

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

Product Name :	Blaze Evercade EXP Handheld - EFIGS
Trademark :	EVERCADE
Model Name :	FG-HHEX-HHC-EFIGS
Family Model:	FG-HHEX-HHC-GU, FG-HHEX-HHC-USA,
	BM-HHEX-HHC-EFIGS-LTD
Report No. :	S22102604502001
FCC ID :	2A3DY-2022HEFIGSV

Prepared for

Blaze Entertainment Ltd.

208, Spirella Building, Bridge Road, Letchworth Garden City, Hertfordshire, SG6 4ET, UK

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Page 2 of 56

TEST RESULT CERTIFICATION

Applicant's name	Blaze Entertainment Ltd.
Address	208, Spirella Building,Bridge Road,Letchworth Garden City,
I	Hertfordshire, SG6 4ET,UK
Manufacturer's Name I	LiteStar Electronics Technology Co.,LTD.
Address	Xingchen Science & Technology Park,Lianbi Road, Wulian Industry Area
I	Fenggang Town, Dongguan, China
Product description	
Product name I	Blaze Evercade EXP Handheld - EFIGS
Trademark	EVERCADE
Model Name	FG-HHEX-HHC-EFIGS
Family Model	FG-HHEX-HHC-GU, FG-HHEX-HHC-USA, BM-HHEX-HHC-EFIGS-LTD
Standards	FCC 47 CFR Part 2(2.1093)
/	ANSI/IEEE C95.1-1992
I	IEEE Std 1528-2013
Ĩ	Published RF exposure KDB procedures

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Test Sample Number S221026045002

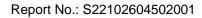
Date of Test

Date (s) of performance of tests Nov. 01, 2022 Date of Issue Nov. 07, 2022 Test Result Pass

> Prepared By (Test Engineer)

 $\int_{\alpha} cob$. Chen (Jacob Chen)

Approved By (Lab Manager)


:

(Alex Li)

**** ** Revision History ** ****

REV.	DESCRIPTION	ISSUED DATE	REMARK	
Rev.1.0	Initial Test Report Release	Nov. 07, 2022	Jacob Chen	

TABLE OF CONTENTS

Page 4 of 56

ACCREDITED

Certificate #4298.01

NTEK 北测

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	7
	1.4. Test specification(s)	8
	1.5. Ambient Condition	8
2.	SAR Measurement System	9
	2.1. SATIMO SAR Measurement Set-up Diagram	9
	2.2. Robot	10
	2.3. E-Field Probe	.11
	2.3.1. E-Field Probe Calibration	.11
	2.4. SAM phantoms	.12
	2.4.1. Technical Data	.13
	2.5. Device Holder	14
	2.6. Test Equipment List	.15
3.	SAR Measurement Procedures	17
	3.1. Power Reference	17
	3.2. Area scan & Zoom scan	17
	3.3. Description of interpolation/extrapolation scheme	19
	3.4. Volumetric Scan	.19
	3.5. Power Drift	19
4.	System Verification Procedure	.20
	4.1. Tissue Verification	.20
	4.1.1. Tissue Dielectric Parameter Check Results	21
	4.2. System Verification Procedure	22
	4.2.1. System Verification Results	23
5.	SAR Measurement variability and uncertainty	24
	5.1. SAR measurement variability	24
	5.2. SAR measurement uncertainty	24
6.	RF Exposure Positions	25
	6.1. Generic Device	25
7.	RF Output Power	26
	7.1. WLAN Output Power	26
	7.1.1. Output Power Results Of WLAN 2.4G	26
8.	Antenna Location	27
9.	SAR Results	27
	9.1. SAR measurement results	27
	9.1.1. SAR measurement Result of WLAN 2.4G	27
	9.2. Simultaneous Transmission Analysis	.28

Page 5 of 56

10.	Appendix A. Photo documentation	28
11.	Appendix B. System Check Plots	29
12.	Appendix C. Plots of High SAR Measurement	32
13.	Appendix D. Calibration Certificate	35

Page 6 of 56

Report No.: S22102604502001

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

Page 7 of 56

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for FG-HHEX-HHC-EFIGS are as follows.

	Max Reported SAR Value(W/kg)	
Band	1-g Body	
	(Separation distance of 0mm)	
WLAN 2.4G	0.251	

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	Blaze Evercade EXP Handheld - EFIGS					
Trade Name	EVERCADE					
Model Name	FG-HHEX-HHC-EFIGS	FG-HHEX-HHC-EFIGS				
Family Model	FG-HHEX-HHC-GU, FG-HHEX-HHC-USA, BM-HHEX-HHC-EFIGS-LTD					
Model Difference	All the model are the same circuit and RF module, except the model names.					
FCC ID	2A3DY-2022HEFIGSV					
Device Phase	Identical Prototype					
Exposure Category	General population / Uncontrolled environment					
Antenna Type	FPC Antenna					
Battery Information	DC 3.7V, 3000mAh, 11.1W	/h				
Hardware version	N/A					
Software version	N/A					
Device Operating Configurations						
Supporting Mode(s)	WLAN 2.4G					
Test Modulation	WLAN(DSSS/OFDM)					
Device Class	В					
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)			
	WLAN 2.4G	4G 2412-2462				

Page 8 of 56

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

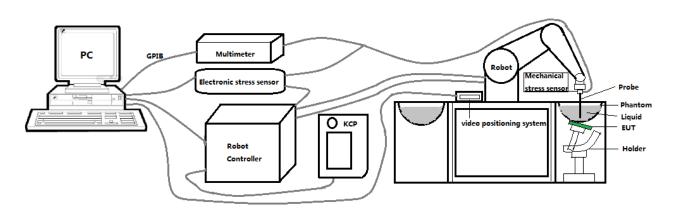
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting

