	2.466 G 2.	470 G 2.474 (3 2.478 G	2.482 G 2.486 G	2.490 G 2.49	4 G 2.5 G Frequency in Hz	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,461.200	83.91		a destruction of	7.41	н	359.1	1.00
2	2,483.500	31.91	54.00	22.09	7.18	Н	1.4	2.00
2	2,485.040	32.05	54.00	21.95	7.15	Н	359.1	1.00
$\begin{array}{c} 97.5 \\ 92.5 \\ 92.5 \\ 92.5 \\ 90 \\ 82.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 82.5 \\ 85.5 \\ 82.5$								
2.4	452 G 2	458 G 2.462 G	2.466 G 2.	470 G 2.474 (3 2.478 G	2.482 G 2.486 G	2.490 G 2.49	A G 2.5 G Frequency in Ha

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,462.000	91.42			7.42	V	47.3	1.00
2	2,483.500	45.74	74.00	28.26	7.18	v	354.9	2.00
2	2,485.200	46.89	74.00	27.11	7.15	v	359	2.00
97.5. 95.5 90.5 90.5 85.5 85.5 85.5 85.5 77.5 70.0 77.5 70.0 77.5 70.0 77.5 70.0 77.5 70.0 77.5 52.5 50.0 67.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 77.5 52.5 50.0 57.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5								

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,461.120	81.21			7.41	v	1	1.00
2	2,483.500	31.92	54.00	22.08	7.18	v	359	1.00
2	2,483.920	32.02	54.00	21.98	7.17	v	345.8	1.00
$\begin{array}{c} \text{III}(15,11) \\ \text{IIII}(15,11) \\ \text{IIIII}(15,11) \\ \text{IIIII}(15,11) \\ \text{IIIII}(15,11) \\ \text{IIIII}(15,11) \\ \text{IIIIII}(15,11) \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		458 G 2.462 G	2466 G 2	470 G 2474	6 24786	2482 G 2486 G	2490 6 249	4G 256 Frequency in H

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

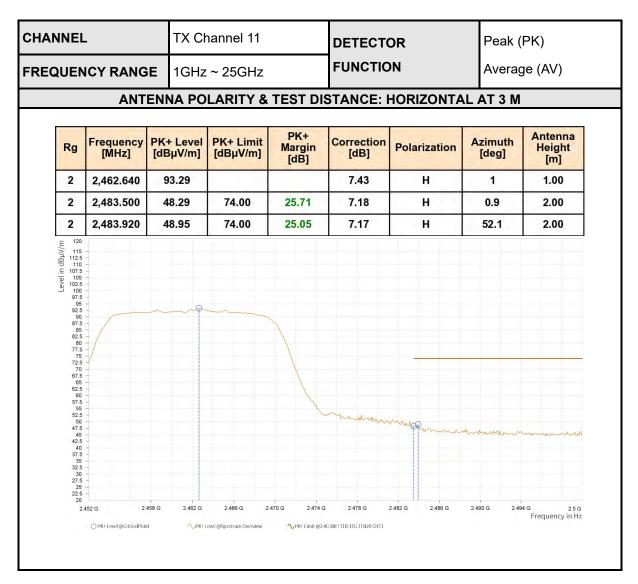
INEL		TX Cł	nannel 1		DETEOT		Deek (עוס
					DETECTO	-	Peak (-
UENCY RAN	GE	1GHz	~ 25GHz		FUNCTIC)N	Averaç	ge (AV)
AN	FENN	NA PO	LARITY &	TEST DI	STANCE: I	HORIZONTA	AL AT 3 M	
Rg Frequenc [MHz]		+ Level βμV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2,389.665	4	7.35	74.00	26.65	6.38	Н	1	1.00
1 2,390.000		0.04						
1 2,390.000	4	8.04	74.00	25.96	6.39	н	348.7	1.00
1 2,412.830 μ 120 μ 120 μ 125 - μ 105 - μ		2.78	74.00	25.96	6.39 6.78	H	348.7 1	1.00 2.00
1 2,412.830			74.00	25.96				

Rg Freq [M	uency Hz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2,38	9.665	33.00	54.00	21.00	6.38	Н	346.6	1.00
1 2,39	0.000	33.17	54.00	20.83	6.39	Н	346.6	1.00
1 2,41	6.503	81.90			6.84	Н	359	1.00
	G 2.320 G		5 2 340 G 2 345 G 2 350 vel @Spectrum Overview		2.365 © 2.370 © 2.375 © 2 GWH111B 11G 11N20 OR	2.380 G 2.385 G 2 390 G 2 39	56 2400 6 2405 6 2	410 G 2.415 G 2.423 G Frequency in H2

Rg Fre	quency MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2,3	74.128	45.71	74.00	28.29	6.11	v	281.7	1.00
1 2,3	90.000	45.06	74.00	28.94	6.39	v	1	1.00
1 2,4	12.830	87.51			6.78	v	334.2	1.00
	315 G 2.320 G Level @CIRICalPoint		G 2.340 G 2.345 G 2.350 vel @Spectrum Overview		2.865 G 2.370 G 2.375 G 2 WHI 115 116 116 20 G11	2.380 G 2.385 G 2.390 G 2.39	5 G 2 400 G 2 405 G 2	410 G 2.415 G 2.423 G Frequency in Hz

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.665	30.98	54.00	23.02	6.38	v	147.8	1.00
1	2,390.000	31.06	54.00	22.94	6.39	v	359	2.00
1	2,413.113	74.37			6.79	V	347.3	1.00
LI/171 112.5 115 115.5 110 110.5 1111 110.5 111								
	31 G 2.315 G 2.320 G		G 2.340 G 2.345 G 2.350 evel @Spectrum Overview		2.365 G 2.370 G 2.375 G 3 5 WFI 11B 11G 11N20 CH1	2.380 G 2.385 G 2.390 G 2.39	5 G 2.400 G 2.405 G 2	410 G 2.415 G 2.423 Frequency in F

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.


QUE	NCY	R/	ANGE	1GHz ~	- 25GH	z		FUN		N			Average	(AV)
		ŀ	NTEN	NA POL	ARITY	& TEST	DIS	TAN	ICE: I	HOR	IZO	NTAL A	AT 3 M	
Rg	Freque [MH:		PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Li [dBµV		AVG Margin [dB]		ection (B]	Polarizatio	n Azimuth [deg]	Antenna Height [m]
3	4,874.	000	48.85	74.00	25.15	38.90	54.0	0	15.10	13	3.85	н	1	1.00
3	7,311.	000	55.80	74.00	18.20	44.34	54.0	0	9.66	19	.48	н	359	2.00
E //ITIGP II 967.72. 162. 162. 163. 164. 165.7. 164. 165.7. 165. 165.7. 165. 165.7. 165. 165.7.	5						Ç			•				
22. 21 17. 11 12. 11 7. 2.) - 5 - 5 - 5 -) - 5 - 5 - 5 - 5 -													
) 1G			2 G	3	G 4 G	5 5	G	6G 7G	8 8 G	9 G 1	i 0 G	c,	20 G 25 G equency in Hz

Rg	Frequenc [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,874.000	50.45	74.00	23.55	39.04	54.00	14.96	13.85	v	236.3	1.00
3	7,311.000	54.53	74.00	19.47	44.30	54.00	9.70	19.48	v	121.4	2.00
E 8	0										
21 7											
8 72											
⊑ 7 ⊒ 67.	0 -										
Level in dBµV/m 8 2 2 2 2 2											
62											
6											
57. 5								-			
52								Ψ	1		
5						φ					
47.											
4	5 -							φ			
42						1					
37.						φ					
	5 -					and a game		e <mark>n anderen s</mark> er se			
32	.5 - 0 -										
27.											
2											
22											
	0 -										
17.	.5 - 5 -										
12											
	0 -										
7.	5 - 5 -										
	5 -										
	0		1		1		1 1	1	1		-
	1 G		2 G	3	G 40	G 5 G	6G 7G	8 G 9 G 1	0 G		20 G 25 0
	○ AVG Level	@CriticalPoint OPK+	Level @CriticalPoint 4	VAVG Limit @FCC	WLAN 🔨 QPK Limit	efcc wlan				Fr	equency in H

