

Report No: JYTSZE201003702

FCC REPORT (Bluetooth)

Applicant:	Swagtek		
Address of Applicant:	10205 NW 19th St. Suite 101, Miami, FL, 33172		
Equipment Under Test (E	UT)		
Product Name:	5.7 inch 3G Smart Phone		
Model No.:	X57A, NEO, W57A		
Trade mark:	LOGIC, iSWAG, UNONU		
FCC ID:	O55573120		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	16 Oct., 2020		
Date of Test:	17 Oct., to 05 Nov., 2020		
Date of report issued:	06 Nov., 2020		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Nov., 2020	Original

Mike.OU Test Engineer Winner Mang

Date: 06 Nov., 2020

Tested by:

Date:

Reviewed by:

Project Engineer

06 Nov., 2020

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	-
5.1 CLIENT INFORMATION	
5.3 TEST ENVIRONMENT AND MODE	-
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	6
5.6 Additions to, deviations, or exclusions from the method	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	
6.3 Conducted Output Power	
6.4 20DB OCCUPY BANDWIDTH	
6.5 CARRIER FREQUENCIES SEPARATION	
6.6 HOPPING CHANNEL NUMBER 6.7 DWELL TIME	-
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 BAND EDGE	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 Spurious Emission	_
6.10.1 Conducted Emission Method	_
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	
APPENDIX A - BT	

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna Requirement	15.203 & 15.247 (b)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(1)	Pass			
20dB Occupied Bandwidth	15.247 (a)(1)	Pass			
Carrier Frequencies Separation	15.247 (a)(1)	Pass			
Hopping Channel Number	15.247 (a)(1)	Pass			
Dwell Time	15.247 (a)(1)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Band Edge	15.247(d)	Pass			
<i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard.					

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.10-2013
rest methou.	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Manufacturer:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Factory:	Swagtek	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	

5.2 General Description of E.U.T.

Product Name:	5.7 inch 3G Smart Phone			
Model No.:	X57A, NEO, W57A			
Operation Frequency:	2402MHz~2480MHz			
Transfer rate:	1/2/3 Mbits/s			
Number of channel:	79			
Modulation type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation technology:	FHSS			
Antenna Type:	Internal Antenna			
Antenna gain:	-2.5 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh			
AC adapter:	Model: A31A-050100U-US1			
	Input: AC100-240V, 50/60Hz, 0.2A			
	Output: DC 5.0V, 1000mA			
Remark:	Model No.: X57A, NEO, W57A, were identical inside, the electrical circuit			
	design, layout, components used and internal wiring.			
	LOGIC model corresponds to the trademark X57A.			
	iSWAG model correspond to the trademark NEO.			
	UNONU model corresponds to the trademark W57A.			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation	Operation Frequency each of channel for GFSK, π /4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	19 2421MHz 39 2441MHz 59 2461MHz						
Remark: Cha	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.						

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021	
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b)	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

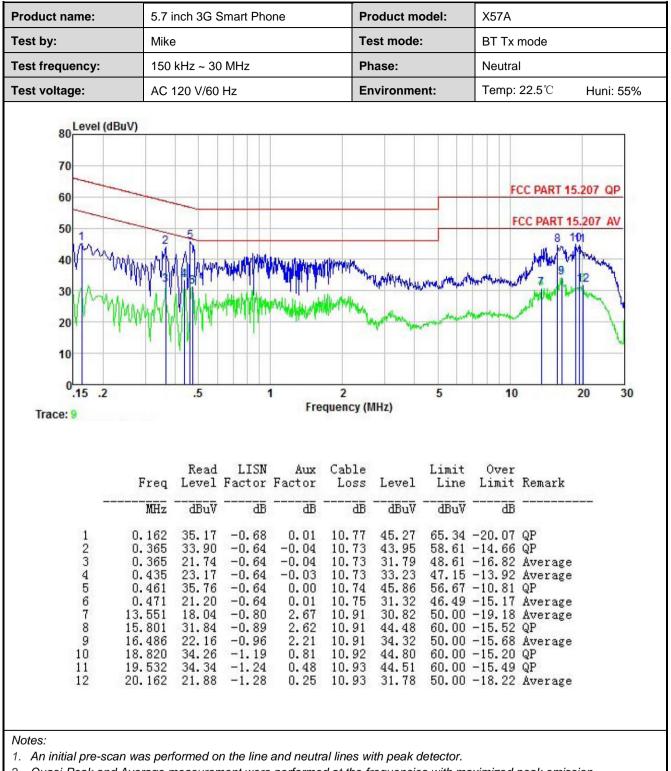
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this inas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is -2.5 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions


Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logari	60 thm of the frequency	50
Test setup:	Reference Pl		
	AUX Equipment Test table/Insulation plane Remarkc E.U.T. E.U.T. E.U.T. Insulation plane Remarkc E.U.T. E.U.T. E.U.T. Insulation plane Remarkc E.U.T. E.U.T. E.U.T. Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipment 	tion network (L.I.S.N.). The neasuri	nis provides a ng equipment. main power through a dance with 50ohm the test setup and m conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product name:	5.7 in	5.7 inch 3G Smart Phone					odel:	X57A				
Test by:	Mike				Те	Test mode:			BT Tx mode			
Test frequency:	150 k	Hz ~ 30	MHz		Ph	ase:		Line				
Test voltage:	AC 12	20 V/60 I	Hz		En	vironme	nt:	Temp:	22.5℃	Huni: 55%		
80 Level (dBi 70 60 50 13 40 2 30		R. Aller	n un la	"mengalimitin	wer pringly alg	ywr ordend			CC PART 15.	207 AV		
20 10 0.15 .2 Trace: 11		.5	1		2 quency (M	Hz)	5	10		20 30		
10 0.15 .2		Read Level	LISN Factor	Free Aux Factor	Quency (M Cable Loss	Level	Limit Line	Over Limit	Remark	20 30		
10 0.15 .2	MHz	Read	LISN Factor dB	Free	quency (M Cable		Limit Line dBuV	Over	Remark	20 30		

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

6.3 Conducted Output Power

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=300 kHz, VBW=1 MHz, detector=Peak
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Span= 100MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:
	shall have hopping channel carrier frequencies separated by a minimum of dth of the hopping channel, whichever is greater.
channel carrier frequencies the hopping channel, whichever than 125 mW. The system s rate from a Pseudorandom con on the average by each trans	pping systems operating in the 2400-2483.5 MHz band may have hopping that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the is greater, provided the systems operate with an output power no greater hall hop to channel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the s of their corresponding transmitters and shall shift frequencies in asmitted signals.
EUT Pseudorandom Frequ	ency Hopping Sequence
outputs are added in a modu	sequence: 2 ⁹ -1 = 511 bits
Linear Feedback Sl	hift Register for Generation of the PRBS sequence
	m Frequency Hopping Sequence as follow:
	62 64 78 1 73 75 77
The system receivers have i	y on the average by each transmitter. nput bandwidths that match the hopping channel bandwidths of their and shift frequencies in synchronization with the transmitted signals.

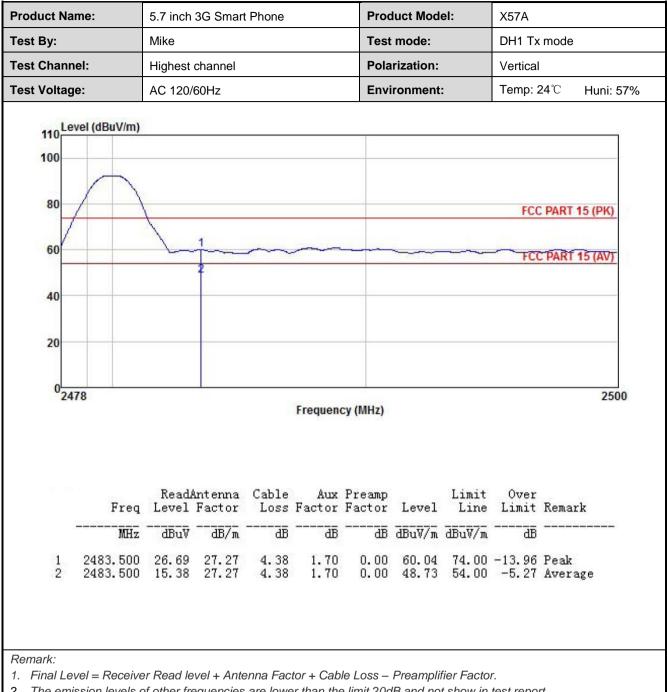
6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

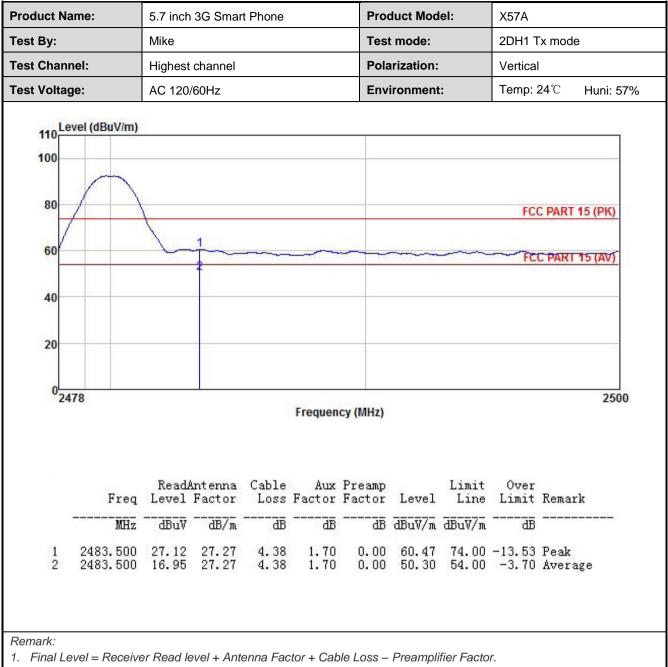
6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20)9 ai	nd 15.205				
Test Frequency Range:	2310 MHz to 23	390 MHz and	248	3.5 MHz to 2	500 M	Hz		
Test Distance:	3m							
Receiver setup:	Frequency	Detector		RBW	VBW		Remark	
	Above 1GHz	Peak		1MHz	31	ИНz	Peak Value	
	Above IGHZ	RMS		1MHz	31	ИНz	Average Value	
Limit:	Frequence	cy L	_imit	t (dBuV/m @3	3m)		Remark	
	Above 1G	H7	54.00		Average Value			
	7,6070 10		74.00			I	Peak Value	
Test setup:		EUT Itable) Ground Test Receiver	3m Reference		enna Towe			
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	a meter camb e position of t s set 3 meters ich was moun height is vari termine the m id vertical pola t. spected emiss antenna was a was turned f ading. eiver system w ith Maximum on level of the d, then testing be reported. O d be re-tested	er. 1 he h s aw ited ed f naxir ariza sion, ton from was EU g cou ther l one	The table was highest radiative vay from the in on the top of from one meter mum value of ations of the a , the EUT was ed to heights n 0 degrees to set to Peak E d Mode. IT in peak mo uld be stoppe	rotation. Interfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa d and ssions g peal	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Functions 10dB the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or	
Test Instruments:	Refer to section	5.9 for detail	S					
Test mode:	Non-hopping m	ode						
Test results:	Passed		_					