KDB 447498 D01 General RF Exposure Guidance

KDB 248227 D01 802.11 Wi-Fi SAR

1.5. Ambient Condition


Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

Page 9 of 56

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

Page 10 of 56

EDITED

ertificate #4298.01

NTEK 北测®

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.08 dB
- Axial isotropy: ±0.01 dB
- Hemispherical Isotropy: ±0.01 dB
- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.
- Lower detection limit: 8mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

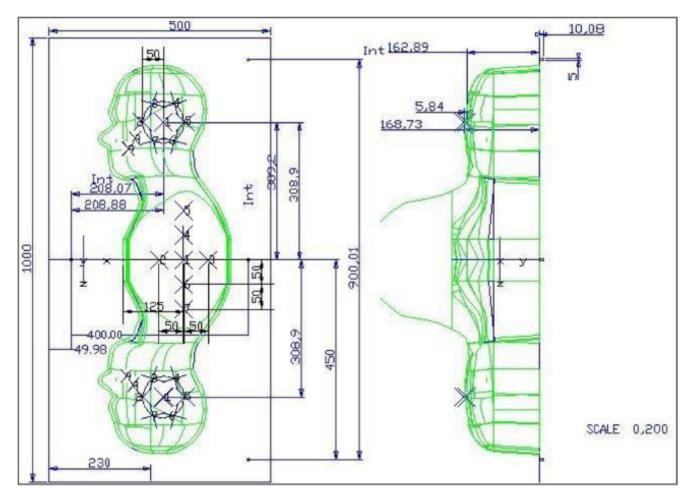
Page 12 of 56

ACCREDITED

Certificate #4298.01

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119


The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

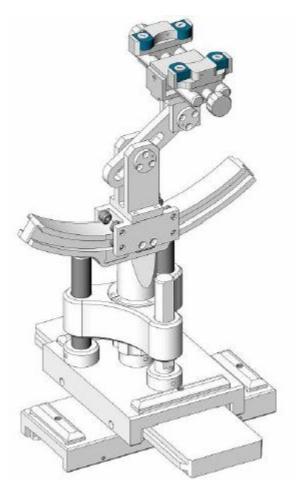
NTEK LIW

Page 13 of 56

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02

Serial Number	Left Head(mm)		Right Head(mm)		Flat Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-


The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 µm.

Page 14 of 56

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 16/15 MSH100	Delrin	3.7	0.005