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,463.040	80.39			7.43	Н	1	1.00
2	2,483.500	33.22	54.00	20.78	7.18	Н	2.2	2.00
2	2,483.680	33.12	54.00	20.88	7.17	Н	2.2	2.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	452 G 2	458.6 2.462.6	2466 G 2	470.6 2.474.6	3 2478G	2482 G 2486 G	2.490 G 2.45	4G 25G Frequency in H2

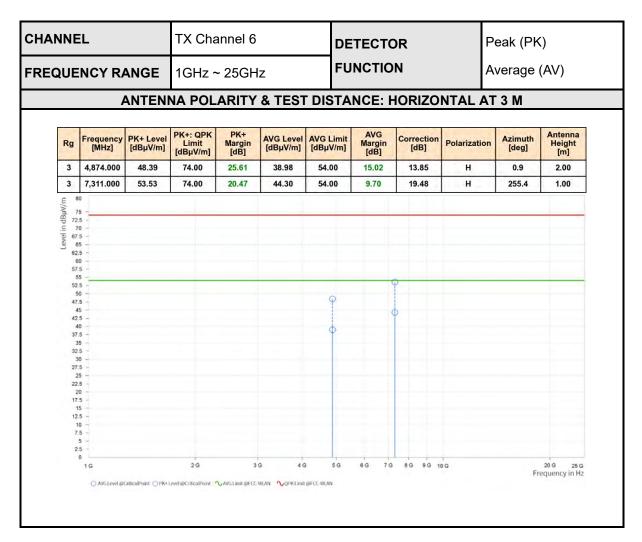
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,462.720	89.75			7.43	v	60.4	1.00
2	2,483.500	45.64	74.00	28.36	7.18	v	359.1	1.00
2	2,499.600	46.74	74.00	27.26	6.93	v	113	1.00
120 110 1125 1125 1025 1075 1075 1025 10		486 2426	2466 3 2	4703 2474		2485 G 2486 G	2400 G 246	49 25

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,466.240	78.46			7.44	v	49.7	1.00
2	2,483.500	32.42	54.00	21.58	7.18	v	357.6	1.00
2	2,486.960	33.06	54.00	20.94	7.12	v	311.6	2.00
LIN 115 115 115 115 115 115 115 115		1458 G 2.462 G	2.466 G 2	470 G 2.474 (3 2478 G	2485 0	2490 8 249	46 251 Frequency in H

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

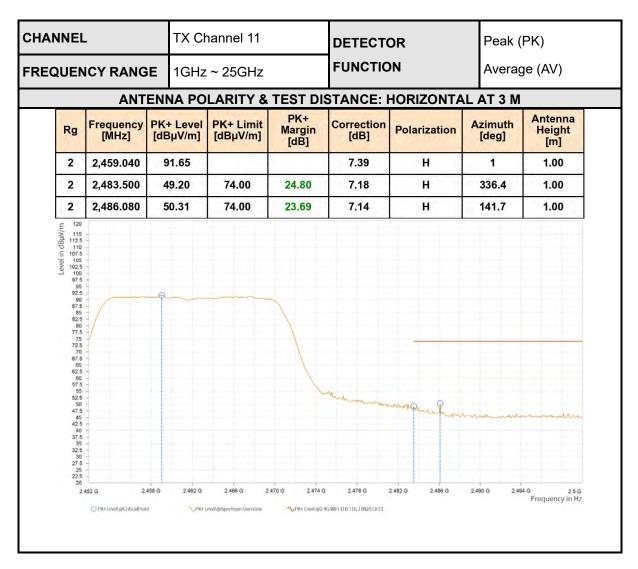
HANNE	-	TX Cł	nannel 1		DETECT	OR	Peak (PK)
REQUEN	ICY RANG	E 1GHz	~ 25GHz		FUNCTIC	N	Averaç	ge (AV)
	ANT	ENNA PO	LARITY &	TEST DI	STANCE: I	HORIZONTA	LAT 3 M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.383	52.18	74.00	21.82	6.38	н	357.9	1.00
1	2,390.000	51.57	74.00	22,43	6.39		0.1111/0.515	
1	The State of Cold		a service of the second s		0.39	н	359.1	1.00
U/AT 120 U/AT 115 P 110 101 107.5 102.5 90 87.5 90 87.5 86 86 80		93.31			6.72	H	359.1 357.9	1.00
Line for the second sec		93.31						

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.665	33.41	54.00	20.59	6.38	Н	5.8	1.00
1	2,390.000	33.56	54.00	20.44	6.39	н	5.8	1.00
1	2,413.113	81.20			6.79	Н	1	1.00
Li 1200 Li 115 115 110 110 105 105 105 105	31 G 2315 G 2320 G		3 2 340 G 2 345 G 2 350 evel @Spectrum Overview		2.395 G 2.370 G 2.375 G 2 GWH 11B 11G 11N20 CH	2.380 G 2.385 G 2.390 G 2.39	56 2400 6 2405 6 2	410.9 2415.9 2423 G Frequency in Ha


Rg Freque	ncy PK+ Level [dBµV/m]		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1 2,380.	45.95	74.00	28.05	6.22	v	250.6	1.00
1 2,390.	000 44.95	74.00	29.05	6.39	v	358.8	1.00
1 2,409.	158 86.40	1		6.72	v	347.9	1.00
1120 1125 1125 1125 1125 1100 1100 975 925 925 925 925 925 925 925 92	2320 G 2325 G 2330 G 2333 zitcaPoint \P64	56 2340 G 2345 G 2350 Level @Spectrum Dverview		2.965 G 2.370 G 2.375 G 2 3069 118 116 11020 CH	2380 G 2385 G 2390 G 239	56 2400 8 2405 8 2	410 6 2.415 G 2.423 G Frequency in Hz

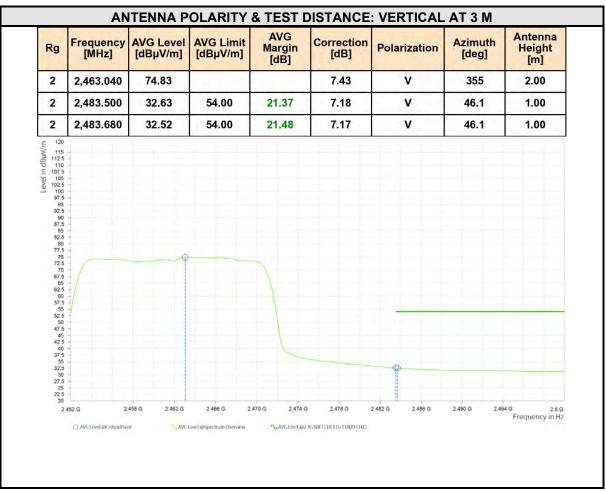
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.100	31.23	54.00	22.77	6.37	v	359	2.00
1	2,390.000	31.34	54.00	22.66	6.39	v	359	2.00
1	2,410.853	74.62			6.75	V	349.4	1.00
LII/101 1105 110 110 110 110 100 100	31 G 2315 G 2320 G		3 2 340 G 2 345 G 2 350		2.385 G 2.370 G 2.375 G 2 GWFI 11B 11G 11N29 OH	2380 G 2385 G 2390 G 239	56 2400 6 2405 6 2	4106 2.415 G 2.423 Frequency in F

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.