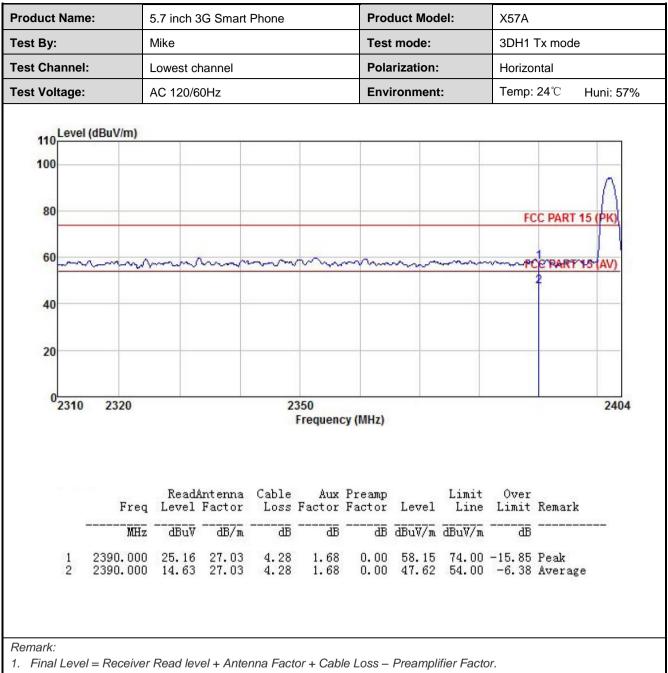

GFSK Mode:

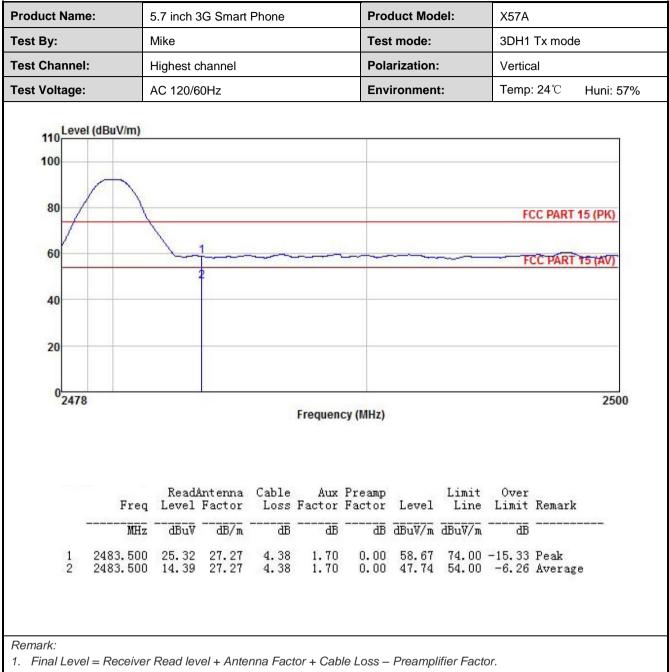
roduct Name:	5.7 inc	5.7 inch 3G Smart Phone Mike Lowest channel					lel:	X57A DH1 Tx mode Vertical		
est By:	Mike									
Fest Channel:	Lowes									
Test Voltage:	AC 12	0/60Hz			Env	Environment:			Temp: 24°C Huni: 579	
	14-1			N				·		
110 Level (dBu	JV/m)									
100										_
										A
80								FCO	C PART 15 (PK)
		200								
60		m	~~~~~	m	mm	m	m	mp	CPART 15	AV)
40								-		
40										
20										
02310 2	2320			2350						2404
2310 2	.520		4		cy (MHz)					2404
1	Rea Freq Leve	dAntenna 1 Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	Read Freq Level MHz dBu	l Factor	Loss	Factor	Factor	Level dBuV/m	Line	Limit	Remark	
1 2390	Freq Level	1 Factor V	Loss	Factor dB 1.68	Factor dB 0.00	Level <u>dBuV/m</u> 58.86	Line dBuV/m 74.00	Limit 		
1 2390	Freq Level MHz dBu .000 25.8	1 Factor V	Loss dB 4.28	Factor dB 1.68	Factor dB 0.00	Level <u>dBuV/m</u> 58.86	Line dBuV/m 74.00	Limit 		

duct Na	me:	5.7 inch	3G Sma	rt Phone		Pro	duct Mod	lel:	X57A		
st By:		Mike				Tes	t mode:		DH1 T	x mode	
t Chann	el:	Highest	channel			Pol	arization		Horizo	ntal	
t Voltag	e:	AC 120	/60Hz			Env	rironmen	t:	Temp:	24 ℃	Huni: 57%
110	vel (dBuV/m)										
80	\bigcap	1							FC	C PART 1	5 (PK)
60		h	1		~~~				FC	C PART 1	5 (AV)
40											
20											
024	78				Frequer	ncy (MHz)					2500
	Freq		ntenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit		
-	MHz	dBu∛		dB	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m			
1 2	2483.500 2483.500	25.37 14.79	27.27 27.27	4.38 4.38	1.70 1.70	0.00 0.00	58.72 48.14	74.00 54.00	-15.28 -5.86	Peak Averag	e
nark:											


$\pi/4$ -DQPSK mode

ie:	5.7 inch	3G Smart	Phone		Pro	duct Mod	del:	X57A			
	Mike				Tes	Test mode:			2DH1 Tx mode		
I:	_owest channel				Pola	Polarization:		Vertica	Vertical		
:	AC 120/	60Hz			Env	ironmen	t:	Temp	: 24 ℃	Huni: 57%	
(dBuV/m)											
										0	
				_					C DADT 4	E (DIC)	
								r.	C PART I	5 (PN)	
	m	mhr	m	h	mon	mm	-	mmp	1 CC PART 1	5 (AV)	
								1	2		
2320				350						2404	
2520			1		cy (MHz)					2404	
Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line				
MHz	₫BuV	<u></u>	dB	<u>ab</u>	āB	dBuV/m	dBuV/m				
	25.56 14.84	27.03 27.03	4.28 4.28	$1.68 \\ 1.68$	0.00 0.00	58.55 47.83	74.00 54.00	-15.45 -6.17	Peak Average	9	
	::::::::::::::::::::::::::::::::::::::	Mike Mike Lowest of AC 120/0 I(dBuV/m) I(dBuV/m) Z320 Read/ Freq Level MHz dBuV 2390.000 25.56	Mike Mike Lowest channel AC 120/60Hz I(dBuV/m) I(dBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV/m) IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV	Mike I: Lowest channel AC 120/60Hz I(dBuV/m) I(dBuV/m) IdBuV/m) IdBuV IdBuV	Mike : Lowest channel AC 120/60Hz I(dBuV/m) I(dBuV/m) 2320 2320 2320 2320 ReadAntenna Cable Aux Freq Level Factor Loss Factor MHz dBuV dB/m 2390.000 25.56 27.03 4.28 1.68	Mike Tes Lowest channel Pola AC 120/60Hz Env I(dBuV/m) Image: Constraint of the second se	Mike Test mode: Lowest channel Polarization AC 120/60Hz Environmen I(dBuV/m) Image: Control of the second seco	Mike Test mode: Lowest channel Polarization: AC 120/60Hz Environment: I(dBuV/m)	Mike Test mode: 2DH1 Lowest channel Polarization: Vertic AC 120/60Hz Environment: Temp I(dBuV/m) Image: state	Mike Test mode: 2DH1 Tx mode Lowest channel Polarization: Vertical AC 120/60Hz Environment: Temp: 24°C I(dBuV/m) FCC PART 1 IdBuV/m) IdBuV IdBuV/m) IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdBuV IdB IdB IdB IdB IdB IdB IdB IdB IdB IdB IdB	




8DPSK mode

oduct Nar	ne:	5.7 inch	3G Smar	t Phone		Pro	duct Mo	del:	X57A				
est By:		Mike				Tes	t mode:		3DH1	Tx mode			
est Channe	el:	Lowest	channel			Pol	arization	:	Vertic	al			
est Voltage	:	AC 120	/60Hz			Env	vironmen	it:	Temp	: 24 ℃	Huni: 57%		
2003													
110 Lev	el (dBuV/m)												
100													
											Δ		
80									FC	C PART 1	5 (PK)		
				_	_								
60~~~	·····	mm	mm		mm	when	mmrd	him	m	PART 1	5 (AV)		
-										2			
40													
20													
231	0 2320				2350 Frequen	cy (MHz)					2404		
						-, (
		Read	Antenna	Cabla	Å	Dreem		Limit	Over				
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit				
-	MHz	 dBu∛	 	dB	ā	āB	dBuV/m	dBuV/m	ā				
1	2390.000	24.81	27.03	4.28	1.68	0.00	57.80	74.00	-16.20	Peak			
2	2390.000	12.05	27.03	4.28	1.68	0.00	45.04	54.00	-8.96	Average	9		
Remark:			, .	_			2						
1. Final Lev	el = Receive sion levels d												

	ne:	5.7 inch	3G Smart	Phone		Pro	duct Mod	lel:	X57A		
Test By:		Mike				Tes	t mode:		3DH1	Tx mode	
Test Channe	el:	Highest of	channel			Pola	arization		Horizo	ontal	
Test Voltage	:	AC 120/6	60Hz			Env	rironmen	t:	Temp:	24 °C	Huni: 57%
110 Leve 100 80 60 40 20	el (dBuV/m)		2							CC PART 1	
0247	8				-	icy (MHz)					2500
241											
241	Freq	ReadA Level	ntenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	Freq MHz	ReadA Level 	Factor	Cable Loss dB	Factor	Factor	Level dBuV/m	Line	Limit	Remark	

6.10 Spurious Emission

6.10.1 Conducted Emission Method

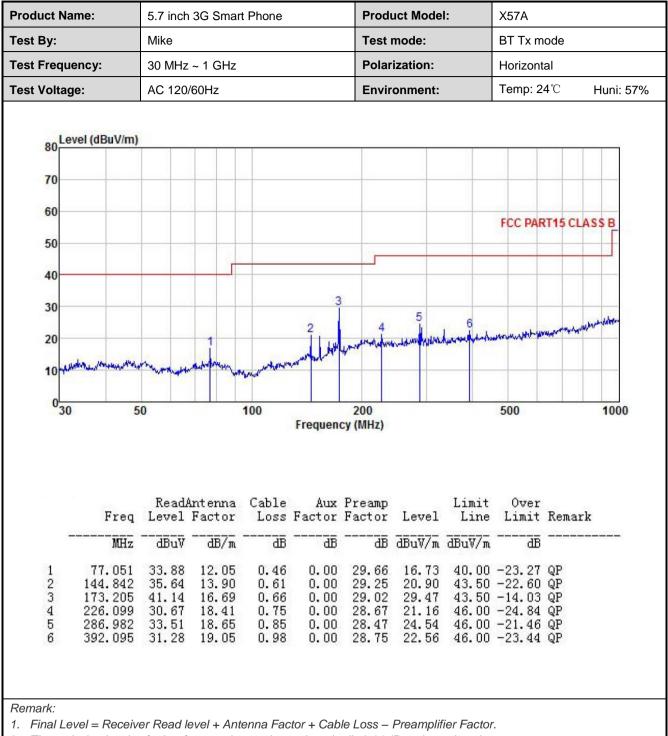
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.	209						
Test Frequency Range:	9 kHz to 25 GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/	Remark		
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	łz	Quasi-peak Value		
		Peak		1MHz	3MH:	z	Peak Value		
	Above 1GHz RM		5 1MHz 3MHz		z	Average Value			
Limit:	Frequenc	ÿ	Lin	nit (dBuV/m	@3m)		Remark		
	30MHz-88N	/Hz		40.0		(Quasi-peak Value		
	88MHz-216	MHz		43.5		(Quasi-peak Value		
	216MHz-960	MHz		46.0		(Quasi-peak Value		
	960MHz-10	GHz		54.0		(Quasi-peak Value		
	41			54.0			Average Value		
	Above 1G	HZ -		74.0			Peak Value		
Test setup:	Ta	Jum 0.8m A ble A d Plane	4m	·/////////////////////////////////////		RF T Rece:	iver		
Test Procedure:	was rotated 3 radiation. 2. The EUT was	1GHz) abo 60 degrees set 3 mete	Test R the ove th s to o	Ground Reference Plane ecceiver	Angular Control Angular Contro	e 0.8 er ch n of	Bm(below 1GHz) hamber. The table the highest		

Project No.: JYTSZE2010037

	tower.3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.


