Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-853_Jul21 # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $53.6 \Omega + 3.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.9 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.164 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** Certificate No: D2450V2-853_Jul21 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Date: 26.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ S/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 22.7 W/kg 0 dB = 22.7 W/kg = 13.56 dBW/kg Certificate No: D2450V2-853_Jul21 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-853_Jul21 Page 6 of 6 # **5 GHz Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D5GHzV2-1262_Jan21 | Object | D5GHzV2 - SN:1 | 262 | | |--|--|---|---| | Calibration procedure(s) | QA CAL-22.v5
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | January 18, 2021 | | | | | | onal standards, which realize the physical uni
robability are given on the following pages an | | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | ower sensor NRP-Z91 | | | | | | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | ower sensor NRP-Z91
deference 20 dB Attenuator
ype-N mismatch combination
deference Probe EX3DV4 | SN: BH9394 (20k)
SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
30-Dec-20 (No. EX3-3503_Dec20) | Apr-21
Apr-21
Dec-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | tower sensor NRP-Z91 teference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4 the type-N mismatch combination teres are te | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | tower sensor NRP-Z91 teference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4 the probability of proba | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 30-Dec-20 (No. EX3-3503_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20) | Apr-21 Apr-21 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21 | Certificate No: D5GHzV2-1262_Jan21 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | Certificate No: D5GHzV2-1262 Jan21 | Page 2 of 8 | | |------------------------------------|-------------|--| #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 4.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.51 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1262_Jan21 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 5.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1262_Jan21 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.3 Ω - 3.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.5 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 51.1 Ω + 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 38.1 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $53.1 \Omega + 2.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.9 dB | | #### General Antenna Parameters and Design | 1.193 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1262_Jan21 Page 5 of 8 # **DASY5 Validation Report for Head TSL** Date: 18.01.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1262 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.51 S/m; ϵ_r = 35; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.86 S/m; ϵ_r = 34.5; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.02 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.86 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.3 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.7% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.28 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 19.8 W/kg | Certificate | No: | D5GHzV2-1262 | _Jan21 | |-------------|-----|--------------|--------| |-------------|-----|--------------|--------| Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.45 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 18.4 W/kg = 12.65 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1262_Jan21 # **ANNEX I Sensor Triggering Data Summary** SAR sensor trigger Diagram: | | serial number | Trigger scene | SAR test scene | Side | declarative
distance | |------------------|---------------|----------------------------|----------------|-----------|-------------------------| | | 8 | wifi sar sensor
trigger | Body sar back | Back (mm) | 18mm | | ANT3
WIFI Ant | 9 | wifi sar sensor
trigger | Body sar front | Front(mm) | 16mm | | | 10 | wifi sar sensor
trigger | Body sar top | top(mm) | 16mm | Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power. We tested the power and got the different proximity sensor triggering distances for front, rear, left and top edge for ANT3. The manufacturer has declared 16mm is the most conservative triggering distance for ANT3 with front edge. The 18mm distance for rear edge. The 16mm distance for top ©Copyright. All rights reserved by CTTL. Page 90 of 93 edge. So base on the most conservative triggering distance of 16/18/16mm, additional SAR measurements were required at 15/17/15mm from the highest SAR position between front/rear/top edge of ANT3. # ANT3: ### **Front** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | 11 | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | #### Rear Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 23 22 21 20 19 18 17 16 15 14 13 | | | | | | | | | | 13 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # **Top Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | | 11 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . # The Top edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distancedeclared by manufacturer. # **ANNEX J Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 **NVLAP LAB CODE: 600118-0** # **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: # **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2021-09-29 through 2022-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program