NTEK 北测

Page 15 of 56 Certificate #4298.01

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

ACCREDITED

Devices used during the test described are marked \boxtimes

Image: Constraint of the second sec		Manufacturer	Name of	Type/Model	Serial Number	Calibration		
MVG E FIELD PROBE SSE2 SN 08/16 EPG0287 2022 2023 MVG 750 MHz Dipole SID750 SN 03/15 DIP Mar. 01, Mar. 01, Feb. 28, 0G750-355 2021 2024 MVG 835 MHz Dipole SID750 SN 03/15 DIP Mar. 01, Feb. 28, 0G835-347 2021 2024 MVG 900 MHz Dipole SID835 SIN 03/15 DIP Mar. 01, Feb. 28, 0G800-348 2021 2024 MVG 900 MHz Dipole SID900 SIN 03/15 DIP Mar. 01, Feb. 28, 0G800-349 2021 2024 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Mar. 01, Feb. 28, 1G900-350 2021 2024 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Mar. 01, Feb. 28, 1G900-350 2021 2024 MVG 2000 MHz Dipole SID2000 2G000-351 2021 2024 MVG 2300 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, Feb. 28, 2G300-358 2021 2024 MVG 2600 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, Feb. 28, 2G21 2024		Manufacturer	Equipment	i ype/wouei	Senar Number	Last Cal.	Due Date	
Image: constraint of the section of the sec		MVG		SSE2	SN 08/16 EPC0287	Feb. 01,	Jan. 31,	
Image: model matrix intermediate		NIV G		55L2	SN 00/10 EF 90207	2022	2023	
Image: constraint of the system of		MVG	750 MHz Dinole	SID750	SN 03/15 DIP	Mar. 01,	Feb. 28,	
Image: Marked marked base in the section of the sectin of the sectin of the section of the section of the section of t		NIV O		010730	0G750-355	2021	2024	
Image: constraint of the section of the sec		MVG	835 MHz Dinole		SN 03/15 DIP	Mar. 01,	Feb. 28,	
MVG 900 MHz Dipole SID900 0G900-348 2021 2024 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Mar. 01, 1G800-349 Feb. 28, 2024 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Mar. 01, 1G900-350 Feb. 28, 2024 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Mar. 01, 2000 Feb. 28, 2024 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Mar. 01, 2021 Feb. 28, 2024 MVG 2000 MHz Dipole SID2000 SN 03/16 DIP Mar. 01, 2G300-358 Feb. 28, 2021 2024 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, 2G450-352 Feb. 28, 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2G600-356 Feb. 28, 2021 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 Feb. 28, 2024 2024 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier		NIV O		010000	0G835-347	2021	2024	
Image: constraint of the second sec		MVG	900 MHz Dipole	0000 SID0	SN 03/15 DIP	Mar. 01,	Feb. 28,	
$ \left \begin{array}{c c c c c c } \hline MVG & 1800 \ MHz \ Dipole \\ 1900 \ MHz \ Dipole \ MHz \ MVG \ Dipole \ MHz \ MVG \ Dipole \ MHz \ MVG \ Dipole \ MHz \ M$		NIV O		010900	0G900-348	2021	2024	
$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \end{tabular} \\ \hline \end{tabular} \end{tabular} \hline \end{tabular} $		MVC	1800 MHz Dipolo	SID1800	SN 03/15 DIP	Mar. 01,	Feb. 28,	
Image: MVG 1900 MHz Dipole SID1900 1G900-350 2021 2024 Image: MVG 2000 MHz Dipole SID2000 SIN 03/15 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2300 MHz Dipole SID2000 SIN 03/16 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2300 MHz Dipole SID2300 SIN 03/16 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2450 MHz Dipole SID2450 SIN 03/15 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2450 MHz Dipole SID2450 SIN 03/15 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2600 MHz Dipole SID2600 SIN 03/15 DIP Mar. 01, Keb. 28, 2024 2024 Image: MVG 2600 MHz Dipole SID2600 SIN 13/14 WGA 33 Mar. 01, Keb. 28, 2024 2024 Image: MVG 5000 MHz Dipole SWG5500 SIN 13/14 WGA 33 Mar. 01, Keb. 28, 2024 2024 Image: MVG Liquid measurement Kit SCLMP SIN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A		NIV G		3101000	1G800-349	2021	2024	
Image: border		MVC	1000 MHz Dipolo	SID1000	SN 03/15 DIP	Mar. 01,	Feb. 28,	
Image: MVG 2000 MHz Dipole SID2000 2G000-351 2021 2024 Image: MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Mar. 01, 2024 Feb. 28, 2021 2024 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, 2024 Feb. 28, 2021 2024 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, 2024 Feb. 28, 2021 2024 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2024 Feb. 28, 2021 2024 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2021 2024 Image: MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 2024 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier <td></td> <td>NIV G</td> <td></td> <td>0061010</td> <td>1G900-350</td> <td>2021</td> <td>2024</td>		NIV G		0061010	1G900-350	2021	2024	
Image: border			2000 MHz Dipolo	SID2000	SN 03/15 DIP	Mar. 01,	Feb. 28,	
MVG 2300 MHz Dipole SID2300 2G300-358 2021 2024 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, 2G450-352 Feb. 28, 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2G600-356 Feb. 28, 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2021 Feb. 28, 2021 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 Feb. 28, 2021 2024 MVG Fower Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Keister CMU200 117858 Jun. 17, 2022 2023 R&S Wideband radio communication tester CMW500 103917 Jun. 17, 2022		NIV G		302000	2G000-351	2021	2024	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline \end$			2200 MHz Dipolo	SID3300	SN 03/16 DIP	Mar. 01,	Feb. 28,	
MVG 2450 MHz Dipole SID2450 2G450-352 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, Keb. 28, 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, Keb. 28, 2021 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 2024 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 117858 Jun. 17, 2022 2023 R&S Wideband radio communication tester CMW500 103917 Jun. 17, 2022 2023 HP Network Analyzer 8753D 3410J01136 Jun. 17, Jun. 16, 2023 2023		NV G		3102300	2G300-358	2021	2024	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline \end{tabular} & tabular$			2450 MHz Dinala	SID2450	SN 03/15 DIP	Mar. 01,	Feb. 28,	
Image: MVG2600 MHz DipoleSID26002G600-35620212024Image: MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Mar. 01, 2021Feb. 28, 20212024Image: MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierCMU200117858Jun. 17,Jun. 16,Image: MVGR&SCMW500103917Jun. 17,Jun. 16,Image: MVGHPNetwork Analyzer8753D3410J01136Jun. 17,Jun. 16,		NIV G		5102450	2G450-352	2021	2024	
$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		MVC	2600 MHz Dipolo	SID2600	SN 03/15 DIP	Mar. 01,	Feb. 28,	
Image: MVG5000 MHz DipoleSWG5500SN 13/14 WGA 3320212024Image: MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGMillivoltmeter2000117858Jun. 17, 2022Jun. 16, 2023Image: MVGR&SWideband radio communication testerCMW500103917Jun. 17, 2022Jun. 16, 2023Image: MPNetwork Analyzer8753D3410J01136Jun. 17, Jun. 16,Jun. 16,		NV G		3102000	2G600-356	2021	2024	
$ \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \e$		MVC	5000 MHz Dipolo	ON/OFF00	SNI 12/14 M/CA 22	Mar. 01,	Feb. 28,	
Image: MVGMVGmeasurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRNCRImage: MVGMillivoltmeter20004072790NCRNCRNCRImage: MVGUniversal radio communication testerCMU200117858Jun. 17, 2022Jun. 16, 2023Jun. 16, 2023Image: MVGR&SWideband radio communication testerCMW500103917Jun. 17, 2022Jun. 16, 2023Image: MPNetwork Analyzer8753D3410J01136Jun. 17, Jun. 16,Jun. 17, Jun. 16,		NIV G		300000	SN 15/14 WGA 55	2021	2024	
Image: ModelImage: ModelModelModelImage: ModelMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: ModelKEITHLEYMillivoltmeter20004072790NCRNCRImage: ModelMillivoltmeter20004072790NCRNCRImage: ModelUniversal radio communication testerCMU200117858Jun. 17, 2022Jun. 16, 2023Image: ModelMillivoltmeterCMU200103917Jun. 17, 2022Jun. 16, 2023Image: ModelCMW500103917Jun. 17, 2022Jun. 16, 2023Image: ModelCMW5003410J01136Jun. 17, Jun. 16,Jun. 16,		MVC	Liquid			NOD		
KEITHLEYMillivoltmeter20004072790NCRNCRImage: Rest or R		NIV G	measurement Kit	SOLIVIE	SN 21/15 OCPG 72	NCR	NCR	
Image: Constraint of the constra	\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR	
R&S communication tester CMU200 117858 Jun. 17, 2022 Jun. 16, 2022 2023 R&S Wideband radio communication tester CMW500 103917 Jun. 17, 2022 Jun. 16, 2023 HP Network Analyzer 8753D 3410J01136 Jun. 17, 2021 Jun. 16, 2023	\square	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR	
Image: Naccommunication testerCMU20011785820222023Image: Naccommunication testerWideband radio communication testerCMW500103917Jun. 17, 2022Jun. 16, 2023Image: Naccommunication testerCMW500103917Jun. 17, 2022Jun. 16, 2023Image: Naccommunication testerCMW5003410J01136Jun. 17, Jun. 16,			Universal radio			1 47	1 10	
testertesterR&SWideband radio communication testerCMW500103917Jun. 17, 2022Jun. 16, 2023HPNetwork Analyzer8753D3410J01136Jun. 17, Jun. 16,		R&S	communication	CMU200	117858			
R&S communication tester CMW500 103917 Jun. 17, 2022 Jun. 16, 2022 HP Network Analyzer 8753D 3410J01136 Jun. 17, 2013 Jun. 16, 2023			tester			2022	2023	
Image: Name Rase communication CMW500 103917 2022 2023 Image: tester tester 103917 2022 2023 2023 Image: tester HP Network Analyzer 8753D 3410J01136 Jun. 17, Jun. 16,			Wideband radio					
tester Jun. 17, HP Network Analyzer 8753D 3410J01136		R&S	communication	CMW500	103917			
Network Analyzer 8753D 3410J01136			tester			2022	2023	
		НР			0440 104400	Jun. 17,	Jun. 16,	
		LIE	Network Analyzer	8753D	3410J01136	2022	2023	