Measurement Data (worst case):

Below 1GHz:

. o a a o t i t a i	ne:	5.7 inch	3G Smar	rt Phone		Prod	uct Mode	el:	X57A		
est By:		Mike				Test	mode:		BT Tx m	node	
est Freque	ncy:	30 MHz	~ 1 GHz			Polar	rization:		Vertical		
est Voltage	:	AC 120/	/60Hz			Envir	ronment:		Temp: 2	4 ℃	Huni: 57%
70 60 50 40 30	el (dBuV/m)				21 ⁴ 5			6 uudenmar	FCC PAR		
20											
20	whenter	and the same	Mun	mul		holdenening	Althound and				
10	whether			W. The		holdson	affet an afferra				
	www.uhuma 5			100	Frequen	200 cy (MHz)	Althouse devices		500		1000
10	5 Freq	0 ReadA Level	intenna Factor	100 Cable Loss	Frequen Aux Factor	cy (MHz) Preamp Factor	Level	Limit Line	500 Over Limit		1000
10	5	0 ReadA	Intenna	100 Cable	Frequent Aux Factor dB	cy (MHz) Preamp Factor dB		Limit Line dBuV/m	500 Over Limit	Rema	1000

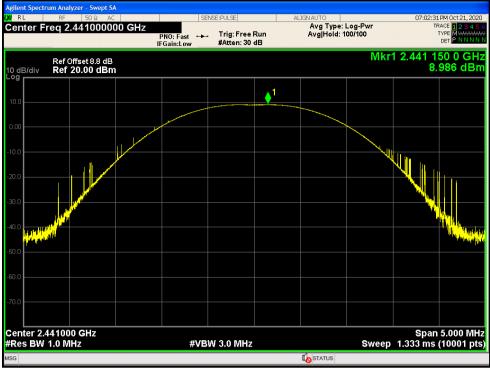
3. The Aux Factor is a not<u>ch filter switch box loss</u>, this item is not used.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

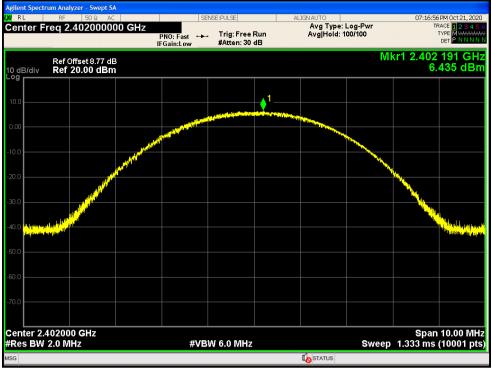
			Te		el: Lowest c					
	I			Detecto	or: Peak Val	Je		-		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.67	30.78	6.80	2.44	41.81	46.88	74.00	-27.12	Vertical	
4804.00	48.66	30.78	6.80	2.44	41.81	46.87	74.00	-27.13	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	40.56	30.78	6.80	2.44	41.81	38.77	54.00	-15.23	Vertical	
4804.00	40.09	30.78	6.80	2.44	41.81	38.30	54.00	-15.70	Horizontal	
					el: Middle ch					
	Deal	A . 1	0.11.	1	or: Peak Val	ue	1.1		[
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	48.27	30.96	6.86	2.47	41.84	46.72	74.00	-27.28	Vertical	
4882.00	48.42	30.96	6.86	2.47	41.84	46.87	74.00	-27.13	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	40.84	30.96	6.86	2.47	41.84	39.29	54.00	-14.71	Vertical	
4882.00	40.49	30.96	6.86	2.47	41.84	38.94	54.00	-15.06	Horizontal	
			Te		el: Highest c					
			0.11		or: Peak Val	ue	1	<u> </u>		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.12	31.11	6.91	2.49	41.87	46.76	74.00	-27.24	Vertical	
4960.00	48.84	31.11	6.91	2.49	41.87	47.48	74.00	-26.52	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.96	31.11	6.91	2.49	41.87	39.60	54.00	-14.40	Vertical	
4960.00	40.64	31.11	6.91	2.49	41.87	39.28	54.00	-14.72	Horizontal	
						+ Aux Factor	– Preamplifie			


2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Appendix A - BT Test Data

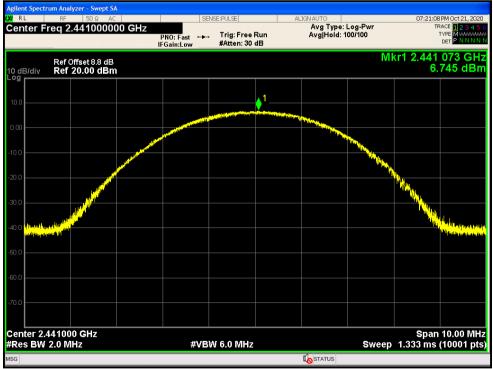
Maximum	Conducte	ed Output Pov	ver					
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	Ant1	8.97	0	8.97	21	Pass
NVNT	1-DH1	2441	Ant1	8.986	0	8.986	21	Pass
NVNT	1-DH1	2480	Ant1	8.503	0	8.503	21	Pass
NVNT	2-DH1	2402	Ant1	6.435	0	6.435	21	Pass
NVNT	2-DH1	2441	Ant1	6.745	0	6.745	21	Pass
NVNT	2-DH1	2480	Ant1	6.409	0	6.409	21	Pass
NVNT	3-DH1	2402	Ant1	7.101	0	7.101	21	Pass
NVNT	3-DH1	2441	Ant1	7.426	0	7.426	21	Pass
NVNT	3-DH1	2480	Ant1	7.078	0	7.078	21	Pass

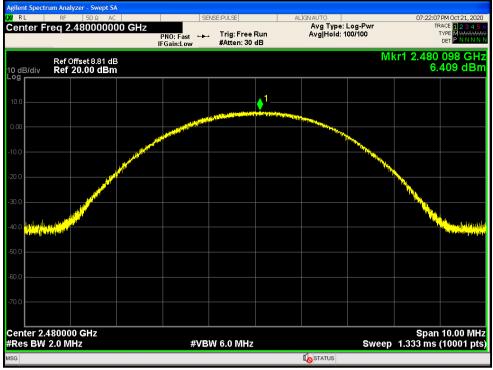
Power NVNT 1-DH1 2402MHz Ant1



Power NVNT 1-DH1 2441MHz Ant1

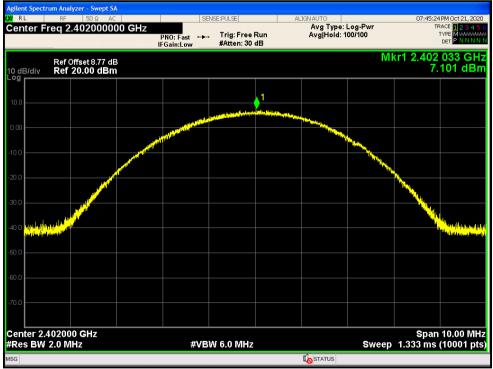
Power NVNT 1-DH1 2480MHz Ant1

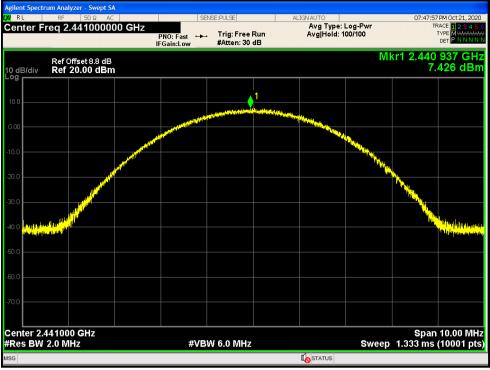




Power NVNT 2-DH1 2402MHz Ant1

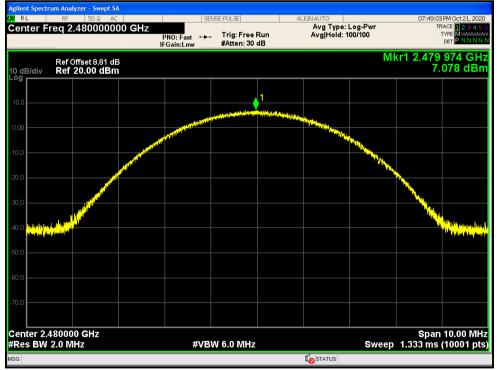
Power NVNT 2-DH1 2441MHz Ant1





Power NVNT 2-DH1 2480MHz Ant1

Power NVNT 3-DH1 2402MHz Ant1



Power NVNT 3-DH1 2441MHz Ant1

Power NVNT 3-DH1 2480MHz Ant1

-20dB Bandwidth

LUGB Bull						
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	Ant1	0.919	N/A	Pass
NVNT	1-DH1	2441	Ant1	0.919	N/A	Pass
NVNT	1-DH1	2480	Ant1	0.876	N/A	Pass
NVNT	2-DH1	2402	Ant1	1.275	N/A	Pass
NVNT	2-DH1	2441	Ant1	1.253	N/A	Pass

JianYan Testing Group Shenzhen Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: JYTSZE2010037

Report No: JYTSZE201003702

NVNT	2-DH1	2480	Ant1	1.257	N/A	Pass
NVNT	3-DH1	2402	Ant1	1.224	N/A	Pass
NVNT	3-DH1	2441	Ant1	1.225	N/A	Pass
NVNT	3-DH1	2480	Ant1	1.222	N/A	Pass

-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1

			1 244 11011 12	
gilent Spectrum Analyzer - Occupied BW RL RF 50 Ω AC Center Freq 2.441000000 4 4 4	SE	ENSE: PULSE Center Freg: 2.441000		07:02:39 PM Oct 21, 2020 Radio Std: None
	#IFGain:Low	, Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS
Ref Offset 8.8 dB 0 dB/div Ref 28.80 dBm				Mkr3 2.441466 GHz -15.361 dBm
8.8				
20	m	hanna han	hand	
.2	mon		how	
2 Arman M	V			- Vinny
2 www.d				
2				
2				
enter 2.441 GHz s BW 15 kHz		#VBW 47 kH	Z	Span 1.5 MH Sweep 6.667 m
Occupied Bandwidth	1	Total Power	14.9 dBm	
80)3.20 kHz			
Transmit Freq Error	6.468 kHz	OBW Power	99.00 %	
x dB Bandwidth	918.6 kHz	x dB	-20.00 dB	
			STATUS	


-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1





-20dB Bandwidth NVNT 3-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2480MHz Ant1

