Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART CTEST REPORT

FCC PART 15.236

Compiled by

(position+printedname+signature)...: File administrators Jinghua Xiao

Supervised by

(position+printedname+signature)....: Project Engineer Xudong Zhang

Approved by

(position+printedname+signature)....: RF Manager Eric Wang

Date of issue...... Sep. 05, 2024

Testing Laboratory Name: Shenzhen CTA Testing Technology Co., Ltd.

Address...... Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name...... OKURA USA INC.

Address 1195 NW. 97 AVENUE. MIAMI Florida United States 33172

Test specification

Standard FCC Part 15.236

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description WIRELESS MICROPHONE

Trade Mark

Sputin Z

Manufacturer HANGZHOU NAG ELECTRONICS LTD

Model/Type reference..... STZ-W5502

Listed Models N/A

Modulation Type pi/4 DQPSK

Operation Frequency...... 540.00-589.75MHz

Rating DC 3.0V From Battery

Result..... PASS

Page 2 of 30 Report No.: CTA24082700701

TEST REPORT

WIRELESS MICROPHONE Equipment under Test

Model /Type STZ-W5502

Series Model N/A

Applicant OKURA USA INC.

Address 1195 NW. 97 AVENUE. MIAMI Florida United States 33172

HANGZHOU NAG ELECTRONICS LTD Manufacturer

ROOM 803, HEBIN BUILDING, NO.333 NORTH JIANGUO ROAD, Address

HANGZHOU, CHINA

C	Test Beauty	UNSS
	Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory

Page 3 of 30 Report No.: CTA24082700701

Contents

		TESTING	Contents		
	1	TEST STANDARDS	ESTING		4
	The state of the s	CTAT		TING	
	<u>2</u>	SUMMARY		<u></u>	5
	2.1	General Remarks			5
	2.2	Product Description			5
	2.3	Equipment Under Test			5
	2.4	Short description of the Equipment up	nder Test (EUT)		5
	2.5	EUT operation mode			6
	2.6	Block Diagram of Test Setup			6
CIL	2.7	Related Submittal(s) / Grant (s)			6
	2.8	Modifications			6
	2	TEST ENVIRONMENT			7
	<u>3</u>	TEST ENVIRONMENT			
			Carlo Cir		Llla
	3.1	Address of the test laboratory		CTATES	7
	3.2	Test Facility			7
	3.3	Environmental conditions			7
	3.4	Summary of measurement results			•
	3.5	Statement of the measurement uncert	tainty		8
	3.6	Equipments Used during the Test			8
		ESTIN			
	4	TEST CONDITIONS AND RE	SULTS		. 10
	C	, , <u>, , , , , , , , , , , , , , , , , </u>	16711		
		- 1			
	4.1	AC Power Conducted Emission			10
	4.2	Maximum Output Power		EST	11
	4.3	Occupied Bandwidth			13
	4.4	Necessary Bandwidth			15
	4.5	Transmitter spurious emissions	ES. CTAT		18
	4.6	Frequency Stability			20
	-5	TEST SETUP PHOTOS OF T	HE EUT		. 22
	,5				
C.T.A.	_	- ING			
CTATE	<u>6</u>	PHOTOS OF THE EUT		· · · · · · · · · · · · · · · · · · ·	. 23
		Carll C.	ESTIN		
		CTA	TATES		
			CTA TESTING		, -
				CTATES	

Page 4 of 30 Report No.: CTA24082700701

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.236: Operation of wireless Wireless microphone system(bodypack transmitter)s in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-698 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 30 Report No.: CTA24082700701

SUMMARY

General Remarks

Date of receipt of test sample		Aug. 27, 2024
Testing commenced on	31.11111	Aug. 27, 2024
Testing concluded on	:	Sep. 05, 2024

2.2 Product Description

Product Name:	WIRELESS MICROPHONE
Model/Type reference:	STZ-W5502
Power supply:	DC 3.0V From Battery
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA240827007-1# (Engineer sample), CTA240827007-2# (Normal sample)
Wireless Microphone	
Frequency:	540.00-589.75MHz
Modulation Type:	pi/4 DQPSK
Antenna type:	Spring antenna
Antenna gain:	1.12 dBi

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V/ 50 Hz	0	120V/60Hz			
G I		0	12 V DC	0	24 V DC			
Other (specified in blank below)								
DC 3.0V From Battery								
2.4 Short description of the Equipment under Test (EUT)								
This is a WIRELESS MICROPHONE.								

DC 3.0V From Battery

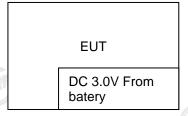
2.4 Short description of the Equipment under Test (EUT)

For more details, refer to the user's manual of the EUT. CTATES.