	Pa
--	----

age 16 of 56

Report No.: S22102604502001

\boxtimes	Agilent	MXG Vector Signal Generator	N5182A MY47070		Jun. 16, 2022	Jun. 15, 2023
\boxtimes	Agilent	Power meter	E4419B	MY45102538	Jun. 17, 2022	Jun. 16, 2023
\boxtimes	Agilent	Power sensor	E9301A	MY41495644	Jun. 17, 2022	Jun. 16, 2023
	Agilent	Power sensor	E9301A	US39212148	Jun. 17, 2022	Jun. 16, 2023
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Jul. 17, 2020	Jul. 16, 2023

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

NTEK 北测[®]

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Page 17 of 56

(b) Read the WWAN RF power level from the base station simulator.

(c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.

- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Page 18 of 56

ACCREDITED

Certificate #4298.01

NTEK 北测

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		\leq 3 GHz	> 3 GHz		
		$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
		$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
		\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm		
atial resolu	ition: Δx _{Area} , Δy _{Area}	When the x or y dimension of measurement plane orientation the measurement resolution m x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one		
patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$ \le 2 \text{ GHz:} \le 8 \text{ mm} \\ 2 - 3 \text{ GHz:} \le 5 \text{ mm}^* $ $ 3 - 4 \text{ GHz:} \le 5 \text{ mm}^* \\ 4 - 6 \text{ GHz:} \le 4 \text{ mm}^* $			
uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
x, y, z		$ \begin{array}{c c} 3 - 4 \text{ GHz:} \geq 28 \text{ mr} \\ 2 30 \text{ mm} \end{array} \begin{array}{c} 3 - 4 \text{ GHz:} \geq 28 \text{ mr} \\ 4 - 5 \text{ GHz:} \geq 25 \text{ mr} \\ 5 - 6 \text{ GHz:} \geq 22 \text{ mr} \end{array} $			
	atial resolution problematical resolution problematical resolution patial resolution	graded grid $\Delta z_{Zoom}(n>1):$ between subsequent points	n closest measurement point obe sensors) to phantom surface $5 \pm 1 \text{ mm}$ from probe axis to phantom reasurement location $30^{\circ} \pm 1^{\circ}$ atial resolution: $\Delta x_{Area}, \Delta y_{Area}$ $\leq 2 \text{ GHz} \leq 15 \text{ mm}$ $2-3 \text{ GHz} \leq 12 \text{ mm}$ atial resolution: $\Delta x_{Area}, \Delta y_{Area}$ When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test $2 - 3 \text{ GHz} \leq 5 \text{ mm}^*$ patial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$ $\leq 2 \text{ GHz} \leq 8 \text{ mm}$ $2-3 \text{ GHz} \leq 5 \text{ mm}^*$ uniform grid: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}$ $\Delta z_{Zoom}(1)$: between to phantom surface $\leq 4 \text{ mm}$ $\leq 1.5 \cdot \Delta z$ $\Delta z_{Zoom}(n>1)$: between subsequent points $\leq 1.5 \cdot \Delta z$		

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

NTEK 北测

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

Page 19 of 56

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

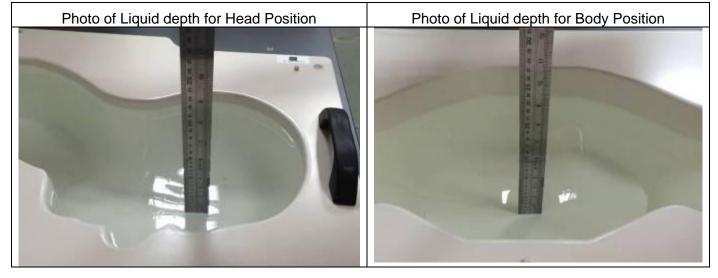
3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than $\pm 5\%$, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

NTEK 北测[®]


The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

ertificate #4298.01

Page 20 of 56

Ingredients (% of weight)	Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)					Body ⁻	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

NTEK 北测[®]