Carrier Frequencies Separation

Carrierine							
Condition	Mode	Antenna	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
			(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH1	Ant1	2401.834	2402.836	1.002	0.919	Pass
NVNT	1-DH1	Ant1	2440.842	2441.828	0.986	0.919	Pass
NVNT	1-DH1	Ant1	2478.83	2479.838	1.008	0.876	Pass
NVNT	2-DH1	Ant1	2401.834	2402.834	1	0.85	Pass
NVNT	2-DH1	Ant1	2440.832	2441.838	1.006	0.835	Pass
NVNT	2-DH1	Ant1	2478.838	2479.834	0.996	0.838	Pass
NVNT	3-DH1	Ant1	2401.838	2402.846	1.008	0.816	Pass
NVNT	3-DH1	Ant1	2441.172	2442.166	0.994	0.817	Pass
NVNT	3-DH1	Ant1	2478.832	2479.834	1.002	0.815	Pass

CFS NVNT 1-DH1 2402MHz Ant1

rilent Spectrum Analyzer - Sw RL RF 50 G		SENSE:PUL	SE	ALIGN AUTO		07:07:01 PM Oc	t 21, 202
enter Freq 2.4025	PNC		g: Free Run ten: 30 dB	Avg Type Avg Hold>		TRACE 1 TYPE M DET P	2345 WMMM NNNN
Ref Offset 8 0 dB/div Ref 20.00					Mk	r1 2.401 834 8.997	l GH dBr
og 10.0	≬ 1			2			
0.00 mm			- All and				
0.0							
80.0							
0.0							
0.0							
0.0							
enter 2.402500 GHz Res BW 300 kHz		#VBW 1.0	MHz		Sweep	Span 2.00 1.000 ms (10	00 MH 01 pt
KR MODE TRC SCL	× 2.401 834 GHz	۲ 8.997 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	
2 N 1 f	2.402 836 GHz	9.002 dBm					
4 5							
6							
9							
8 9 0 1			- 1111				

CFS NVNT 1-DH1 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA R RL RF 50 Q AC Center Freq 2.441500000 GHz	PNO: Fast Trig. IFGain:Low #Atto	≅ ∷Free Run en: 30 dB	ALIGNAUTO Avg Type: Log Avg Hold>100	I-Pwr TRAG	4 Oct 21, 2020 EE 1 2 3 4 5 6 PE M M M M M ET P N N N N N
Ref Offset 8.8 dB Ref 20.00 dBm 10.0 10		WWW	<u>}2</u>	Mkr1 2.440 8 9.0	42 GHz 17 dBm
	#VBW 1.0	MHz		Span 2 Sweep 1.000 ms (.000 MHz 1001 pts)
MKR MODE TRC SCL X 1 N 1 f 2.440 842 G 2 N 1 f 2.441 828 G 3 1 f 2.441 828 G 4 5 6 6 6 6 7 8 9 9 9 9 9 9 10 11 11 11 14 14 14 14 14 14 14 14 15 16 <td< td=""><td></td><td>FUNCTION FL</td><td></td><td>FUNCTION VALUE</td><td>~</td></td<>		FUNCTION FL		FUNCTION VALUE	~

CFS NVNT 1-DH1 2480MHz Ant1

		- Swept SA					
enter Fr		50 Ω AC 9500000 GHz		POLSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type Avg Hold	e: Log-Pwr :>100/100	07:15:25 PM Oct 21, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N
l0 dB/div	Ref Offse Ref 20.0					Mk	r1 2.478 830 GH 8.528 dBr
10.0		<u> </u>			\$ ²		
0.00 							
0.0							
8.0							
0.0							
0.0							
0.0							
0.0 enter 2.4	479500 G 300 kHz	iHz	#VBW	1.0 MHz		Sweep	Span 2.000 Mi 1.000 ms (1001 pt
0.0 enter 2.4 Res BW	300 kHz	×	Y	FUNCTION	FUNCTION WIDTH		Span 2.000 Mł 1.000 ms (1001 pt NCTION VALUE
2.0 enter 2.4 Res BW R MODE TR 1 N 1 2 N 1	300 kHz RC SCL		Y 1z 8.528 dB	FUNCTION	FUNCTION WIDTH		1.000 ms (1001 pt
C.0 enter 2.2 Res BW (R) MODE TF 1 N 1 2 N 1 3 4	300 kHz RC SCL	× 2.478 830 GH	Y 1z 8.528 dB	FUNCTION	FUNCTION WIDTH		1.000 ms (1001 pt
enter 2.4 Res BW	300 kHz RC SCL	× 2.478 830 GH	Y 1z 8.528 dB	FUNCTION	FUNCTION WIDTH		1.000 ms (1001 pt
enter 2.4 Res BW KR MODE TF 1 N 1 2 N 1 3 4 5 5 5 6 7 8 8 9	300 kHz RC SCL	× 2.478 830 GH	Y 1z 8.528 dB	FUNCTION			1.000 ms (1001 pt
0.0 enter 2.4 Res BW	300 kHz RC SCL	× 2.478 830 GH	Y 1z 8.528 dB	FUNCTION	FUNCTION WIDTH		Span 2.000 MH 1.000 ms (1001 pt NCTION VALUE