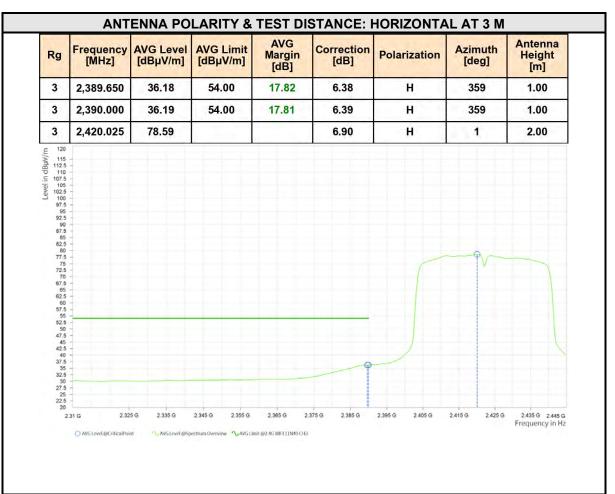
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,874.000	48.72	74.00	25.28	38.89	54.00	15.11	13.85	v	359	2.00
3	7,311.000	54.71	74.00	19.29	44.15	54.00	9.85	19.48	v	116.6	2.00
<u>ج</u> 8	0										
Level in dBµV/m	5 -										
B 72					-						
.⊆ 7	0 -										
Q 67	5 -										
8 E	5 -										
	0 -										
	5 -										
5	5							P			
52											
	0 -					Q					
47.	5										
	5 -						(φ			
4											
37.	5 -					Ψ					
3											
32											
3	0 -										
	5 -										
22											
2	0										
	5 -										
1											
12	5 -										
7											
	5 -										
2	5 -										
	0		i.		i i	1	- i - i	1 i i	Û.		i
	1 G	CriticalPoint 🔿 PK+1	2 G level @CriticalPoint		G 40		6G 7G	8G 9G 1	G	Fr	20 G 25 G equency in Ha

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,456.880	79.74			7.37	Н	1	1.00
2	2,483.500	33.49	54.00	20.51	7.18	Н	1	1.00
2	2,483.760	33.37	54.00	20.63	7.17	н	1	1.00
LI 1/200 LI 1/200 LI 1/200 LI 12,5 LI 12,5 L								

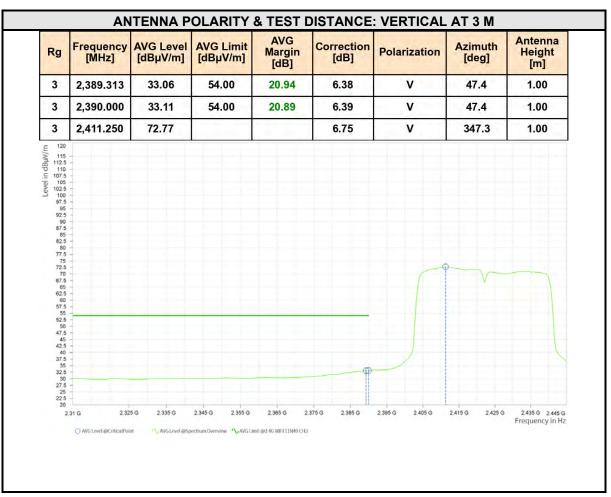
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

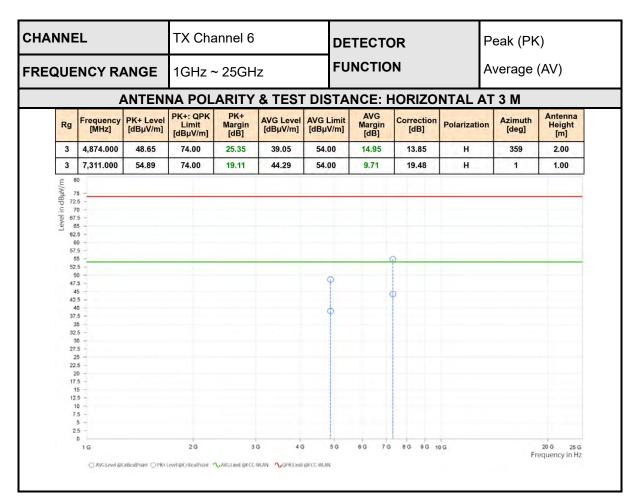
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,458.800	91.89			7.39	v	1	1.00
2	2,483.500	47.94	74.00	26.06	7.18	v	359.1	1.00
2	2,483.600	48.15	74.00	25.85	7.18	v	358.1	1.00
92.5 90 87.5 85 82.6 80 77.5 75	/ mur	-Rumung						



- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

CHANNE	L	TX Cł	hannel 3		DETECT	OR	Peak (PK)
REQUE	NCY RANG	E 1GHz	2~ 25GHz		FUNCTIC	N	Averaç	ge (AV)
	ANT	ENNA PO	LARITY &	TEST DI	STANCE:	HORIZONTA	L AT 3 M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,374.130	53.93	74.00	20.07	6.11	н	1	1.00
3	2,390.000	51.35	74.00	22.65	6.39	Н	358.2	1.00
3	2,420.025	89.39			6.90	Н	359.1	1.00
LL 120 121 121 121 122 122 122 122								
21/1115 21/1112 21/1112 21/1112 21/1112 21/1112 21/1112 21/1112 21/1112 21/12					funne			
1/11 112 112 112 112 112 112 112 112 112								




Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,387.288	46.51	74.00	27.49	6.34	v	1.9	2.00
3	2,390.000	47.99	74.00	26.01	6.39	V	42.6	1.00
3	2,412.938	84.11			6.78	V	42.6	1.00
□ 1/200 11025 1105 1105 1100 1100 1100 1100 1100 1100 1100 1100 1100		56 2335.6	2345 G 2355 G	2355 6 2		2395.6 2405.6	2415.6 2425.6	2456 2445 G

Tower N, Innovation Center, 88 Zuyi Road, HighteCH District, Suzhou City, Anhui Province

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

Tel: +86 (0557) 368 1008

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,874.000	48.99	74.00	25.01	38.54	54.00	15.46	13.85	v	0.9	2.00
3	7,311.000	54.26	74.00	19.74	44.18	54.00	9.82	19.48	v	0.9	2.00
F 8	0										1
Level in dBµV/m	5 -										
B 72									-		
.⊆ 7	0 -										
D 67	5 -										
8 Fe											
	5 - 0 -										
	5 -										
5	5							0			
52								T			
	0 -					Q					
47.	5										
	5 -							φ			
4											
37.	5 -					φ					
3											
32											
3	0 -										
	5 -										
22											
2	0 -										
	5 -										
1											
12	5 -										
7											
	5 -										
2	5 -							1 m 1 m			
- 6	0		i.		i i	1	i i	li i	ť.		i
	1 G O AWG Level @	CriticalPoint 🔿 PK+1	2 G Level @CriticalPoint '		G 4 C		6G 7G	8G 9G 1	0 G	Fr	20 G 25 G equency in Ha

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

HANNEL	-	TX CI	nannel 9		DETECTO	OR	Peak (PK)
EQUEN		E 1GHz	~ 25GHz		FUNCTIC	N	Averaç	ge (AV)
	ANT	ENNA PO	LARITY &	TEST DI	STANCE: I	HORIZONTA	LAT 3 M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,455.120	90.78			7.36	Н	1	1.00
4	2,483.500	49.35	74.00	24.65	7.17	н	5	1.00
4	2,490.820	50.25	74.00	23.75	7.06	Н	1	1.00
80 77.5 72.5 72.5 62.5 62.5 62.5 62.5 55 55 52.5 50 47.5 45 45 45 42.5 40							PR	·····
37.5 35 32.5	-							
37.5 35								

		[dBµV/m]	[dBµV/m]	Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Height [m]
4	2,453.760	78.85			7.34	н	1	1.00
4	2,483.500	35.50	54.00	18.50	7.16	н	5.1	1.00
4	2,483.680	35.61	54.00	18.39	7.17	Н	5.1	1.00
$\begin{array}{c} 120\\ 115 & -\\ 115 & -\\ 115 & -\\ 1075 & -\\ 105 & -\\$	26 2435 6 24	40 G 2445 G	2450.6 2455.6	2.460 G	465 G 2470 G	2475 G 2480 G	2485 G 2480 G	2455 255

10	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,462.940	88.39			7.43	v	46.2	1.00
4	2,483.500	48.50	74.00	25.50	7.17	V	1	1.00
4	2,484.360	49.34	74.00	24.66	7.16	V	359.1	1.00
LU/Articlo UI IgAasi 112,5 112,5 110,0 107,5 102,6 100,0 97,5 92,5 90,0 87,6 85,82,6 85,82,6 80,0 77,5 72,5 70,67,5 67,6				~~~ (

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,462.600	75.84			7.43	v	47.3	1.00
4	2,483.500	33.69	54.00	20.31	7.16	v	1	1.00
4	2,484.360	33.68	54.00	20.32	7.16	v	1	1.00
97.5 95.5 92.5 90.0 87.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 80.0 87.5 90.0 67.5 62.5 60.0 67.5 52.5 52.5 52.5 332.5 30.0 27.5 32.5 22.5 22.5 22.5 22.5		40 G 2445 G	2450 6 2455 6	2400 6 2	465 9 2470 6	2475 G 2480 G	2485 G 2490 G	2495 G 2.5

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2452MHz: Fundamental frequency.