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

Page 21 of 56

EDITED

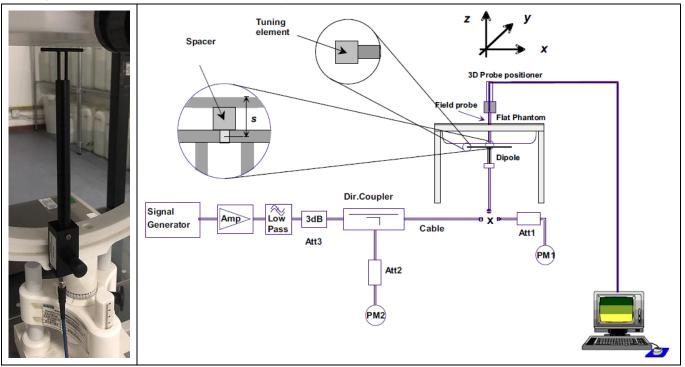
ertificate #4298.01

T :	Measured	Target T	issue	Measure	d Tissue	1.1.1.1.1.1		
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Liquid Temp.	Test Date	
Head	2450	39.20	1.80	37.57	1.77	21.7 °C	Nov. 01, 2022	
2450	2400	(37.24~41.16)	(1.71~1.89)	57.57	1.//	21.7 0	1100.01,2022	

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

Page 22 of 56

4.2. System Verification Procedure


NTEK 北测

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

ACCREDITED

Certificate #4298.01

The system verification is shown as below picture:

4.2.1. System Verification Results

NTEK 北测[®]

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Page 23 of 56

ACCREDITED

Certificate #4298.01

System	Target SA (±10		Measure (Normalize		Liquid		
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date	
2450MHz	53.69 (48.33~59.05)	23.94 (21.55~26.33)	55.33	21.96	21.7 °C	Nov. 01, 2022	

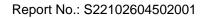
NTEK LIN CERTIFICACE

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.


2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

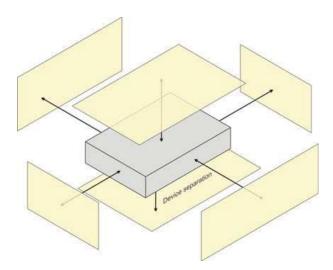
4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. **RF Exposure Positions**

NTEK 北测


6.1. Generic Device

The SAR evaluation shall be performed for surface of the DUT that are accessible during intended use, as indicated in Figure 6.1. Adjust the distance between the device surface and the flat phantom to 0mm.

Page 25 of 56

ACCREDITED

Certificate #4298.01

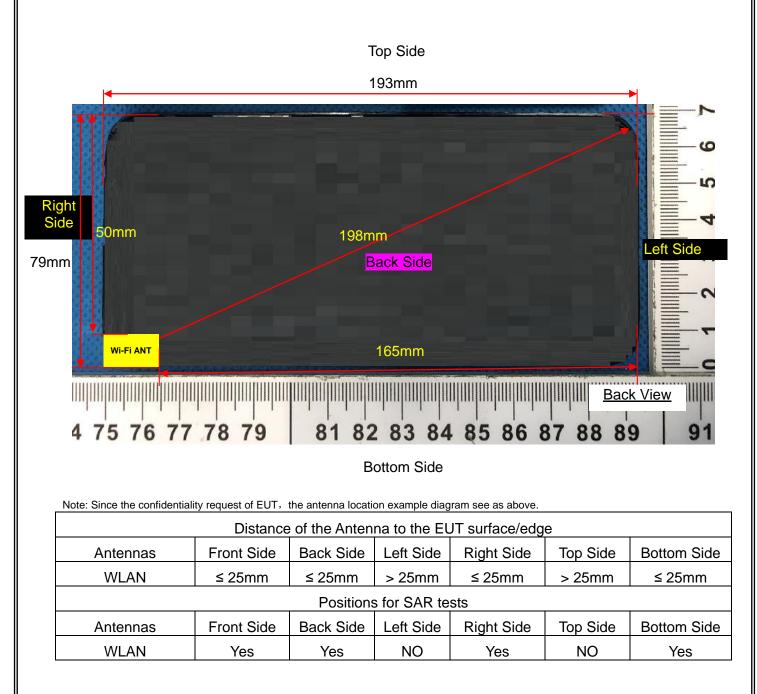
NTEK 北测®

Certificate #4298.01 Page 26 of 56

7. RF Output Power

7.1. WLAN Output Power

7.1.1. Output Power Results Of WLAN 2.4G


Mode	Channel	Frequency (MHz)	Tune-up	Output Power (dBm)
	1	2412	17.50	17.29
802.11b	6	2437	17.50	16.78
	11	2462	17.50	15.85
	1	2412	17.00	16.51
802.11g	6	2437	17.00	16.00
	11	2462	17.00	14.84
000 44.5	1	2412	17.00	16.02
802.11n	6	2437	17.00	16.85
HT20	11	2462	17.00	14.14
000.44	3	2422	16.50	16.10
802.11n	6	2437	16.50	15.47
HT40	9	2452	16.50	14.92

NOTE: Power measurement results of WLAN 2.4G.

Page 27 of 56

8. Antenna Location

9. SAR Results

9.1. SAR measurement results

9.1.1. SAR measurement Result of WLAN 2.4G

Test	Test		SAR Value			Conducted	Tune-up	Scaled		
Position of	channel	Mode	(W/	′kg)	Power	Power	Power	SAR	Date	Plot
Body with	/Freq.		1-g	10-g	Drift(%)	(dBm)	(dBm)	1-g	Dato	1.01
0mm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 9	iðg		(abiii)	(abiii)	(W/Kg)		
Front Side	1/2412	802.11b	0.239	0.125	4.60	17.29	17.50	0.251	2022/11/01	1#
Back Side	1/2412	802.11b	0.200	0.103	2.67	17.29	17.50	0.210	2022/11/01	

Right Side	1/2412	802.11b	0.112	0.057	-2.24	17.29	17.50	0.118	2022/11/01	
Bottom	1/2412	000 11h	0.105		1.66	17.00	17.50	0.110	2022/11/01	
Side	1/2412	802.11b	0.105	0.050	1.66	17.29	17.50	0.110	2022/11/01	

Page 28 of 56

NOTE: Body SAR test results of WLAN 2.4G

9.2. Simultaneous Transmission Analysis

NO simultaneous transmissions are possible for this device.