CFS NVNT 2-DH1 2402MHz Ant1

Agilent Spectrum Analyzer - Swept SA	SENSE:PUL	œ	ALIGN AUTO		07:32:37 PM Oct 21, 2020
Center Freq 2.402500000 GHz	PNO: East 🕠 Tri	g: Free Run ten: 30 dB	ALIGNAUTO Avg Type: L Avg Hold:>1		07:32:37 PM 00021,2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
Ref Offset 8.77 dB 10 dB/div Ref 20.00 dBm				Mkı	1 2.401 834 GHz 4.636 dBm
		~~~~~	2 mm m		
-10.0					
-20.0					
-40.0					
-60.0					
Center 2.402500 GHz #Res BW 300 kHz	#VBW 1.0	) MHz		Sweep	Span 2.000 MHz 1.000 ms (1001 pts)
MKR         MODE         TRC         SCI         X           1         N         1         f         2.401834 GI           2         N         1         f         2.402834 GI	Hz 4.636 dBm Hz 4.645 dBm	FUNCTION	FUNCTION WIDTH	FUN	ICTION VALUE
2 N 1 1 2.402 834 G	4.043 0811				
6					
9 10 11					~
KSG ST			STATUS		>



# CFS NVNT 2-DH1 2441MHz Ant1

	rum Analyzer - Swep							
Center F	RF 50 Ω req 2.441500	0000 GHz		:PULSE Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Typ Avg Hol	pe:Log-Pwr d:>100/100	TYPE	Et 21, 2020 2 3 4 5 6 M M M M M P N N N N N
10 dB/div	Ref Offset 8.8 Ref 20.00 dl					Mk	r1 2.440 83: 4.942	2 GHz 2 dBm
10.0		1				2		
-10.0	wwith the second se							
-20.0								
-40.0								
-50.0								
70.0								
	441500 GHz 300 kHz		#VBW	1.0 MHz		Sweep	Span 2.0 1.000 ms (10	00 MH: 01 pts
MKR MODE T	f	× 2.440 832 GHz	ץ 4.942 d⊟	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	2
2 N /	f	2.441 838 GHz	4.965 dE	m				
5 6 7								
8 9 10								
								>
SG					<b>K</b> STATUS			

### CFS NVNT 2-DH1 2480MHz Ant1

URL R		SENSE:PU	.SE	ALIGNAUTO	_	07:42:23 PM Oct 21, 202
Center Freq	2.479500000 GH	PNO: East 🕠 Tri	g: Free Run ten: 30 dB	Avg Type: Avg Hold:>		TRACE 12345 TYPE MWWW DET PNNN
10 dB/div Re	ef Offset 8.81 dB ef 20.00 dBm				Mk	r1 2.478 838 GH 4.571 dBr
.og 10.0	1		10.П ²² А А	2 2		
0.00				The management		
0.0						
io.o						
io.o						
enter 2.479	500 GHz					Span 2.000 MH
Res BW 300		#VBW 1.0	) MHz		Sweep	1.000 ms (1001 pt
KR MODE TRC SC 1 N 1 f 2 N 1 f 3	2.478 838	GHz 4.571 dBm GHz 4.563 dBm	FUNCTION	FUNCTION WIDTH	FUł	ICTION VALUE
4 5 6 7						
8 9 0 1						
G				<b>I</b> STATUS		>

# CFS NVNT 3-DH1 2402MHz Ant1

	um Analyzer - Swept							
Center Fr	req 2.402500	000 GHz	PNO: Fast Gain:Low	E:PULSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Avg	⊃ Type: Log-Pwr Hold:>100/100	TF	PM Oct 21, 2020 ACE 1 2 3 4 5 6 TYPE M M A A A A A DET P N N N N N
10 dB/div	Ref Offset 8.77 Ref 20.00 dE					М	kr1 2.401 4.	838 GHz 630 dBm
10.0	•••••••••••	1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2		ᡊ᠕ᡘ᠋᠁ᡔ᠕ᡐᢏ᠇ᡙᠾᢛ
-10.0								
-20.0								
-40.0								
-60.0								
-70.0	402500 GHz						Span	2.000 MHz
#Res BW			#VBW	1.0 MHz		Swee	p 1.000 ms	(1001 pts)
MKR MODE TF 1 N 1 2 N 1 3	f	× 2.401 838 GHz 2.402 846 GHz	4.630 df 4.620 df	FUNCTION 3m 3m	N FUNCTION WID	TH	FUNCTION VALUE	^
4 5 6 7								
8 9 10 11								
< /SG					STA	TUS		>

### CFS NVNT 3-DH1 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA (WRL RF 50 & AC Center Freq 2.441500000 GHz		SE g: Free Run ten: 30 dB	ALIGNAUTO Avg Type Avg Hold:		TRA T	M Oct 21, 2020 ACE <b>1</b> 2 3 4 5 6 APE M WWWWWW DET P N N N N N
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #At	len. So de		Mk	r1 2.441 4.9	172 GHz 32 dBm
10.0	1 			·····	<b>2</b>	
-10.0						
-30.0						
-60.0						
Center 2.441500 GHz #Res BW 300 kHz	#VBW 1.0	MHz		Sweep	Span 2 1.000 ms	2.000 MHz (1001 pts)
MKR         MODE         TRC         SCL         X           1         N         1         f         2.441         172         GH           2         N         1         f         2.442         166         GH	y z <u>4.932 dBm</u> z 4.941 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	^
3 4 5	2 4.341 UDIII					
6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						
10 11 11 11 11 11 11 11 11 11 11 11 11 1			STATUS			<b>&gt;</b>



Agilent Spectrum Analyzer - Swept SA						
LXU RL RF 50Ω AC	SENSE:PUL	SE	ALIGN AUTO		07:56:12 PM Oct 2	
Center Freq 2.479500000 GHz	PNO: Fast 😱 Trig IFGain:Low #At	g: Free Run ten: 30 dB	Avg Type Avg Hold:		TRACE 1 2 TYPE M DET P	
Ref Offset 8.81 dB 10 dB/div Ref 20.00 dBm				Mł	(r1 2.478 832 4.593	GHz dBm
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-10.0						
-20.0						
-40.0						
-60.0						
-70.0 Center 2.479500 GHz					Snop 2 000	Dalla
#Res BW 300 kHz	#VBW 1.0	MHz		Sweep	Span 2.000 1.000 ms (100	1 pts)
MKR MODE TRC Scl. X 1 N 1 f 2.478 832 GH 2 N 1 f 2.479 834 GH 3		FUNCTION	FUNCTION WIDTH	FL	UNCTION VALUE	
6 7 8 9 10						
MSG			I ostatus			>

CFS NVNT 3-DH1 2480MHz Ant1

Band Edge

Balla Eag	-						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	No-Hopping	-58.64	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-58.22	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-54.94	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-53.92	-20	Pass
NVNT	3-DH1	2402	Ant1	No-Hopping	-54.75	-20	Pass
NVNT	3-DH1	2480	Ant1	No-Hopping	-53.85	-20	Pass

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission

Agilent Spectr	um Ana RE	lyzer - Swept SA		SE	NSE:PULSE		ALIGN AUTO		07:01:0	7 PM Oct 21, 2020
		.35600000)0 GHz	PNO: Fast ↔→ Gain:Low	Trig: Free #Atten: 30		Avg Typ	e: Log-Pwr d: 500/500		RACE 12345 C TYPE MWWWWW DET PNNNN
10 dB/div		Offset 8.77 dE 20.00 dB m								01 8 GHz 903 dBm
10.0										
-10.0										-11.08 dBm
-30.0										
	mulm	ᡏ᠇ᠰᢂᡧᡣᠬᡘᠬ᠇ᢌᡄᡫᢩᢘᢛᢇ	mberman	when when an end	↓ ⁴	ومرمانييهان	makrantania	Anna Marala Ana	versent within	marrow h
-60.0 -70.0										
Start 2.30 #Res BW				#VB	W 300 kHz	z		Swee	Stop 2 p 9.600 m	40600 GHz s (1001 pts)
MKR MODE TF	RC SCL	>	K	Y		NCTION	FUNCTION WIDTH		FUNCTION VALUE	^
1 N 1 2 N 1 3 N 1	f f f		2.401 8 GHz 2.400 0 GHz 2.390 0 GHz 2.347 4 GHz	8.903 -48.563 -52.788 -49.729	dBm dBm					
4 N 1 5 6 7			2.347 4 GHZ	-49.729						3
8 9 10										
										~
11 <u> </u>										>

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission

Agilent Spectrum Analyzer - Swept SA			
02 RL RF 50 Q AC Center Freq 2.526000000 GHz	PNO: Fast Trig: Fr IFGain:Low #Atten:	ree Run Avg Hol	07:04:00 PM Oct21, 2020 De: Log-Pwr TRACE 1 2:34 55 d: 300/300 Type M DET 2 11111
Ref Offset 8.81 dB			Mkr1 2.479 8 GHz 8.444 dBm
-10.0			-11.59 dBm
-20.0			
-60.0	veron and all more all of the masses and	/ Pilosenthinketerorikepunthinaarine	her for an Hayan Harabara an an an an an an An Anna
-70.0 Start 2.47600 GHz			Stop 2.57600 GHz
#Res BW 100 kHz	#VBW 300 k	Hz	Sweep 9.600 ms (1001 pts)
MKR MODE TRC SCL X		FUNCTION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2.479 8 GI 2 N 1 f 2.483 5 GI 3 N 1 f 2.500 0 GI	lz -51.181 dBm		
4 N 1 f 2.492 8 G			
6 7			
9			
11 <			×
MSG		I STATUS	

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission

XI RL	RF	lyzer - Swept SA 50 Ω AC .35600000	00 GHz	NO: Fast ↔		ree Run : 30 dB		pe: Log-Pwr d: 100/100		8PM Oct 21, 2020 RACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
10 dB/div		Offset 8.77 dE 20.00 dBm	}	Gain:Low	#Atter	. 30 08			Mkr1 2.4 4.	
10.0 0.00										
-10.0										-15.63 dBm
-40.0		harped, tyle raide and	ra har man	mhunalarrayaat	hallay have a	4	ger landelige and the second	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	3 mirver down Malartal	2 h
-60.0										
Start 2.30 #Res BW				#VB	W 300 I	(Hz		Swee	Stop 2. p 9.600 m	40600 GH s (1001 pts
MKR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1	C SCL f f f		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.355 9 GHz	4.471 -50.479 -53.036 -50.579	dBm dBm	FUNCTION	FUNCTION WIDTH	ł	FUNCTION VALUE	
4 5 6 7 8			2.555 9 GHZ							
9 10 11										
SG							I STATUS			

Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Ref

Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Emission

Agilent Spectrur	n Analyzer - Swept SA		CENC	E:PULSE		ALIGN AUTO		07,00,0	0PM Oct 21, 2020
	eq 2.5260000	00 GHz	IO: Fast ↔→ Sain:Low	Trig: Free #Atten: 30			e: Log-Pwr : 300/300	TI	RACE 123456 TYPE MWWWWW DET PINNNNN
10 dB/div	Ref Offset 8.81 di Ref 20.00 dBn							Mkr1 2.4 4.	80 0 GHz 345 dBm
-10.0									-15.84 dBm
-20.0									
-40.0	Anne-latron house	-	๛๚๎๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	Nullianasation	and the second state	1-ruhder Mathematics	holumbaryanon	r-strle-apt,1/learnin/pdf=/h	r:lonally
-60.0 -70.0									
Start 2.476 #Res BW 1			#VBW	300 kHz			Swee	Stop 2. p 9.600 ms	57600 GHz 5 (1001 pts)
MKR MODE TRC	SCL	x	Y		CTION	FUNCTION WIDTH	F	UNCTION VALUE	^
1 N 1 2 N 1 3 N 1 4 N 1	f f f	2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.484 1 GHz	4.345 dl -51.905 dl -52.147 dl -49.766 dl	3m 3m					
5 6 7									
8 9 10									
11 <									×
MSG									

Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Emission

Agilent Spectr	<mark>um Ana</mark> RE	lyzer - Swept SA 50 Ω AC		SEL	NSE:PULSE		ALIGN AUTO		07:45:4	16 PM Oct 21, 2020