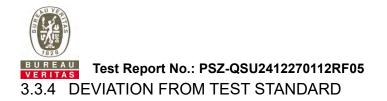
3.2 6 dB BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

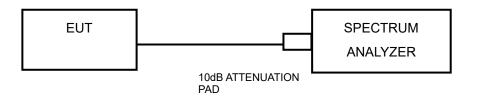
The minimum 6dB Bandwidth Measurement is 0.5 MHz.

3.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Power Meter	ANRITSU	ML2495A	1506002	Feb. 13,24	Feb. 12,25
Power Meter	ANRITSU	ML2495A	1506002	Feb. 12,25	Feb. 11,26
EXA Signal Analyzer	KEYSIGHT	N9010A-526	MY54510523	Feb. 13,24	Feb. 12,25
EXA Signal Analyzer	KEYSIGHT	N9010A-526	MY54510523	Feb. 12,25	Feb. 11,26
EXA Signal Analyzer	KEYSIGHT	N9010A-544	MY54510355	May.09,24	May.08,25
Power Sensor	ANRITSU	MA2411B	1339352	Feb. 13,24	Feb. 12,25
Power Sensor	ANRITSU	MA2411B	1339352	Feb. 13,24	Feb. 12,25


NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.


3.3.3 TEST PROCEDURE

- Set RBW = shall be in the range of 1% to 5% of the 0BW but not less than 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

No deviation.

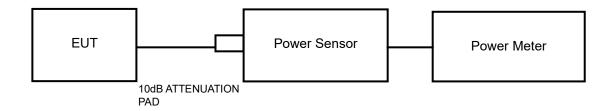
3.3.5 TEST SETUP

3.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest Channel frequencies individually.

3.3.7 TEST RESULTS

Please Refer to Appendix Of this test report.



3.3 CONDUCTED OUTPUT POWER

3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest Channel frequencies individually.

3.4.7 TEST RESULTS

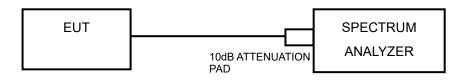
3.4.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix Of this test report.

3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix Of this test report.



3.4 POWER SPECTRAL DENSITY MEASUREMENT

3.4.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURE

- 1. Set the span to 1.5 times the DTS bandwidth
- 2. Set the RBW = 3 kHz, VBW \ge 3 x RBW, Detector = peak.
- 3. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.4.5 DEVIATION FROM TEST STANDARD

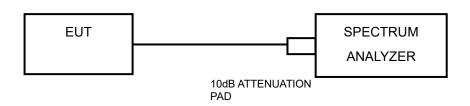
No deviation.

3.4.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest Channel frequencies individually.

3.4.7 TEST RESULTS

Please Refer to Appendix Of this test report.



3.5 OUT OF BAND EMISSION MEASUREMENT

3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest Channel frequencies individually.

3.6.7 TEST RESULTS

The spectrum plots are attaCHed on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix Of this test report.

3.6 ANTENNA REQUIREMENTS

3.6.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.6.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

3.6.3 ANTENNA GAIN

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit and PSD limit.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

6 APPENDIX: WLAN

DTS BANDWIDTH

TEST RESULT

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MH z]	Verdict
	Ant1	2412	8.712	2407.524	2416.236	0.5	PASS
11B	Ant1	2437	8.751	2437.445	2446.196	0.5	PASS
	Ant1	2462	9.031	2467.445	2476.476	0.5	PASS
	Ant1	2412	16.384	2403.768	2420.152	0.5	PASS
11G	Ant1	2437	16.344	2433.768	2450.112	0.5	PASS
	Ant1	2462	16.344	2463.808	2480.152	0.5	PASS
	Ant1	2412	17.262	2403.329	2420.591	0.5	PASS
11N20	Ant1	2437	17.262	2433.329	2450.591	0.5	PASS
	Ant1	2462	17.262	2463.329	2480.591	0.5	PASS
	Ant1	2422	34.845	2404.498	2439.343	0.5	PASS
11N40	Ant1	2437	34.985	2424.358	2459.343	0.5	PASS
	Ant1	2452	36.684	2443.618	2480.302	0.5	PASS

TEST GRAPHS

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, HighteCH District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

				11B_AN	111_2402					
	00 dBm Offset 1	.30 dB 🖷 RBW 200 kł								SGL
Att Frequency Sw		.01 ms 🛎 VBW 1 Mł	Iz Mode Auto	Sweep		2				Count 500/500 O 1Pk Max
20 dBm	-		_						M	[1] 5.78 dBm
LU GUIII					M1				MI	2.476 476 0 GHz [1] 11.59 dBm
10 dBm	H1 5.590 dt	Bm	M2	m	min	MB				2.472 519 0 GHz
0 dBm	111 3.30 00		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Mr.				
-10 dBm			5			Y	~			
-10 0.011		X					4		à	
-20 dBm		1	1.10				1			
-30 dBm	-	m				-	h			
-40 dBm	human	man		-				www	mm	how
-50 dBm								_		mun
(0 JP-										
-60 dBm										
-70 dBm	-									
CF 2.472 GHz 2 Marker Table			1001 pts			4.0 MHz/				Span 40.0 MHz
Type Re	ef Trc	X-Value		Y-Value		Function			Function Re	esult
M1 M2	1	2.472 519 GHz 2.467 445 GHz		11.59 dBm 5.77 dBm						
M3	1	2.476 476 GHz		5.78 dBm				Ready	111111111	2025-03-03
				11G_AN	IT1_2412					Â
				11G_AN	IT1_2412					
MultiView *	Spectrum			11G_AN	IT1_2412					\$
Ref Level 27.0	00 dBm Offset 1	.30 dB ≡ RBW 200 kł			IT1_2412					SGL Court EDD/EDD
Ref Level 27.0 Att	00 dBm Offset 1 30 dB SWT 1.	.30 dB = RBW 200 kH .01 ms = VBW 1 MH			IT1_2412					Count 500/500 O 1Pk Max
Ref Level 27.0 Att Frequency Sw	00 dBm Offset 1 30 dB SWT 1.				IT1_2412				м	Count 500/500 © 1Pk Max [1] 3.74 dBm
Ref Level 27.0 Att Frequency Sw	00 dBm Offset 1 30 dB SWT 1.				IT1_2412	1				Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 152 0 GHz 1] 9.08 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm-	00 dBm Offset 1 30 dB SWT 1. veep	.01 ms 🗢 VBW 1 Mł		Sweep		- D-				Count 500/500 O 1Pk Max [1] 3.74 dBm 2.420 152 0 GHz
Ref Level 27.0 Att I Frequency Sw 20 dBm	00 dBm Offset 1 30 dB SWT 1.	.01 ms 🗢 VBW 1 Mł	Hz Mode Auto	Sweep		- D-	A. M3			Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 152 0 GHz 1] 9.08 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1 30 dB SWT 1. veep	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-		Liver	M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 152 0 GHz 1] 9.08 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm, NW -30 dBm -40 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 O 1Pk Max 31] 3.74 dBm 2.420 1520 GHz 1] 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Hz Mode Auto	Sweep		- D-			M1	Count 500/500 0 1Pk Max 1] 3.74 dBm 2.420152 0 GHz 1] 9.08 dBm 2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	.01 ms = VBW 1 Mi Bm	Iz Mode Auto	Sweep					M1	Count 500/500 O 1Pk Max 3/1 3.74 dBm 2.420 152 0 GHz 11 9.08 dBm -2.415 716 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 df	01 ms = VBW 1 Mi	Hz Mode Auto	Sweep		4.0 MHz/			m	Count 500/500 O 1P/c Max 2.420 152 0 GHz 2.420 152 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1 30 dB SWT 1. veep H1 3.080 dl	01 ms = VBW 1 MI Bm // // // // // // // // // // // // //	Iz Mode Auto	Sweep					M1	Count 500/500 O 1P/c Max 2.420 152 0 GHz 2.420 152 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	H1 3.080 df	01 ms = VBW 1 M/ Bm // MMM-MM/ MMM-MM/ MMM-MM/ MMM-MM/ MMM-MM/ MM/	Iz Mode Auto	Sweep hhttp://www.sweep		4.0 MHz/			m	Count 500/500 O 1Pk Max 3.74 dBm 2.420 152 0 GHz 2.415 716 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	D0 dBm Offset 1 30 dB SWT 1. veep	01 ms = VBW 1 Mi Bm MMM-MMM-MM MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMMM	Iz Mode Auto	Sweep		4.0 MHz/			m	Count 500/500 O 1Pk Max 2.420 152 0 GHz 2.420 152 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz Span 40.0 MHz
Ref Level 27.0 Att I Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Frequency Sw -70 dBm -70 dBm >	D0 dBm Offset 1 30 dB SWT 1. veep	01 ms = VBW 1 Mi Bm MMM-MMM-MM MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMMM	Iz Mode Auto	Sweep		4.0 MHz/			M1	Count 500/500 O 1Pk Max 3.74 dBm 2.420 152 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm, ///// -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -	D0 dBm Offset 1 30 dB SWT 1. veep	01 ms = VBW 1 Mi Bm MMM-MMM-MM MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMM-MMMM	Iz Mode Auto	Sweep		4.0 MHz/			M1	Count 500/500 O 1Pk Max 2.420 152 0 GHz 2.420 152 0 GHz -2.415 716 0 GHz -2.415 716 0 GHz Span 40.0 MHz Span 40.0 MHz