10. Appendix A. Photo documentation

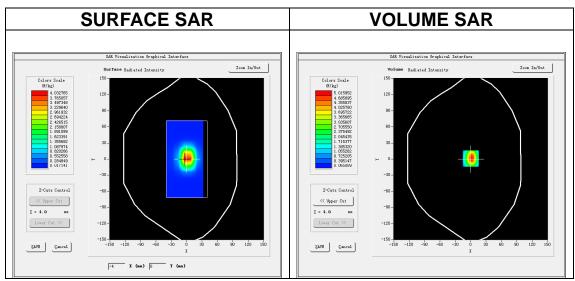
Refer to appendix Test Setup photo---SAR

11. Appendix B. System Check Plots

Table of contents

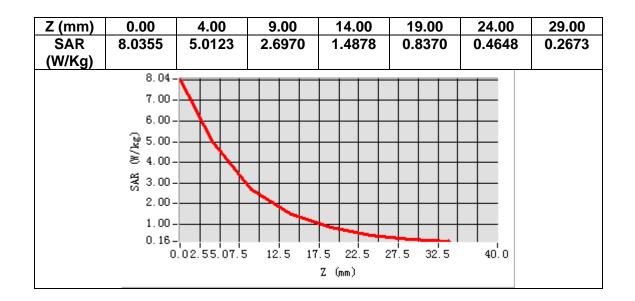
MEASUREMENT 1 System Performance Check - 2450MHz

MEASUREMENT 1


Date of measurement: 1/11/2022

A. Experimental conditions.

Area Scan	dx=12mm dy=12mm, h= 5.00 mm
<u>ZoomScan</u>	<u>7x7x7,dx=5mm dy=5mm dz=5mm</u>
Phantom	Validation plane
Device Position	Dipole
Band	<u>CW2450</u>
<u>Channels</u>	Middle
<u>Signal</u>	CW (Crest factor: 1.0)
<u>ConvF</u>	<u>1.98</u>


B. SAR Measurement Results

Frequency (MHz)	2450.000000
Relative permittivity (real part)	37.567995
Relative permittivity (imaginary part)	13.008427
Conductivity (S/m)	1.770591
Variation (%)	1.640000

Maximum location: X=0.00, Y=1.00 SAR Peak: 8.14 W/kg		
SAR 1g (W/Kg)	5.533335	

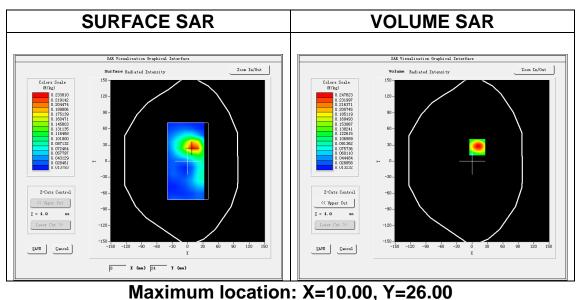
3D screen shot	Hot spot position

12. Appendix C. Plots of High SAR Measurement

Table of contents

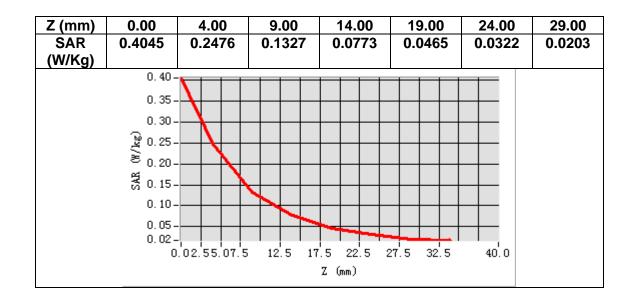
MEASUREMENT 1 WLAN 2.4G Body

MEASUREMENT 1


Date of measurement: 1/11/2022

A. Experimental conditions.

<u>Area Scan</u>	<u>dx=12mm dy=12mm, h= 5.00 mm</u>
<u>ZoomScan</u>	<u>7x7x7,dx=5mm dy=5mm dz=5mm</u>
Phantom Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11b ISM
<u>Channels</u>	Low
<u>Signal</u>	IEEE802.11b (Crest factor: 1.0)
<u>ConvF</u>	<u>1.98</u>


B. SAR Measurement Results

Frequency (MHz)	2412.000000
Relative permittivity (real part)	37.664696
Relative permittivity (imaginary part)	12.957627
Conductivity (S/m)	1.736322
Variation (%)	4.600000

SAR Peak: 0.40 W/kg		
SAR 10g (W/Kg)	0.124702	
SAR 1g (W/Kg)	0.238601	

3D screen shot	Hot spot position

13. Appendix D. Calibration Certificate

Table of contents

E Field Probe - SN 08/16 EPGO287

2450 MHz Dipole - SN 03/15 DIP 2G450-352

Extended Calibration Certificate

Page 36 of 56

COMOSAR E-Field Probe Calibration Report

Ref: ACR.60.1.21.MVGB.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 08/16 EPGO287

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/01/2022

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page 37 of 56

Report No.: S22102604502001

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.60.1.21.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	2/1/2022	JS
Checked by :	Jérôme Luc	Technical Manager	2/1/2022	JS
Approved by :	Yann Toutain	Laboratory Director	2/1/2022	Gann Toutain
	*	·	•	

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
А	Jérôme Luc	2/1/2022	Initial release

Page: 2/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH

Page 38 of 56

Report No.: S22102604502001

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.60.1.21.MVGB.A

TABLE OF CONTENTS

1	Dev	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	_5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty6	
5	Cali	bration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment	

Page: 3/10

Page 39 of 56

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.1.21.MVGB.A

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 08/16 EPGO287	
Product Condition (new / used)	Used	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.211 MΩ	
	Dipole 2: R2=0.199 MΩ	
	Dipole 3: R3=0.199 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards.