Center F	req 2	.35600000	00 GHz	PNO: Fast ↔↔ Gain:Low	Trig: Free #Atten: 30		Avg Typ	e: Log-Pwr d: 300/300		IRACE 123456 TYPE MWWWW DET PNNNNN
10 dB/div		Offset 8.77 dE 20.00 dBm							Mkr1 2.4 4	01 9 GHz .504 dBm
10.0										1
-10.0										-15.50 dBm
-20.0 -30.0										
-40.0 -50.0	-l.m.m	gragenall-transformed area	n Martin and Martin	www.comerce.com	ann an ann an	algorana .	ghauddhhain-thana	-	ran manual and a second	num 4
-60.0 -70.0										
Start 2.30 #Res BW				#VBI	N 300 kHz			Swe	Stop 2 ep 9.600 m	.40600 GHz s (1001 pts)
MKR MODE T	RC SCL	>	X	Y		ICTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 2 N 3 N 4 N	f f f		2.401 9 GHz 2.400 0 GHz 2.390 0 GHz 2.377 0 GHz	4.504 -48.306 -53.087 -50.254	dBm dBm					
5 6 7										3
8 9 10										
										~
11										

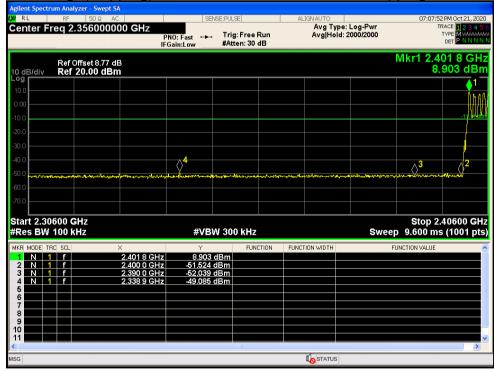
Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Ref

Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Emission

Agilent Spectrum Analyzer - Swept SA				
M RL RF 50 Ω AC Center Freq 2.526000000 GHz	SENSE:PULSE	ALIGN AUTO		Oct 21, 2020
	PNO: Fast ↔ Trig: Fre IFGain:Low #Atten: 3	e Run Avg Hold	300/300 TYP	
Ref Offset 8.81 dB 10 dB/div Ref 20.00 dBm			Mkr1 2.480 3.92	2 GHz 2 dBm
Log 10.0 1				
0.00				
-10.0				-15.61 dBm
-20.0				
-30.0				
-40.0 2 43 -50.0	สหารไปไฟนี้-สำนักให้เป็นหาวิทยาล		whether a second state of the test process of the second state of	Jan Merk Saular, 1
-60.0		Particular and the site from the site of the second s		
-70.0				
Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 kH		Stop 2.57 Sweep 9.600 ms (1	
MKRI MODEL TRCI SCLI X		JNCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2.480 2 G				
3 N 1 f 2.500 0 G 4 N 1 f 2.499 2 G	Hz -52.251 dBm			
5				=
7 8				
9				
11				>
MSG				

Band Edge(Hopping)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	Hopping	-57.95	-20	Pass
NVNT	1-DH1	2480	Ant1	Hopping	-57.04	-20	Pass
NVNT	2-DH1	2402	Ant1	Hopping	-54.13	-20	Pass
NVNT	2-DH1	2480	Ant1	Hopping	-53.67	-20	Pass
NVNT	3-DH1	2402	Ant1	Hopping	-54	-20	Pass
NVNT	3-DH1	2480	Ant1	Hopping	-53.35	-20	Pass

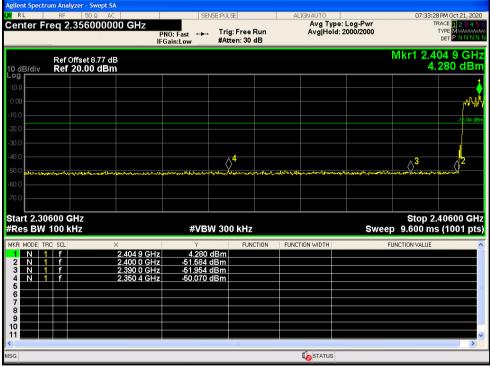

JianYan Testing Group Shenzhen Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: JYTSZE2010037

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Emission


Agilent Spectru												
Center Fr	RF eq 2.5	50 Ω AC 52600000	0 GHz	NO: Fast ↔ Gain:Low		E :Freef en:30 (ALI	GN AUTO Avg Type Avg Hold:	: Log-Pwr 2000/2000		BOPM Oct 21, 2020 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
10 dB/div		fset 8.81 dB 0.00 dBm									Mkr1 2.4 8	179 2 GHz .441 dBm
-10.0												-11.92 dBm
-20.0												
-40.0	. ∆ 2		3									
-50.0	La Venna an	mensionalisati	manikowatu	and Alman meder	yn Autor Angela	ale stations	สมสัประมา	مهمول بهمور م	and descention of the	alaya ya afa a a a a a a a a a a a a a a a	mound	and and the second s
-70.0												
Start 2.47 #Res BW				#VB	W 300) kHz				Swe	Stop 2 ep 9.600 m	2.57600 GHz s (1001 pts)
MKR MODE TR	C SCL	>	<	Y		FUNC	CTION	FUNCT	ION WIDTH		FUNCTION VALUE	
1 N 1 2 N 1	f		2.479 2 GHz 2.483 5 GHz	8.441	dBm							
3 N 1	f		2.500 0 GHz	-51.396	dBm							
4 N 1 5	f		2.493 1 GHz	-48.955	dBm							
6												
8												
9												
11												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MSG									STATUS			

Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Emission

Agilent Spectrum Analyzer - Swept SA				
RL RF 50Ω AC Center Freq 2.526000000	PN0 East ↔	PULSE Frig: Free Run KAtten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2000/2000	07:36:26 PM Oct 21, 2020 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset 8.81 dB 10 dB/div Ref 20.00 dBm				Mkr1 2.476 9 GHz 4.426 dBm
-10.0				-15.71 dBn
-20.0				
-40.0 -50.0	4 3	and and a second state of the second state of the		1947apatrimeters
-60.0				
Start 2.47600 GHz #Res BW 100 kHz	#VBW :	300 kHz	Swe	Stop 2.57600 GH ep 9.600 ms (1001 pts
2 N 1 f 2.4	476 9 GHz 4.426 dB 483 5 GHz -51.474 dB 500 0 GHz -51.627 dB	m n	ICTION WIDTH	FUNCTION VALUE
4 N 1 f 2. 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	498 1 GHz -49.384 dBi	m		
7 8 9				
10 11 <		mu		8
ISG			STATUS	

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Ref

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Emission

g <mark>ilent Spectr</mark> RL	um Analyzer - S	Swept SA	SENSE		ALIGN AUTO		07:52:2	5 PM Oct 21, 2020
		000000 GHz	PNO: Fast ↔	Trig: Free Run #Atten: 30 dB	Avg Typ	e: Log-Pwr I: 2000/2000	Т	RACE 1 2 3 4 5 TYPE M
0 dB/div	Ref Offset Ref 20.0						Mkr1 2.4 4.	03 8 GH: 509 dBn
. og 10.0 0.00								
20.0								-1\$.60 dt
10.0 10.0				♦ ⁴			3	
	₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	มไรเรียญให้ 		ant)(Andrew Andrew A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ah ((n - 1)) 		
	600 GHz 100 kHz		#VBW	300 kHz		Sweep	Stop 2. 9.600 ms	40600 GH s (1001 pt
KR MODE TR	RC SCL	× 2.403 8 GHz	۲ 4.509 dB	FUNCTION	FUNCTION WIDTH	FL	JNCTION VALUE	
2 N 1 3 N 1 4 N 1	f f f	2.403 8 GHz 2.400 0 GHz 2.390 0 GHz 2.350 0 GHz		m m				
5 6 7 8								
9								>
G					I STATUS			

Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Ref

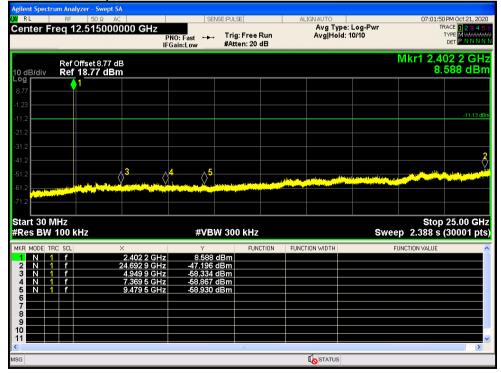
Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Emission

Agilent Spectrum Analyz								
Center Freq 2.5	50 Ω AC 526000000 GHz	PNO: Fast IFGain:Low	SE:PULSE Trig: Free Rui #Atten: 30 dB		Avg Type: I Avg Type: I Avg Hold: 2		TF	ACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
10 dB/div Ref 2	fset 8.81 dB 0.00 dBm					1		76 9 GHz 458 dBm
10.0 1								
-10.0								-15.57 dBm
-20.0								
-40.0 -50.0	4 3	guestalities and a college	ananananan da	previgter of the state		.talionnenaumeno	lan ^{a ma} tangkalara	an stade and a stade of the
-60.0								
Start 2.47600 G							Stop 2.	57600 GHz
#Res BW 100 kH		#VBV	V 300 kHz	U. FUNCTION	LV-4D-TU		9.600 ms	(1001 pts)
I N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	× 2.476 9 G 2.483 5 G 2.500 0 G 2.493 4 G	Hz 4.458 d Hz -50.962 d Hz -50.615 d	IBm IBm IBm			FU	INCTION VALUE	
6 7 8 9								
10 11								~
MSG				ų.	STATUS			

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	-56.06	-20	Pass
NVNT	1-DH1	2441	Ant1	-56.01	-20	Pass
NVNT	1-DH1	2480	Ant1	-55.22	-20	Pass
NVNT	2-DH1	2402	Ant1	-51.07	-20	Pass
NVNT	2-DH1	2441	Ant1	-52.15	-20	Pass
NVNT	2-DH1	2480	Ant1	-51.58	-20	Pass

JianYan Testing Group Shenzhen Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: JYTSZE2010037



NVNT	3-DH1	2402	Ant1	-51.48	-20	Pass
NVNT	3-DH1	2441	Ant1	-51.5	-20	Pass
NVNT	3-DH1	2480	Ant1	-51.54	-20	Pass

XIRL	um Analyzer - Swept S RF 50 Ω AC Ceq 2.4020000	00 GHz		NSE:PULSE		IGN AUTO Avg Type: Avg Hold: 3		Т	5PM Oct 21, 2020 RACE 12345 (
	Ref Offset 8.77 dl	I	NO:Wide ↔ Gain:Low	#Atten: 20	dB	Avginoid: 3		2.401 83	
10 dB/div ^{Log} r	Ref 18.77 dBm	n						8.	.871 dBm
8.77				1					
				A CONTRACT OF A	and an	and the second second			
1.23		f. Summer Summer	equal to				Contratement of	Warman -	
-11.2	Warrant Warrant Martin I							What was a series of the serie	Mary and
31.2									Re Charles Withol
41.2									
51.2									
51.2									
71.2									
enter 2.4 Res BW	020000 GHz		#VB	W 300 kHz			Sween	Span 2.000 ms	│ 1.500 MH (30001 pt
ISG							-onrecp	2.000 1115	(e o c o r pr

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref

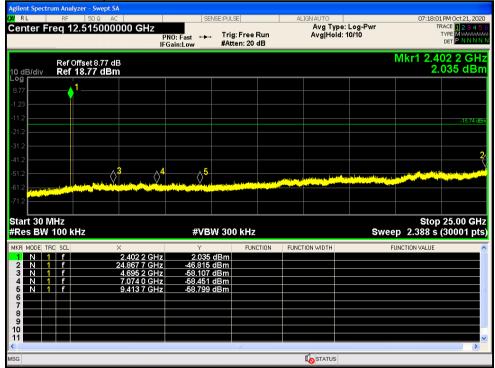
Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission

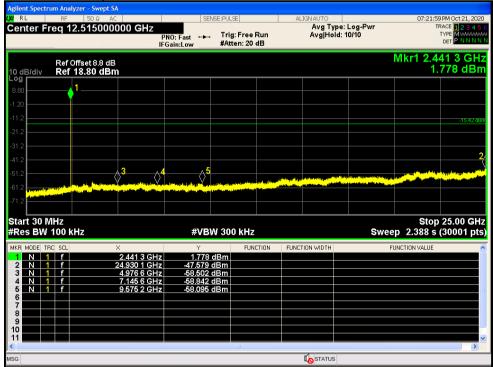
gilent Spectru									
enter Fre	^{RF} €q 12.5	50 Ω AC 515000000 GHz	PNO: Fast	• Trig: Fi #Atten:	ree Run 20 dB		/pe: Log-Pwr Id: 10/10		1 PM Oct 21, 202 RACE 1 2 3 4 5 TYPE MWWWW DET P N N N
0 dB/div		set 8.8 dB 2.80 dBm						Mkr1 2.4 7.	41 3 GH 938 dBr
. og 8.80	1								
1.20									-11.10 di
1.2									
i1.2		<u>3</u>	4	5					ula Las kastali
1.2				i dina ali sabia					
1.2								Cton	25.00 GH
Res BW 1		2	#VB	W 300 k	Hz		Swe	eep 2.388 s	(30001 pt
KR MODE TRO	SCL f	× 2.441 3 GH	Y 1z 7.938	dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1 4 N 1	f f	24.932 6 GH 4.776 0 GH 7.153 1 GH	iz -58.145	dBm					
5 N 1 6 7	f	9.947 3 GF							
8 9 0									
1									>
G						🚺 STATU:	5		

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Ref


Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission

ilent Spectr	r <mark>um Ana</mark> RF	lyzer - Swept SA 50 Ω AC		SENSE:PULSE		ALIGN AUTO		07:04:4	4 PM Oct 21, 202
		2.515000000 G		🛏 Trig: F	ree Run : 20 dB	Avg Ty	pe:Log-Pwr ld:10/10		TYPE MWWW DET PNNN
) dB/div		Offset 8.81 dB 18.81 dBm						Mkr1 2.4 8	79 6 GH 175 dBr
og 1.81		1							
.19									-11.63 d
1.2									
1.2									
1.2		3	4	∮ ⁵ .			den de ante ante de la contra cont		
1.2 1.2						hiter a first and a second			
tart 30 N Res BW		۲۲ ۲	#VI	BW 300 I	(Hz		Swe	Stop ep 2.388 s	25.00 GH (30001 pt
KR MODE TF	RC SCL	× 2.479 6	Y 6 GHz 8.17	′5 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1	f f	24.980 (4.760 2	0 GHz -46.85 2 GHz -58.62	1 dBm 0 dBm					