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, HighteCH District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

		ms 🖷 VBW 1 MHz 👖	Node Auto Sweep					Count 500/500
I Frequency Sw	reep						M	O 1Pk Max 3[1] 3.72 dBm
20 dBm				-	_	-		2.450 112 0 GHz 1[1] 9.56 dBm
10 dBm			0	manna	4		IVI	1[1] 9.56 dBm 2.443 239 0 GHz
0.10	H1 3.560 dBn		www.www.	he warmen	month			
0 dBm					1			1.1
-10 dBm		N				h		
-20 dBm	hammond	Marian				where	mmmmm	and proceeding theme
-30 dBm								, way
-40 dBm				-		_		
-50 dBm								
-60 dBm								-
-70 dBm								
F 2.442 GHz	1		1001 pts	4.0) MHz/			Span 40.0 MHz
Marker Table		X-Value	Y-Value		Function		Function R	esult
M1 M2	1	2.443 239 GHz 2.433 768 GHz	9.56 dBm 3.64 dBm					
M3	i	2.450 112 GHz	3.72 dBm					2025-03-03
			11G_AN	T1_2462				
Ref Level 27.0 Att	30 dB SWT 1.0"	0 dB ≡ RBW 200 kHz Ims ≕ VBW 1 MHz M	_	T1_2462				SGL Count 500/500 O 1Pk Max
Ref Level 27.0 Att Frequency Sw 20 dBm	0 dBm Offset 1.3 30 dB SWT 1.0		_	T1_2462				Count 500/500 O 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm
	00 dBm Offset 1.3 30 dB SWT 1.0 reep	M2	_		namen mark			Count 500/500 O 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz
Ref Level 27.0 Att I Frequency Sw 20 dBm	0 dBm Offset 1.3 30 dB SWT 1.0	M2	Aode Auto Sweep		Manum			Count 500/500 O 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		Man Million		M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		Mana Ma	t waysan	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		Managara 19	h mappen	M	Count 500/500 O 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep	Market Ma	Aode Auto Sweep			A workson	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.(2 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		Man M3	t wayna	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		Managaman 143	the worker	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep			h www.	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep			t wayna	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Ande Auto Sweep			the way are	M	Count 500/500 0 1Pk Max 31] 3.22 dBm 2.480 152 0 GHz 2.473 279 0 GHz 4.473 279 0 GHz 4.473 279 0 GHz
Ref Level 27.(2 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	Market Ma	Aode Auto Sweep		MM 2/	h www.para	M	Count 500/500 © 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 1(1) 9.06 dBm -2.473 279 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn	ms = VBW 1 MHz 1 ms = VBW 1 MHz 1 ms ms ms ms ms ms ms ms ms ms	Mode Auto Sweep			h www.harm	M	Count 500/500 0 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 2.480 152 0 GHz 2.473 279 0 GHz 4.473 279 0 GHz 5pan 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm F2.472 GHz 2 Marker Table Type M1 M2	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn AMMANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NS VBW 1 MHz N where where N 1 where where 1 1 where 1	Mode Auto Sweep		D MHz/	h worker	mananyang	Count 500/500 0 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 2.480 152 0 GHz 2.473 279 0 GHz 4.473 279 0 GHz 5pan 40.0 MHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1.3 30 dB SWT 1.0 reep H1 3.030 dBn www.www.www.www.www.www.www.www.www.ww	VBW 1 MHz M Manuary	Mode Auto Sweep		D MHz/	Ready	mananyang	Count 500/500 0 1Pk Max 3(1) 3.22 dBm 2.480 152 0 GHz 2.480 152 0 GHz 2.473 279 0 GHz 4.473 279 0 GHz 5pan 40.0 MHz