-	
	2

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH

Page 40 of 56

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Ref: ACR.60.1.21.MVGB.A

SENSITIVITY 3.2

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

LOWER DETECTION LIMIT 3.3

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° -180°) in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + d_{step} along lines that are approximately normal to the surface:

$$\text{SAR}_{\text{uncertainty}}[\%] = \delta \text{SAR}_{\text{be}} \frac{\left(d_{\text{be}} + d_{\text{step}}\right)^2}{2d_{\text{step}}} \frac{\left(e^{-d_{\text{be}}/(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{\text{be}} + d_{\text{step}}\right) < 10 \text{ mm}$$

where is the uncertainty in percent of the probe boundary effect SARuncertainty is the distance between the surface and the closest zoom-scan measurement dbe point, in millimetre is the separation distance between the first and second measurement points that Δ_{step} are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14 \text{ mm}$ at 3 GHz; **⊿**SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value.

Page: 5/10

Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vH

Page 41 of 56

Report No.: S22102604502001

NTEK 北测

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.1.21.MVGB.A

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

4 MEASUREMENT UNCERTAINTY

ilac-MR/

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 <u>SENSITIVITY IN AIR</u>

	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.72	0.66	0.77

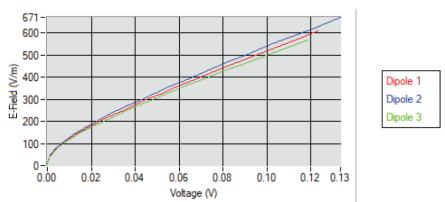
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
107	110	110

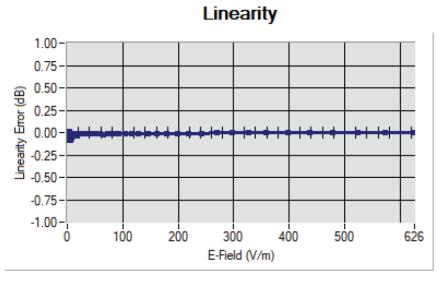
Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$

Page: 6/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH

Page 42 of 56


Report No.: S22102604502001


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.60.1.21.MVGB.A

Calibration curves

LINEARITY 5.2

Linearity:+/-1.90% (+/-0.08dB)

Page: 7/10

Page 43 of 56

Report No.: S22102604502001

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.1.21.MVGB.A

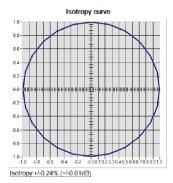
5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	<u>ConvF</u>
	$\frac{(MHz + / - 100)}{100}$	
	<u>100MHz)</u>	
HL750	750	1.49
HL850	835	1.50
HL900	900	1.61
HL1800	1800	1.73
HL1900	1900	1.91
HL2000	2000	1.97
HL2300	2300	1.92
HL2450	2450	1.98
HL2600	2600	1.87
HL3300	3300	1.79
HL3500	3500	1.85
HL3700	3700	1.79
HL3900	3900	2.07
HL4200	4200	2.21
HL4600	4600	2.25
HL4900	4900	2.05
HL5200	5200	1.80
HL5400	5400	2.05
HL5600	5600	2.16
HL5800	5800	2.07

LOWER DETECTION LIMIT: 8mW/kg

Page: 8/10

Page 44 of 56



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.60.1.21.MVGB.A

5.4 **ISOTROPY**

HL1800 MHz

Page: 9/10

Page 45 of 56

Report No.: S22102604502001

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.1.21.MVGB.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet									
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date					
Flat Phantom	MVG	SN-20/09-SAM71		Validated. No cal required.					
COMOSAR Test Bench	Version 3	Version 3 NA Vali		Validated. No cal required.					
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022					
Network Analyzer – Rohde & Schwar Calibration kit ZV-Z235		101223	05/2019	05/2022					
Multimeter	Keithley 2000	1160271	02/2020	02/2023					
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022					
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.						
Power Meter	NI-USB 5680	170100013	05/2019	05/2022					
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.					
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.					
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.					
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.					
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023					

Page: 10/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vH

Page 46 of 56

SAR Reference Dipole Calibration Report

Ref: ACR.60.8.21.MVGB.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15 DIP2G450-352

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 03/01/2021

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

Page 47 of 56

Report No.: S22102604502001

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.60.8.21.MVGB.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	3/1/2021	JS
Checked by :	Jérôme LUC	Technical Manager	3/1/2021	JS
Approved by :	Yann Toutain	Laboratory Director	3/1/2021	Gann Toutain
	•		•	2021.03.0

	Customer Name
	SHENZHEN NTEK
Distribution :	TESTING
Distribution :	TECHNOLOGY
	CO., LTD.