4 N 1 5 N 1 6	f	7.479 4 9.978 9		5 dBm 0 dBm					
7 B									
-									
0									>

Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Ref


Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Emission

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Emission

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Emission

RL	RF	Ilyzer - Swept SA 50 Q AC 2.515000000 GHz	SE	INSE:PULSE		ALIGN AUTO	pe: Log-Pwr		DPM Oct 21, 2020
senter 1		2.5 15000000 GHZ	PNO: Fast ++ IFGain:Low		Free Run n: 20 dB		id: 10/10		DET PNNN
0 dB/div	Ref Ref	Offset 8.81 dB 18.81 dBm						Mkr1 2.4 -2.	79 6 GH: 626 dBn
8.81 1.19	(1							
11.2									-15.87 dB
21.2 31.2									
41.2 51.2		3	4/	5			alle, ala en ter stat		
61.2 71.2	un da de se		n a thul day sauth day						
start 30 M								Stop	25.00 GH
Res BW		kHz	#VB	W 300	kHz			ep 2.388 s	(30001 pt
KR MODE T	RC SCL	× 2.479 6 GH	y -2.626	dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1	f	24.949 2 GH	z -47.444	dBm					
3 N 1	f F	4.866 7 GH 7.520 2 GH							
5 N 1	f	9.874 0 GH							
6									
8									
9									
1									3
ļ.,									>
G									

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Emission

RL	ctru	<mark>m Ana</mark> RF	lyzer - Swept SA 50 Ω AC		ENSE:PULS				
	Fre		2.515000000 GH			∷Free Run en:20 dB	ALIGN AUTO Avg Tyj Avg Hol	pe: Log-Pwr d: 10/10	07:46:30 PM Oct 21, 20 TRACE 1234 TYPE MWWA DET PNNN
) dB/div	,		Offset 8.77 dB 18.77 dBm					Ν	/kr1 2.402 2 GF 4.112 dB
.77		_	1						
23									
1.2 1.2									-15.54
1.2									
1.2 —			A 3	۸ 4 ۸	5				المعريف من بعد المانية الم
1.2	<mark>د رتغند</mark>	and a fill				an ann a su dae			
1.2 <mark> </mark>	يىلى يەر	and the second second							
art 30 Res B			٢Hz	#VI	3W 300) kHz		Sweep	Stop 25.00 G 2.388 s (30001 p
	TRO	SCL	× 2.402.2 G	Y	2 dBm	FUNCTION	FUNCTION WIDTH	FUł	ICTION VALUE
	1	f	24.958 4 G	Hz -47.02	9 dBm				
		f	4.606 2 0	HZ -58.20	0 dBm				
	1	f	7.011 6 0						
3 N 4 N 5 N	1	f f	9.583 5 0		9 dBm				
3 N 4 N 5 N 6	1	f							
3 N 4 N 5 N 6 7 8		f							
4 N		f							
		f					STATUS	í	3

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Emission

	Rf	= 50Ω A	ic	S	ENSE:PUL	.SE		ALIGN AUTO		07:48	:50 PM Oct 21, 20
enter	Freq	12.515000	I	PNO: Fast ↔ FGain:Low		g: Free Ru ten: 20 dE		Avg Typ Avg Hol	e: Log-Pwr d: 10/10		TRACE 1234 TYPE MMMMM DET PNNN
) dB/div		f Offset 8.8 dE f 18.80 dBi								Mkr1 2.4	440 4 GH 1.600 dB
2 ^g		<u> </u> 1									
20											
1.2											-15.24 c
.2											
.2											
.2			3		1						
.2		Links Musletter	\diamond	4		ومعر والاعتماد ويري		dia .	in a state of the	and the state of the	
1.2 1.2							In a life bit of the life bit				
) MHz									Sto	p 25.00 GI
	W 100	kHz		#VE	SW 30	0 kHz			Sw	eep 2.388 s	s (30001 pi
Res B	W 100		×	Y		O KHZ FUNCTI	ION FU	NCTION WIDTH	Sw	FUNCTION VALUE	
Res B	W 100		2.440 4 GHz 24.958 4 GHz	4.600 -46.749	0 dBm 9 dBm		ION FU	NCTION WIDTH	Sw		
Res B	W 100		2.440 4 GHz 24.958 4 GHz 4.985 7 GHz 7.444 4 GHz	4.600 -46.749 -58.218 -58.509	0 dBm 9 dBm 8 dBm 5 dBm		ION FU	NCTION WIDTH	Sw		
Res B	W 100		2.440 4 GHz 24.958 4 GHz 4.985 7 GHz	4.600 -46.749 -58.218 -58.509	0 dBm 9 dBm 8 dBm 5 dBm		ION FU	NCTION WIDTH	Sw		
Res B R MODE N 2 N 3 N 4 N 5 N 6 7	W 100		2.440 4 GHz 24.958 4 GHz 4.985 7 GHz 7.444 4 GHz	4.600 -46.749 -58.218 -58.509	0 dBm 9 dBm 8 dBm 5 dBm		ION FU	NCTION WIDTH	Sw		
Res B R MODE N 2 N 3 N 4 N 5 N 6 7 7	W 100		2.440 4 GHz 24.958 4 GHz 4.985 7 GHz 7.444 4 GHz	4.600 -46.749 -58.218 -58.509	0 dBm 9 dBm 8 dBm 5 dBm		ION FU	NCTION WIDTH	Sw		
Res B R MODE N 2 N 3 N 4 N 5 N 6	W 100		2.440 4 GHz 24.958 4 GHz 4.985 7 GHz 7.444 4 GHz	4.600 -46.749 -58.218 -58.509	0 dBm 9 dBm 8 dBm 5 dBm		ION FU	NCTION WIDTH	Sw		

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Emission

RL		RF	<mark>yzer - Swept S/</mark> 50 Ω AC			SENSE:PUL	.SE	ALIO	GN AUTO	07:5	0:10 PM Oct 21, 202
enter	Fre	eq 1:	2.515000		PNO: Fast FGain:Low		g: Free Run ten: 20 dB		Avg Type: Avg Hold:		TRACE 12345 TYPE MWWW DET PNNN
0 dB/div) ffset 8.81 dl 18.81 dBn								.480 4 GH 0.580 dBi
og 3.81		-	1								
.19 1.2											-15.76 di
1.2											
1.2				3							
1.2			al and Medanica				and the strength of the strength	. de site de		and the second	
1.2 June	o di com		and the second second second	and the second	and the second second	and the second secon	Contraction of the second				
1.2			an an barran an								
1.2			Hz		#\	/BW 30	0 kHz			Sto eep 2.388	op 25.00 Gl s (30001 pi
1.2 tart 30 Res B1	W 1	00 k		×	Y	,	0 KHz		ON WIDTH	Sto eep 2.388 FUNCTION VALU	s (30001 pi
1.2 tart 30 Res Bl R MODE	W 1	00 k		2.480 4 GHz	۲ -0.5	80 dBm				eep 2.388	s (30001 pi
1.2 tart 30 Res Bl R MODE	W 1	00 k		2.480 4 GHz 24.662 9 GHz	-0.5 -47.3	80 dBm 802 dBm				eep 2.388	s (30001 pi
1.2 tart 30 Res Bl (R MODE 1 N 2 N 3 N 4 N	W 1	00 k		2.480 4 GHz 24.662 9 GHz 4.979 1 GHz 7.542 6 GHz	-0.5 -47.3 -58.4 -58.2	80 dBm 802 dBm 835 dBm 274 dBm				eep 2.388	s (30001 pi
1.2 tart 30 Res Bl Res Bl 1 N 2 N 3 N 4 N 5 N 6 6 7	W 1	00 k		2.480 4 GHz 24.662 9 GHz 4.979 1 GHz	-0.5 -47.3 -58.4 -58.2	80 dBm 02 dBm 135 dBm				eep 2.388	op 25.00 GH s (30001 pt je
1.2 tart 30 Res B/ Res B/ 1 N 3 N 4 N 5 N 6 6 7 7 7 8 8 9 0	W 1	00 k		2.480 4 GHz 24.662 9 GHz 4.979 1 GHz 7.542 6 GHz	-0.5 -47.3 -58.4 -58.2	80 dBm 802 dBm 835 dBm 274 dBm				eep 2.388	s (30001 pi
1.2 tart 30 Res B/ Res B/ 1 N 3 N 4 N 5 N 6 6 7 7 7 8 8	W 1	00 k		2.480 4 GHz 24.662 9 GHz 4.979 1 GHz 7.542 6 GHz	-0.5 -47.3 -58.4 -58.2	80 dBm 802 dBm 835 dBm 274 dBm				eep 2.388	s (30001 pt

Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH1	Ant1	79	15	Pass
NVNT	2-DH1	Ant1	79	15	Pass
NVNT	3-DH1	Ant1	79	15	Pass

Agilent Spectrum Analyzer - Swept SA					
X RL RF 50Ω AC Center Freq 2.441750000 GHz	SENS	E:PULSE		: Log-Pwr	07:09:26 PM Oct 21, 2020 TRACE 1 2 3 4 5 6
	PNO: Fast ↔↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold	5000/5000	TYPE MWWWWW DET P N N N N N
	Ir Galil.200			Mkr	1 2.401 837 0 GHz
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm					8.905 dBm
		WWWW	VARAAAAAAAA		MMMMMMÅ
-20.0					
-30.0					
-40.0					\
-50.0					
-60.0					
-70.0					
Start 2.40000 GHz #Res BW 100 kHz	#VBW	300 kHz		Sweep	Stop 2.48350 GHz 8.000 ms (1001 pts)
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	Fl	JNCTION VALUE
1 N 1 f 2.401 837 0 GH 2 N 1 f 2.479 993 0 GH					
3					
5					3
7					
8					
10					~
<u><</u>			2		>
MSG			Ko status		

Hopping No. NVNT 1-DH1 2441MHz Ant1

Hopping No. NVNT 2-DH1 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA					
XIRL RF 50Ω AC	SENSE:PUL	9E	ALIGN AUTO		23PM Oct 21, 2020
Center Freq 2.441750000 GHz		g: Free Run ten: 30 dB	Avg Type: Lo Avg Hold: 500		TRACE 12345 TYPE MWWWW DET PNNNN
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm				Mkr1 2.402	087 5 GH: 3.559 dBn
Log 10.0 0.00 -/44////////////////////////////////	Muraajanaanna		MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
-30.0					
70.0 Start 2.40000 GHz #Res BW 100 kHz	#VBW 300	0 kHz		Stop : Sweep 8.000 n	2.48350 GH ns (1001 pts
MKR MODE TRC SCL X 1 N 1 F 2.402 087 5 GH 2 N 1 F 2.480 327 0 GH 3 4 5		FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
6 7 8 9 0 1					
SG SG			STATUS		<u>></u>

Agilent Spectrum Analyzer - Swept SA Q4 RL RF 50 ♀ AC Center Freq 2.441750000 GHz	SENSE:PUL	_SE	ALIGN AUTO Avg Type: Lo Avg Hold: 500	og-Pwr	17:53:51 PM Oct 21, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
Ref Offset 8.8 dB	FGain:Low #At	ten: 30 dB		Mkr1 2.40	01 586 5 GHz -0.850 dBm
	Manghadan ba	vyyyyyyyyyy	un and the second	ֈԱՀս֊֊֏Ղկելի ՆՀԻՆԱԴ	
-20.0 -30.0 -40.0					
-50.0 -60.0 -70.0					\
Start 2.40000 GHz #Res BW 100 kHz	#VBW 30	0 kHz		Steep 8.00	op 2.48350 GHz 0 ms (1001 pts)
MKR MODE TRC SCL X 1 N 1 f 2.401 586 5 GH; 2 N 1 f 2.480 076 5 GH; 3 4 5 5 5 6 7 7 8 9 9 10		FUNCTION	FUNCTION WIDTH	FUNCTION V	ALUE
MSG			STATUS		

Hopping No. NVNT 3-DH1 2441MHz Ant1

Dwell Time

Dweil Tim	e							
Condition	Mode	Frequency	Antenna	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)		(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	Ant1	0.392	125.44	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.648	263.68	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.896	308.907	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.384	122.88	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.636	261.76	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.884	307.627	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.382	122.24	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.636	261.76	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.883	307.52	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz Ant1

Agilent Spect	rum Analyze RF	r - Swept SA 50 Ω AC		l cr	NSE:PULSE		ALIGN AUTO		07:10:25	PM Oct 21, 2020
Center F			F	PNO: Fast	Trig Delay Trig: Vide #Atten: 30	-1.000 ms		: Log-Pwr	TR	ACE 123456 YPE WWWWWWWW DET P N N N N N
10 dB/div Log		et 8.8 dB .00 dBm							ΔMkr1	392.0 µs -5.87 dB