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

Att 1 Frequency Sv		30 dB 🖷 RBW 200 kH 11 ms 🖷 VBW 1 MH	z Mode Auto Sweep	_				Count 500/500
	veep						M	• 1Pk Max [3][1] 3.96 dBm
20 dBm							M	2.420 591 0 GHz
10 dBm		M2 ,	m	Lo alla a dana	mannannanna	MB		2.408 244 0 GHz
0 dBm	H1 3.930 dB	m m		Not the state		uny -		
0 dbiii								
-10 dBm						1		
-20 dBm	mmm	nom				The.	and have	hundry
-30 dBm	MAR BO							
50 dbill								
-40 dBm								
-50 dBm								
-60 dBm	_					_		
-70 dBm CF 2.412 GHz			1001 pts		4.0 MHz/			Span 40.0 MHz
2 Marker Table								
M1	ef Trc. 1	X-Value 2.408 244 GHz	9.39	alue dBm	Function		Function R	esult
M2 M3	1	2.403 329 GHz 2.420 591 GHz		dBm dBm				
						Ready		2025-03-03 03:08:04
			11N	20_ANT1_2	2437			
	Spectrum			20_ANT1_2	2437			\$
Ref Level 27.	00 dBm Offset 1.3	30 dB ≡ RBW 200 kH 11 ms ≅ VBW 1 MH	iz.		2437			SGL Count 500/500
Ref Level 27.0 Att	00 dBm Offset 1.3 30 dB SWT 1.0				2437	Ţ	1	Count 500/500 O 1Pk Max
Ref Level 27. Att Frequency Sv	00 dBm Offset 1.3 30 dB SWT 1.0		iz.		2437		M	Count 500/500
Ref Level 27,0 Att 1 Frequency Sv 20 dBm	00 dBm Offset 1.3 30 dB SWT 1.0	N1 ms ⊜ VBW 1 MH	iz Mode Auto Sweep					Count 500/500 O 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11 [1] 9.39 dBm
Ref Level 27,0 Att 1 Frequency Sv 20 dBm	00 dBm Offset 1.3 30 dB SWT 1.0	P1 ms ● VBW 1 MH	iz Iz Mode Auto Sweep		2437 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	M3		Count 500/500 O 1Pk Max 3.96 dBm 2.450 591 0 GHz
Ref Level 27, Att 1 Frequency Sv 20 dBm- 10 dBm-	00 dBm Offset 1.: 30 dB SWT 1.c veep	P1 ms ● VBW 1 MH	iz Mode Auto Sweep			M3		Count 500/500 O 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11 [1] 9.39 dBm
Ref Level 27,1 Att I Frequency Sv 20 dBm- 10 dBm- 0 dBm-	00 dBm Offset 1.: 30 dB SWT 1.c veep	א ms ● VBW 1 MH	iz Mode Auto Sweep			M3		Count 500/500 O 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11 [1] 9.39 dBm
Ref Level 27,1 Att 1 Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 1.: 30 dB SWT 1.c veep	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11 [1] 9.39 dBm
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27,0 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.0 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	Mins e VBW 1 MH	iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 31 1 3.96 dBm -2.450 591 0 GHz -2.438 244 0 GHz -2.438 244 0 GHz
Ref Level 27.4 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.442 GHz	00 dBm Offset 1:: 30 dB SWT 1:C veep H1 3:390 dB	Mins e VBW 1 MH	Iz Mode Auto Sweep				M	Count 500/500 0 1Pk Max 3 1] 3.96 dBm 2.450 591 0 GHz 11] 9.39 dBm 2.438 244 0 GHz
Ref Level 27.4 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.442 GHz 2 Marker Table	00 dBm Offset 1:: 30 dB SWT 1:C veep H1 3:390 dB	N ms @ VBW 1 MH	Iz Mode Auto Sweep				M	Count 500/500 0.1Pk Max 13 11 3.96 dBm 2.450 591 0 GHz 2.438 244 0 GHz 2.438 244 0 GHz 5pan 40.0 MHz
Ref Level 27.0 Att I Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm F2 2.442 GHz 2 Marker Table M1 M2	00 dBm Offset 1.: 30 dB SWT 1.C veep H1 3.390 dB	N ms @ VBW 1 MH	Iz Mode Auto Sweep	harman parameter	4.0 MHz/		M	Count 500/500 0 1Pk Max 33 11 3.96 dBm -2.450 591 0 GHz -2.438 244 0 GHz -2.438 244 0 GHz
Ref Level 27,1 Att 1 Frequency Sv 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.442 GHz 2 Marker Table Type M1	00 dBm Offset 1.: 30 dB SWT 1.0 veep	N ms @ VBW 1 MH	Iz Mode Auto Sweep	humm utum 1	4.0 MHz/		M	Count 500/500 0.1Pk Max 13 11 3.96 dBm 2.450 591 0 GHz 2.438 244 0 GHz 2.438 244 0 GHz 5pan 40.0 MHz

Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

I Frequency Swe		ms 🗢 VBW 1 M							Contraction of the local division of the loc
	ер							M	• 1Pk Max 3[1] 3.20 dBm
20 dBm							1		2.480 591 0 GHz
10 dBm				M1			1.2	M	1[1] 8.53 dBm 2.469 483 0 GHz
	H1 2.530 dBr		manna	mahanny	human	monum	M3		
0 dBm							1		
-10 dBm							L		
-20 dBm	mannin	mm					When	mmmm	mmmmmm
-30 dBm	Marchan - mar								and a hard row
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
F 2.472 GHz Marker Table			1001 pts			4.0 MHz/			Span 40.0 MHz
Type Ref		X-Value		Y-Value		Function		Function R	esult
M1 M2	1	2.469 483 GHz 2.463 329 GHz		8.53 dBm 3.30 dBm					
M3	1	2.480 591 GHz		3.20 dBm			Ready		2025-03-03
3:06:21 AM	03/03/2025		1	11N40_AN	NT1_2422	2			\$
MultiView -	Spectrum			11N40_AM	NT1_2422	2			¢
MultiView Ref Level 27.00 Att 3	Spectrum dBm Offset 1.3 30 dB SWT 1.0	0 dB ● RBW 500 k Ims ● VBW 2 M	ιHz		NT1_2422	2			SGL Count 500/500 0 1Pk Max
MultiView Ref Level 27.00 Att Frequency Swee	Spectrum dBm Offset 1.3 30 dB SWT 1.0		ιHz		NT1_2422	2		M	Count 500/500 O 1Pk Max 3[1] 4.23 dBm
MultiView Ref Level 27.00 Att Frequency Swee	Spectrum dBm Offset 1.3 30 dB SWT 1.0		ιHz		M1				Count 500/500 O 1Pk Max 3(1) 4.23 dBm 2.439 343 0 GHz 1(1) 10.08 dBm
MultiView Ref Level 27.00 Att Frequency Swe 20 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep	ms SVBW 2 M	ιHz	5weep	M1	2 www.men.europ	M8		Count 500/500 O 1Pk Max 3 1] 4.23 dBm 2.439 343 0 GHz
MultiView Ref Level 27.00 Att Frequency Swee 20 dBm 10 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0	ms SVBW 2 M	tHz IHz Mode Auto S	5weep	M1		M3		Count 500/500 O 1Pk Max 3(1) 4.23 dBm 2.439 343 0 GHz 1(1) 10.08 dBm
MultiView Ref Level 27.00 Att 2 Frequency Swee 20 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep	ms SVBW 2 M	tHz IHz Mode Auto S	5weep	M1		M3		Count 500/500 O 1Pk Max 3(1) 4.23 dBm 2.439 343 0 GHz 1(1) 10.08 dBm
MultiView Ref Level 27.00 Att Sime Frequency Swee 20 dBm 10 dBm 10 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView Ref Level 27.00 Att Sime Frequency Swee 20 dBm 10 dBm 10 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView = Ref Level 27.00 Att = Frequency Swee 20 dBm 10 dBm 10 dBm 20 dBm 20 dBm 10 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 O 1Pk Max 3(1) 4.23 dBm 2.439 343 0 GHz 1(1) 10.08 dBm
MultiView = Ref Level 27.00 Att = Frequency Swee 20 dBm 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView • Ref Level 27.00 • Att = I Frequency Swee 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView • Ref Level 27,00 • Att • IFrequency Swe • 20 dBm • 10 dBm • • •	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView Ref Level 27.00 Att 3 Frequency Swe 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView • Ref Level 27.00 Att = Frequency Swee 20 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView Ref Level 27,00 Att Frequency Swe 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr	M2 M2 M2	tHz IHz Mode Auto S	5weep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3[1] 4.23 dBm 2.439 343 0 GHz 1[1] 10.08 dBm 2.425 596 0 GHz
MultiView Ref Level 27,00 Att Frequency Swe 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	Spectrum dBm Offset 1.3 20 dB SWT 1.0 ep H1 4.080 dBr MMMMM Mby MA	ms VBW 2 M	tHz Hz Mode Auto S	Sweep	M1		What has a second secon	M	Count 500/500 0 1Pk Max 3 11 4.23 dBm 2.439 343 0 GHz 2.425 596 0 GHz 4 4 4 4 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz
MultiView Ref Level 27,00 Att Frequency Sweet 20 dBm Image: Constraint of the system of the sy	Spectrum dBm Offset 1.3 30 dB SWT 1.0 rep H1 4.080 dBr MMMM MMM MM	×Value 2.425 596 GHz	tHz Hz Mode Auto S	Sweep	M1	90000000000000000000000000000000000000	What has a second secon	M	Count 500/500 0 1Pk Max 3 11 4.23 dBm 2.439 343 0 GHz 2.425 596 0 GHz 4 4 4 4 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz
Att 3 Frequency Swee 20 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 gBm -70 </td <td>Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM</td> <td>ms VBW 2 M</td> <td>tHz Hz Mode Auto S</td> <td>Sweep</td> <td>M1</td> <td>90000000000000000000000000000000000000</td> <td>What has a second secon</td> <td>M</td> <td>Count 500/500 0 1Pk Max 3 11 4.23 dBm 2.439 343 0 GHz 2.425 596 0 GHz 4 4 4 4 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz</td>	Spectrum dBm Offset 1.3 30 dB SWT 1.0 ep H1 4.080 dBr MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	ms VBW 2 M	tHz Hz Mode Auto S	Sweep	M1	90000000000000000000000000000000000000	What has a second secon	M	Count 500/500 0 1Pk Max 3 11 4.23 dBm 2.439 343 0 GHz 2.425 596 0 GHz 4 4 4 4 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz 5 596 0 GHz