Issue	Name	Date	Modifications
А	Jérôme LE GALL	3/1/2021	Initial release

Page: 2/10

Page 48 of 56

Report No.: S22102604502001

SAR REFERENCE DIPOLE CALIBRATION REPORT

ACCREDITED

Ref: ACR.60.8.21.MVGB.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment	

Page: 3/10

Page 49 of 56

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.60.8.21 MVGB.A

INTRODUCTION 1

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test					
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID2450				
Serial Number	SN 03/15 DIP2G450-352				
Product Condition (new / used)	Used				

3 PRODUCT DESCRIPTION

GENERAL INFORMATION 3.1

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/10

Page 50 of 56

NTEK 北测

SAR REFERENCE DIPOLE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.8.21.MVGB.A

4 MEASUREMENT METHOD

Iac-MR

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss			
400-6000MHz	0.08 LIN			

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume Expanded Uncertainty

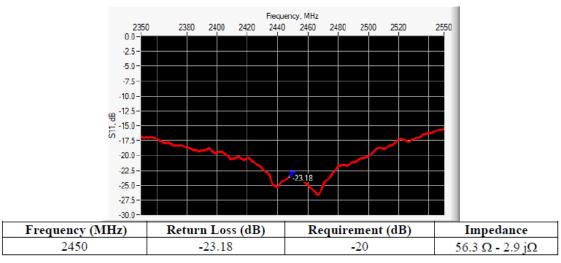
Page: 5/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

Page 51 of 56

SAR REFERENCE DIPOLE CALIBRATION REPORT

ACCREDITED


Certificate #4298.01

Ref: ACR.60.8.21.MVGB.A

	•
1 g	19 % (SAR)
- 8	
10 g	19 % (SAR)
10 g	15 /0 (5/11()

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	-	30.4 ±1 %.	-	3.6 ±1 %.	-

Page: 6/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

Page 52 of 56

Report No.: S22102604502001

NTEK 北测

SAR REFERENCE DIPOLE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.8.21.MVGB.A

2600	48.5 ±1 %.	28.8±19	6.	3.6 ±1 %.	
3000	41.5 ±1 %.	25.0 ±1 9	6.	3.6 ±1 %.	
3500	37.0±1 %.	26.4 ±1 9	6.	3.6 ±1 %.	
3700	34.7±1 %.	26.4 ±1 9	6.	3.6 ±1 %.	

7 VALIDATION MEASUREMENT

Iac-MR

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps' : 41.9 sigma : 1.88
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	24502450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

	Frequency	Relative permittivity (ε,')

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ɛ,')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %	0.89 ±10 %		
835	41.5 ±10 %	0.90 ±10 %		
900	41.5 ±10 %	0.97 ±10 %		
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %	1.23 ±10 %		
1640	40.2 ±10 %	1.31 ±10 %		
1750	40.1 ±10 %	1.37 ±10 %		
1800	40.0 ±10 %	1.40 ±10 %		
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	

Page: 7/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

Page 53 of 56

NTEK 北测

SAR REFERENCE DIPOLE CALIBRATION REPORT

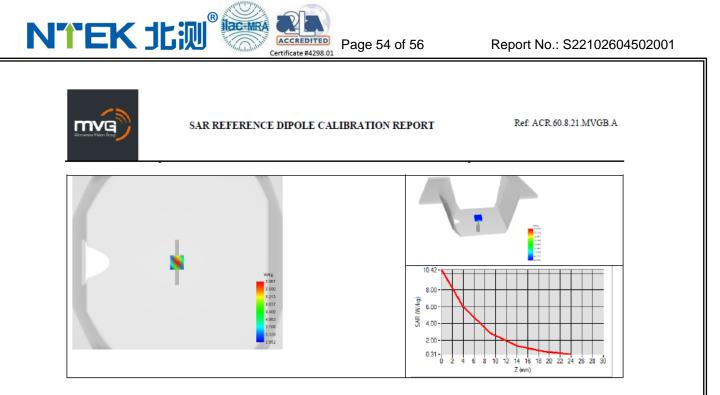
ACCREDITED

Certificate #4298.01

ILAC-MRA

Ref: ACR.60.8.21.MVGB.A

2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %	41.9	1.80 ±10 %	1.88
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	


7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5	16.8		
1640	34.2		18.4	
1750	36.4	19.3		
1800	38.4	20.1		
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.69 (5.37)	24	23.94 (2.39)
2600	55.3	24.6		
3000	63.8		25.7	
3500	67.1		25	

Page: 8/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

Page: 9/10

Page 55 of 56

SAR REFERENCE DIPOLE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.60.8.21.MVGB.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-13/09-SAM68		Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	randatea. He car	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019 05/2022		
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	05/2019	05/2022	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature / Humidity Sensor	Testo 184 H1	44220687	05/2020	05/2023	

Page: 10/10

Report No.: S22102604502001

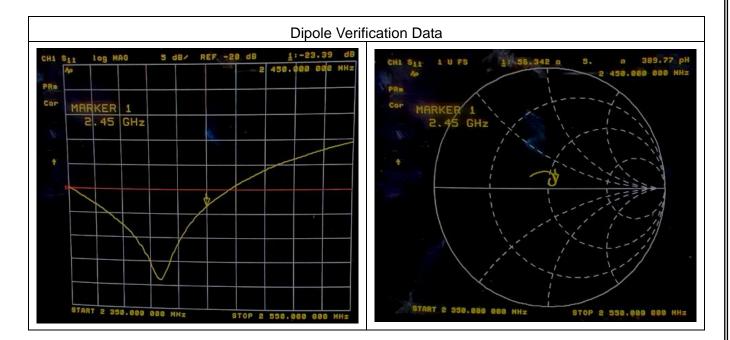
<Justification of the extended calibration>

ilac-MR

ACCREDITED

Certificate #4298.01

NTEK 北测


If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Page 56 of 56

<Head 2450MHz>

Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-23.18	-	56.30	-	Mar. 01, 2021
-23.39	0.91	56.342	0.042	Feb. 28, 2022

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

END