10.0 0.00	X ₂	• <mark>•</mark> 1∆2 —								
-10.0 -20.0										
-30.0	deced of a				restant. B adintat	an an tatul sa a du	. a . al a manda au	المرابع والمعار ومراجع المعر والمراجع	ر من تشكر العدامانيين. من تشكر العدامانيين بل	. d. alia di di di adali di
-50.0	dppp ^a p		<mark>a la se la</mark>			the second s	and the second sec	les adait déniel	The second se	<mark>ayan Anti Atsabilikal</mark>
-70.0 Center 2.		00 GHz								Span 0 Hz
Res BW					W 1.0 MHz				10.00 ms (10001 pts)
2 F /	t (Δ)	;	< 392.0 μs 998.0 μs		FUN 37 dB dBm	CTION FU	NCTION WIDTH	F	UNCTION VALUE	
5 6 7 8 9										
10 11 <							STATUS			×

Dwell NVNT 1-DH3 2441MHz Ant1

gilent Spectrum Analyzer - Swept SA (RL RF 50 Q AC Center Freq 2.44100000	0 GHz PNO: Fast IFGain:Low	SENSE:PULSE Trig Delay- Trig: Video #Atten: 30 d		TO g Type: Log-Pwr	07:59:17 PM Oct 21, 20 TRACE 1 2 3 4 TYPE WAMMAN DET P. N.N.N
Ref Offset 8.8 dB I0 dB/div Ref 20.00 dBm					∆Mkr1 1.648 m -1.71 d
-og 10.0 X2	1Δ2				TRIG L'
20.0					
60.0 400 400 400 400 400 400 400 400 400				na shekara na shekara Manifal ya fi tarya kata kata da Manifal ya fi tarya kata kata da	
Center 2.441000000 GHz Res BW 1.0 MHz	#	VBW 1.0 MHz		Sweep	Span 0 H 10.00 ms (10001 pt
MKR MODE TRC SCL X	1.648 ms (Δ)	-1.71 dB .60 dBm	FUNCTION W		FUNCTION VALUE
SG			1 00 ST	ATUS	

Agilent Spectrum Analyzer - Swept SA					
LXI RL RF 50Ω AC	SENSE:PUL		ALIGNAUTO		07:59:34 PM Oct 21, 2020
Center Freq 2.441000000 GHz	PNO: East +++ Tri	ig Delay-1.000 ms ig: Video tten: 30 dB	Avg Type: Lo	•g-Pwr	TRACE 123456 TYPE WWWWWW DET PNNNNN
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm				ΔΜ	lkr1 2.896 ms 6.85 dB
Log	∆2				
0.00 X2					TRIG LVL
-10.0					
-30.0					
-40.0	North Andrea	<mark>heidere Aberleette deptitelse p</mark>	part leader source for the leader of a leader of the le	an a	un en mar de la presente de la devel
-60.0 10111111111111111111111111111111111	1000 peliter 	<mark>hali dha a shu da</mark> aliya aha da	Alphon provide the first state of the second s	longlot japitek (han dilimi	kinatiki shada yila pasiran basi
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 1.0	0 MHz		Sweep 10.0	Span 0 Hz 0 ms (10001 pts)
MKRI MODEL TRCI SCL X	Y	FUNCTION FU	INCTION WIDTH	FUNCTION	
				FONCTION	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	is (Δ) 6.85 dB			FUNCTION	
1 Δ2 1 t (Δ) 2.896 m 2 F 1 t 997.0 μ 3	is (Δ) 6.85 dB			TORCHOR	
1 Δ2 1 t (Δ) 2.896 m 2 F 1 t 997.0 μ 3 4 5 6 6 6 7 8 9 9	is (Δ) 6.85 dB			FORCHOR	
1 Δ2 1 t (Δ) 2.896 m 2 F 1 t 997.0 μ 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - -	is (Δ) 6.85 dB			ronenow	

Dwell NVNT 1-DH5 2441MHz Ant1

Dwell NVNT 2-DH1 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA			
RL RF 500 AC Center Freq 2.441000000 GHz	SENSE:PULSE Trig Delay-1.000 PNO: Fast ↔ Trig: Video IFGain:Low #Atten: 30 dB	ALIGNAUTO	07:35:28 PM Oct 21, 2020 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm			ΔMkr1 384.0 μs 0.42 dB
10.0 0.00 X2 ^{1Δ2}			TRIG LVL
-10.0			
-30.0			
so o distante public di tata patri di tata di si di	na je po dravnih u štarovala konstrati po po zaslada po bola po po <mark>Da stala plana staroval konstrativnih stala (gradovala plana konsti Da stala plana staroval konstrativnih stala st</mark>		
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Swee	Span 0 Hz p 10.00 ms (10001 pts
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 334,0 μ 2 F 1 t 997,0 μ 3 4 5 6 6		FUNCTION WIDTH	FUNCTION VALUE
7 8 9 10			×

Dwell NVNT 2-DH3 2441MHz Ant1

gilent Spectrum Analyzer - Swept S							
RL RF 50 Ω A enter Freq 2.4410000	000 GHz	l0:East ⊶⊶ Tri	g Delay-1.000 m g: Video ten: 30 dB	ALIGN AUTO IS Avg Type	: Log-Pwr	TR	PM Oct 21, 2020 ACE 12345 YPE W 00000000000000000000000000000000000
Ref Offset 8.8 dE 0 dB/div Ref 20.00 dBr						ΔMkr1 ′	1.636 m 2.88 dE
•g	1Δ2						
10.0							TRIG LY
0.0							
0.0			i hata ininita dialamba	pline tember lideration) (s. ch	فمأرفار والمالا والارد والحار رمار	All a san a bhaile an bhaile an bh	والاردادية أرادية
D.D. National Annual Control of the						labalan wasalah 👘 Taranga	the carlet to
		laçadığı, jehensi ^k aşıtlı firkatır				<mark>Helensel and a second second</mark>	ant and a second se
enter 2.441000000 GHz			aliperation (the pain of the state		<mark>yk, d^{ha}la, dah jalar</mark> , 1	10.00 ms (Span 0 H
enter 2.441000000 GHz es BW 1.0 MHz	2 X	#VBW 1.0	aliperation (the pain of the state		Sweep	10.00 ms (Span 0 H 10001 pt
$[model = 1 \\ model = 1 \\ mod$	2	<mark>4ры ((,))) ла (,))) ла (,)) ла (, </mark>	omention of a state of the stat	in the second	Sweep	10.00 ms (Span 0 H 10001 p
μ μ μ μ	2 2 1.636 ms (ини () () () () () () () () () () () () ()	omention of a state of the stat	in the second	Sweep	10.00 ms (Span 0 H
0.0 1	2 2 1.636 ms (ини () () () () () () () () () () () () ()	omention of a state of the stat	in the second	Sweep	10.00 ms (Span 0 F 10001 pt

Dwell NVNT 2-DH5 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA K RL RF 50.0 AC Center Freq 2.441000000 GHz	SENSE:PULSE Trig Delay-1.000 m PNO: Fast →→ Trig: Video IFGain:Low #Atten: 30 dB	ALIGNAUTO Is Avg Type: Log-Pwr	07:58:38PM Oct 21, 2020 TRACE 1 2 3 4 5 6 TYPE WANNAN DET P N N N N N
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm			ΔMkr1 2.884 ms 1.64 dB
10.0 0.00 X2			
-10.0			
-40.0 -50.0 404 ml/ml/sty -50.0 104 ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/ml/m	no da farin de anticipada e a companya da companya d Companya da companya da comp	n an a bha a' an an thir da an ann a' bha an ann a' bha ann Maraing 11 agus a chuilte an tha a' an tha an an ann an tha ann an a	alle fallen en fer anvere en
-60.0			
Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep	Span 0 Hz 10.00 ms (10001 pts)
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 2.884 m 2 F 1 t 366.0 μ 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 8 - - -		FUNCTION WIDTH	FUNCTION VALUE
9 10 11 11 MSG	rat	L ostatus	~

Dwell NVNT 3-DH1 2441MHz Ant1

		er - Swept SA								
XI RL Center Fi	_R , req 2.4	50 Ω AC 4100000	F	PNO: Fast ↔ Gain:Low			ALIGNAUTO ns Avg Ty	/pe: Log-Pwr	07:54:01 PM Oct 21 TRACE 1 2 3 TYPE WWW DET P N N	345 ////////////////////////////////////
10 dB/div Log		fset 8.8 dB 0.00 dBm							ΔMkr1 382.0 -1.19) µs dB
10.0 0.00	X ₂	<mark>,</mark> ^{1∆2}								RIG LVL
-10.0 -20.0										
-30.0	-		t la sanarak	ul utila astor		n. v. htt		listory Atological and a low bod		attless
-50.0 <mark>-50.0 -50.0</mark>	n i knjiji		1					anne e chanaire caraire Anne (anne 11 ann 11 ann 11		winth
-70.0 Center 2.4	441000	000 GHz							Span	0 Hz
				#VI	BW 1.0 M	Hz		Sweep	Span (5 10.00 ms (10001	0 Hz pts
Center 2.4 Res BW 1 MKR MODE TR 1 A2 1 2 F 1 3 4	I.O MHZ RC SCL	×	<u>382.0 µs</u> 866.0 µs	Υ (Δ) -1		HZ	FUNCTION WIDTH		Span (5 10.00 ms (10001 FUNCTION VALUE	0 Hz pts
Center 2.4 Res BW 1 MKR MODE TR 1 A2 1 2 F 1 3	I.O MHZ RC SCL	×	382.0 µs	Υ (Δ) -1	.19 dB		FUNCTION WIDTH		o 10.00 ms (10001	0 Hz pts
Center 2. Res BW 1 MKR MODE TF 1 Δ2 1 2 F 1 3 4 5 6 7 8	I.O MHZ RC SCL	×	382.0 µs	Υ (Δ) -1	.19 dB				o 10.00 ms (10001	0 Hz pts

Dwell NVNT 3-DH3 2441MHz Ant1

Agilent Spectrum Analyzer - Swept SA (X) RL RF 50Ω AC Center Freq 2.441000000) GHz PNO: Fast IFGain:Low	SENSE:PULSE Trig Delay Trig: Video #Atten: 30		o Type: Log-Pwr	12:38:29 AMOct 24, 20 TRACE 1 2 3 4 3 TYPE WWWW DET P.N.N.I	
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm					∆Mkr1 1.636 m 3.32 d	
10.0	1Δ2					
.10.00 X2					TRIG L'	
-20.0						
-40.0			and and presenting dama weather			
-60.0 -70.0	d <mark>a k</mark> ang kuna ja baba	idean a dina majori t	<mark>nantare Malanda di Pananan</mark>	ki kalini di pilipatanji pilipatan pilipatan pilipatan pilipatan pilipatan pilipatan pilipatan pilipatan pilip	t Letric Linear and the second se	
Center 2.441000000 GHz Span 0 I Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (10001 p						
MKR MODE TRC SCL × 1 Δ2 1 t (Δ) 2 F 1 t (Δ) 3 4 4 4 4	1.636 ms (Δ)	Y FUNG 3.32 dB 3.15 dBm	CTION FUNCTION WID	TH F	UNCTION VALUE	
5 6 7 8 9						
10 11 <					>	
MSG			Ko sta	TUS		

Agilent Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN AUTO	07:	58:24 PM Oct 21, 2020				
Center Freq 2.441000000 GHz		lay-1.000 ms Avg Ty deo	pe:Log-Pwr	TRACE 123456 TYPE WWWWWW DET PNNNNN				
Ref Offset 8.8 dB 10 dB/div Ref 20.00 dBm			ΔMk	r1 2.883 ms 3.11 dB				
10.0	1 <u>Δ2</u>							
				TRIG LVL				
-30.0	Landikallana men	, market from a first sector for a first sector for the	ando an dilante tantan da dia materi	town durated ers, with debt.				
-60.0		eak alabela jakan pananan manala aranda	the second se	and a state of the				
Center 2.441000000 GHz				Span 0 Hz				
Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (10001 pts)								
MKR MODE TRC SCL × 1 Δ2 1 t Δ2 3.883 m 2 F 1 t 863.0 μ 3 4 5 5 5	s (Δ) 3.11 dB	FUNCTION FUNCTION WIDTH	FUNCTION VAL					
6 7 8 9								
10 11 		In status		>				

Dwell NVNT 3-DH5 2441MHz Ant1

-----End of report-----