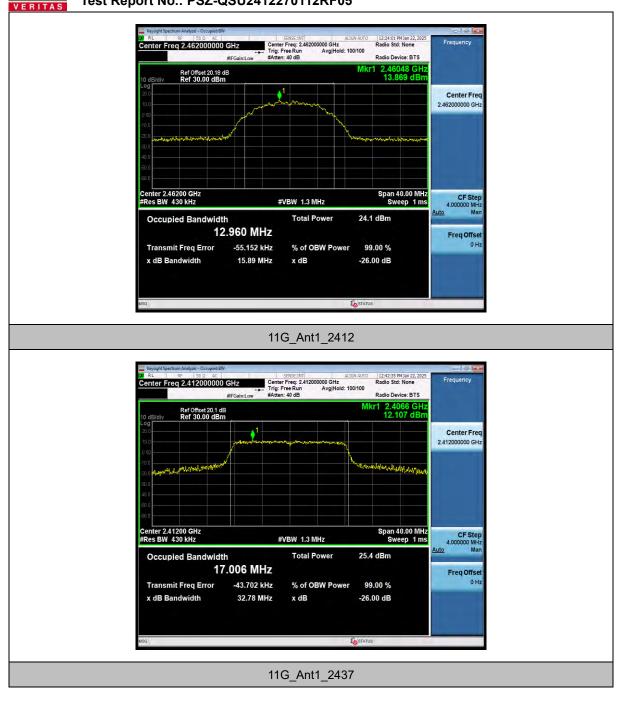
Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

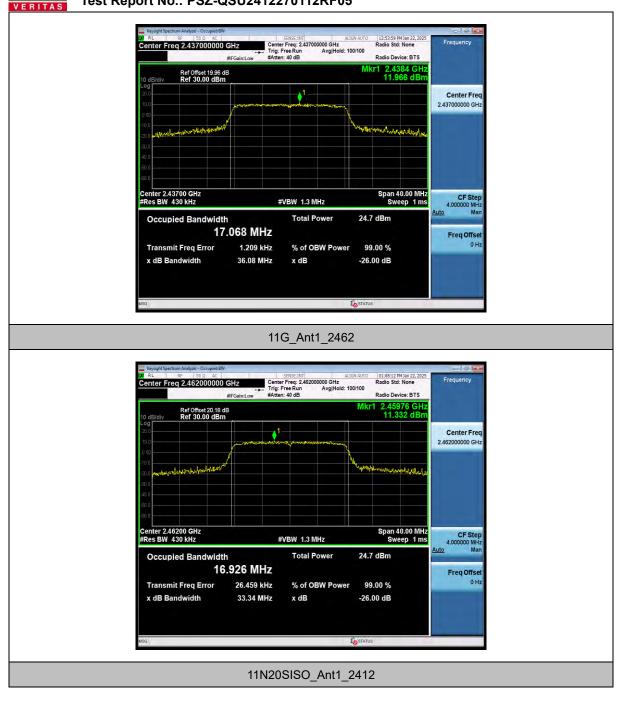
	Offeret 1					SGL
Att		1.30 dB • RBW 500 kHz 1.01 ms • VBW 2 MHz	Mode Auto Sweep			Count 500/500
Frequency Sw	veep			T	1	O 1Pk Max
20 dBm				· · · · · · · · · · · · · · · · · · ·	()	M3[1] 5.07 dBm 2.459 343 0 GHz
				M1		M1[1] 10.39 dBm
10 dBm			man man man	I providence and the	mohin	2.445 357 0 GHz
0 dBm	H1 4.390 d	Bm			- Ch	
-10 dBm					h	
-20 dBm-	- man	nelsaur			White	and Martin Mark Marya
warmen and	manhammanham	*	-			and the second of the second o
-30 dBm						
-40 dBm	-					
io doni						
-50 dBm	-	-				
-60 dBm	_					
oo ubiii						
-70 dBm						
F 2.442 GHz Marker Table			1001 pts	8.0 MHz/		Span 80.0 MHz
Type Re		X-Value	Y-Value	Function	P	Function Result
M1 M2	1	2.445 357 GHz 2.424 358 GHz	10.39 dBm 4.51 dBm			
M3	1	2.459 343 GHz	5.07 dBm			2025-03-03
			11N40_A	NT1_2452		\$
MultiView	Spectrum		11N40_A	NT1_2452		 *
Ref Level 27.0	00 dBm Offset 1	1.30 dB 86W 500 kHz	-	NT1_2452		5GL 5.000 500 500 500 500 500 500 500 500 50
Ref Level 27.0 Att	00 dBm Offset 1 30 dB SWT 1	1.30 dB ● RBW 500 kHz 1.01 ms ● VBW 2 MHz	-	NT1_2452		SGL Count 500/500 0 1Pk Max
Ref Level 27.0 Att Frequency Sw	00 dBm Offset 1 30 dB SWT 1		-	NT1_2452	7 7	Count 500/500 0 1Pk Max M3[1] -1.72 dBm
Ref Level 27.0 Att Frequency Sw	00 dBm Offset 1 30 dB SWT 1		Mode Auto Sweep	NT1_2452		Count 500/500 O 1Pk Max M3[1] -1.72 dBm -2.480 302 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm	00 dBm Offset 1 30 dB SWT 1	1.01 ms • VBW 2 MHz	Mode Auto Sweep			Count 500/500 O 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm	00 dBm Offset 1 30 dB SWT 1	1.01 ms ● VBW 2 MHz	Mode Auto Sweep		mala Maria	Count 500/500 O 1Pk Max M3[1] -1.72 dBm -2.480 302 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm	00 dBm Offset 1 30 dB SWT 1	0.01 ms ● VBW 2 MHz	Mode Auto Sweep	NT1_2452	multing 13	Count 500/500 O 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm	00 dBm Offset 1 30 dB SWT 1 veep	0.01 ms ● VBW 2 MHz	Mode Auto Sweep		mula Mas	Count 500/500 O 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm	00 dBm Offset 1 30 dB SWT 1 veep	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 O 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27,0 Att Frequency Sw 20 dBm 10 dBm 0 dBm -10 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 0 dBm 20 dBm 30 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 20 dBm 10 dBm 20 dBm 40 dBm 50 dBm 40 dBm 50 dBm 60 dBm 70 dBm 50 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	0.01 ms = VBW 2 MHz ■ M2 M2 M2 M2 M2 M2 M2 M2	Mode Auto Sweep			Count 500/500 0 1Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm -2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 10 dBm 20 dBm 40 dBm 50 dBm 40 dBm 50 dBm 60 dBm 50 dBm 70 dBm 72 Ad2 GHz 8 Marker Table	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	1.01 ms = VBW 2 MHz	Mode Auto Sweep	8.0 MHz/		Count 500/500 01Pk Max M3 [1] -1.72 dBm 2.480 3020 GHz M1 [1] 9.06 dBm 2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	LOT ms = VBW 2 MHz	Mode Auto Sweep			Count 500/500 012/2 Max M3 [1] -1.72 dBm 2.480 302.0 GHz M1 [1] 9.06 dBm 2.459 043 0 GHz
Ref Level 27.0 Att Frequency Sw 20 dBm 10 dBm 10 dBm 20 dBm 40 dBm 50 dBm 40 dBm 50 dBm 60 dBm 70 dBm F2.462 GHz Marker Table Type	00 dBm Offset 1 30 dB SWT 1 veep H1-3.060 d	1.01 ms = VBW 2 MHz	Mode Auto Sweep	8.0 MHz/		Count 500/500 01Pk Max M3[1] -1.72 dBm 2.480 302 0 GHz M1[1] 9.06 dBm 2.459 043 0 GHz

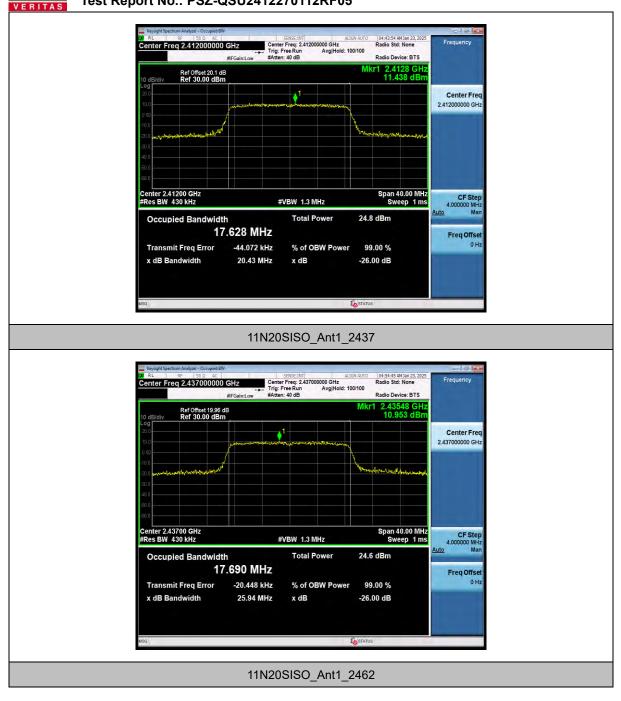
Huarui 7layers High TeCHnology (Suzhou) Co., Ltd.

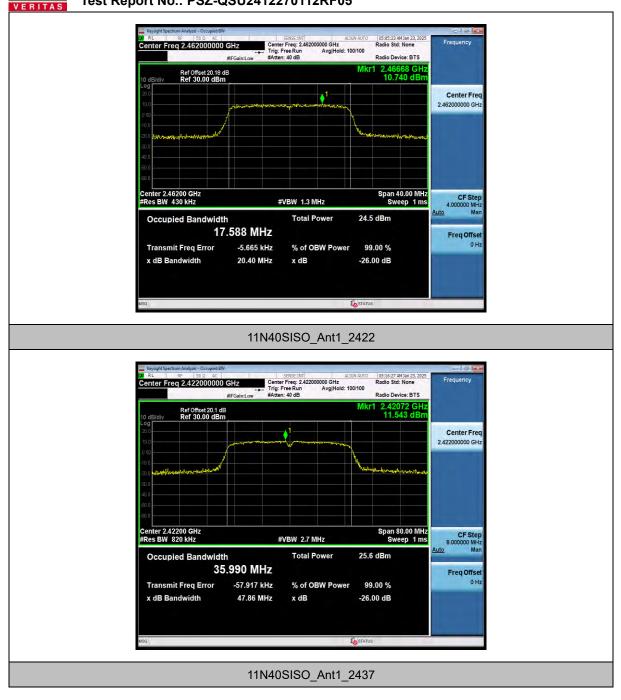

OCCUPIED CHANNEL BANDWIDTH

TEST RESULT


TestMode	Antenna	Channel Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	12.962	2405.4205	2418.3825		
11B	Ant1	2437	13.038	2430.3865	2443.4245		
		2462	12.960	2455.4649	2468.4249		
		2412	17.006	2403.4533	2420.4593		
11G	Ant1	2437	17.068	2428.4672	2445.5352		
		2462	16.926	2453.5635	2470.4895		
		2412	17.628	2403.1419	2420.7699		
11N20SISO	Ant1	2437	17.690	2428.1346	2445.8246		
		2462	17.588	2453.2003	2470.7883		
		2422	35.990	2403.9471	2439.9371		
11N40SISO	Ant1	2437	36.038	2418.9740	2455.0120		
		2452	35.925	2434.0772	2470.0022		


TEST GRAPHS





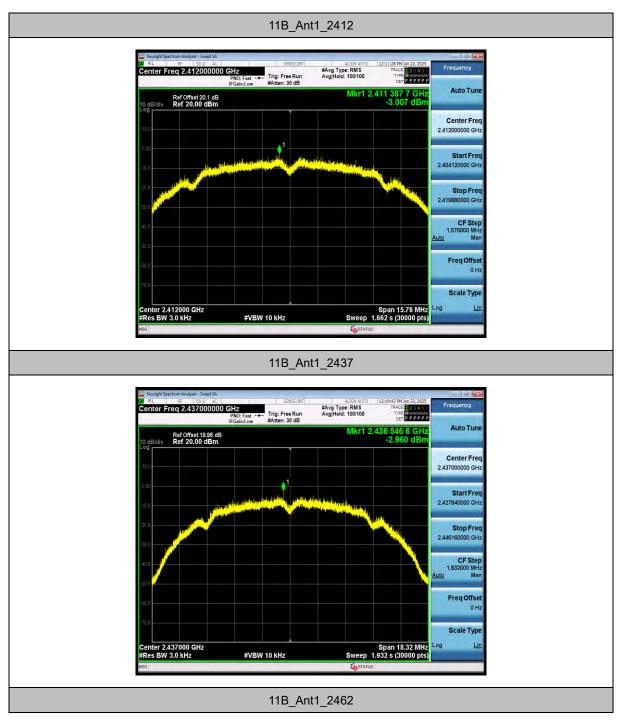
BUREAU VERITAS Test Report No.: PSZ-QSU2412270112RF05 MAXIMUM CONDUCTED OUTPUT POWER

TEST RESULT PEAK

TestMode	TX Mod.	Frequency [MHz]	Peak power [dBm] Ant1	MAX Peak power [mw]	Limit [dBm]	Verdict	Power Setting
		2412	21.23	132.74	≤30.00	PASS	
11B	SISO	2437	20.56	113.76	≤30.00	PASS	
		2462	20.39	109.40	≤30.00	PASS	
		2412	24.62	289.73	≤30.00	PASS	
11g	SISO	2437	24.52	283.14	≤30.00	PASS	
		2462	24.24	265.46	≤30.00	PASS	
		2412	24.00	251.19	≤30.00	PASS	
11N20	SISO	2437	24.12	258.23	≤30.00	PASS	
		2462	23.56	226.99	≤30.00	PASS	
		2422	24.53	283.79	≤30.00	PASS	
11N40	SISO	2437	24.88	307.61	≤30.00	PASS	
		2452	24.48	280.54	≤30.00	PASS	

TEST RESULT AVERAGE

TestMode	TX Mod.	Freq. [MHz]	Avg.power [dBm] Ant1	Power Setting
		2412	17.80	
11B	SISO	2437	17.47	
		2462	16.94	
	SISO	2412	18.22	
11g		2437	18.64	
		2462	17.43	
		2412	17.86	
11N20	SISO	2437	18.61	
		2462	17.24	
		2422	17.87	
11N40	SISO	2437	18.53	
		2452	17.98	


MAXIMUM POWER SPECTRAL DENSITY

TEST RESULT

TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-3.01	≤8.00	PASS
11B	Ant1	2437	-2.96	≤8.00	PASS
		2462	-3.45	≤8.00	PASS
		2412	-5.72	≤8.00	PASS
11G	Ant1	2437	-6.25	≤8.00	PASS
		2462	-6.60	≤8.00	PASS
		2412	-5.66	≤8.00	PASS
11N20SISO	Ant1	2437	-5.85	≤8.00	PASS
		2462	-5.94	≤8.00	PASS
		2422	-8.08	≤8.00	PASS
11N40SISO	Ant1	2437	-8.39	≤8.00	PASS
		2452	-8.48	≤8.00	PASS

TEST GRAPHS