Report No.: CTA24082700701 Page 6 of 30

2.5 **EUT** operation mode

The EUT has been tested under typical operating condition. The EUT will staying in continuous transmitting when switch to the specific test frequency. Each channel frequency from CH-10 increments by 0.25 MHz to the next channel until CH-100. Each channel frequency from CH-110 increments by 0.25 MHz to the next channel until CH-200. There is 200 channels provided to the EUT. Channel Low, Mid, High was selected to test


Operation Frequency:

	operation i requency:				
	Channel	Frequency(MHz)	Channel	Frequency(MHz)	CW CT
	CH1	540.00	CH101	565.00	73 402
CTATES	CH2	540.25	CH102	565.25	
	CH3	540.50	CH103	565.50	
	CH4	540.75	CH104	565.75	
	CH5	541.00	CH105	566.00	
	CH6	541.25	CH106	566.25	ING
	CH7	541.50	CH107	566.50	TESTING
	CH8	541.75	CH108	566.75	1
	CH9	542.00	CH109	567.00	
	CH10	542.25	CH110	567.25	
	CH100	564.75	CH200	589.75	

Test Frequency:

Test Frequency:				
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
Low	540.00	High	589.75	
Mid	565.00		CIAIL	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended forthe devicefiling to comply with Section 15.236 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA24082700701 Page 7 of 30

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

Test Facility 3.2

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:		15-35 ° C
1000000		CIP
Humidity:	1 VIA	30-60 %
	No to the state of	
Atmospheric pressure:		950-1050mbar

	3.4 Summary of measurement r	results	
CTATE	Test Specification clause	Test case	Test result
	§15.236(d)	RF Power Output	Compliant
	§15.236(f)(2)	Occupied Bandwidth	Compliant
	§15.236(g)	Necessary Bandwidth	Compliant
G	§15.236(g)	Spurious emissions	Compliant
	§15.236(f)(3)	Frequency Stability	Compliant
	§15.207	Conducted Emissions	N/A

Remark:

- The measurement uncertainty is not included in the test result. CTA TESTING
- We tested all test mode and recorded worst case in report

Report No.: CTA24082700701 Page 8 of 30

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	-ING
Output Peak power	30MHz~18GHz	0.55 dB	(1)	-65111
Power spectral density	1	0.57 dB	(1)	1
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	

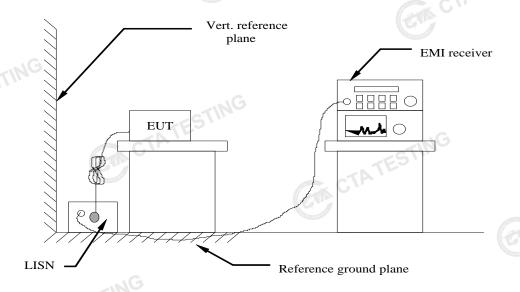
⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence CTA TESTING level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
CTATE	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
G	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	G Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
CTATE	Room 106, Buildir Tel:+8	ng 1, Yibaolai Industrial	n CTA Testing Techno Park, Qiaotou Commu -mail:cta@cta-test.c	nity, Fuhai Street,	Bao'an District, Sh ww.cta-test.cn	nenzhen, China
CTAIL		STING				

Page 9 of 30 Report No.: CTA24082700701

	Antenna	G				
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
. TE	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
CTATE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
,	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
G						•


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
STING					GW C	TAT

Report No.: CTA24082700701 Page 10 of 30

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC12V power from adapter, the adapter received AC120V/60Hzand AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits isas following:

Eroguepov rongo (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequ	ency.	·G	

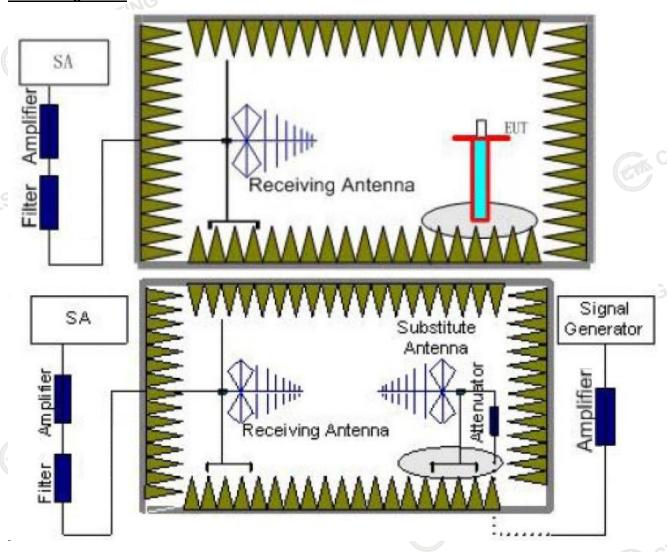
The EUT is powered by the Battery, so this test item is not applicable for the EUT

Page 11 of 30 Report No.: CTA24082700701

Maximum Output Power

Limit

The maximum radiated power shall not exceed the following values:


- (1) In the bands allocated and assigned for broadcast television and in the 600 MHz service band: 50 mW **EIRP**
- (2) In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

Test Procedure

- 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier may be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)= $P_{Mea+}P_{Aq-}P_{cl}+G_a$
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. CTATESTING

Report No.: CTA24082700701 Page 12 of 30

Test Configuration

Test Results

Remark:

The field strength of radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of H axis and receiver antenna at vertical polarization was reported.

Test Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	P _{Ag} (dB)	EIRP (dBm)	EIRP (mW)	FCC Limit (mW)	Polarization
540.00	-28.83	1.5	10.43	25.7	5.80	3.80	50	Н
565.00	-28.22	1.5	10.44	25.7	6.42	4.39	50	Н
589.75	-29.14	1.5	10.46	25.7	5.52	3.56	50	Н

Remark: $EIRP=P_{Mea}(dBm) + P_{Ag}(dB) - P_{cl}(dB) + G_a(dBi)$ CTA TESTING

Page 13 of 30 Report No.: CTA24082700701

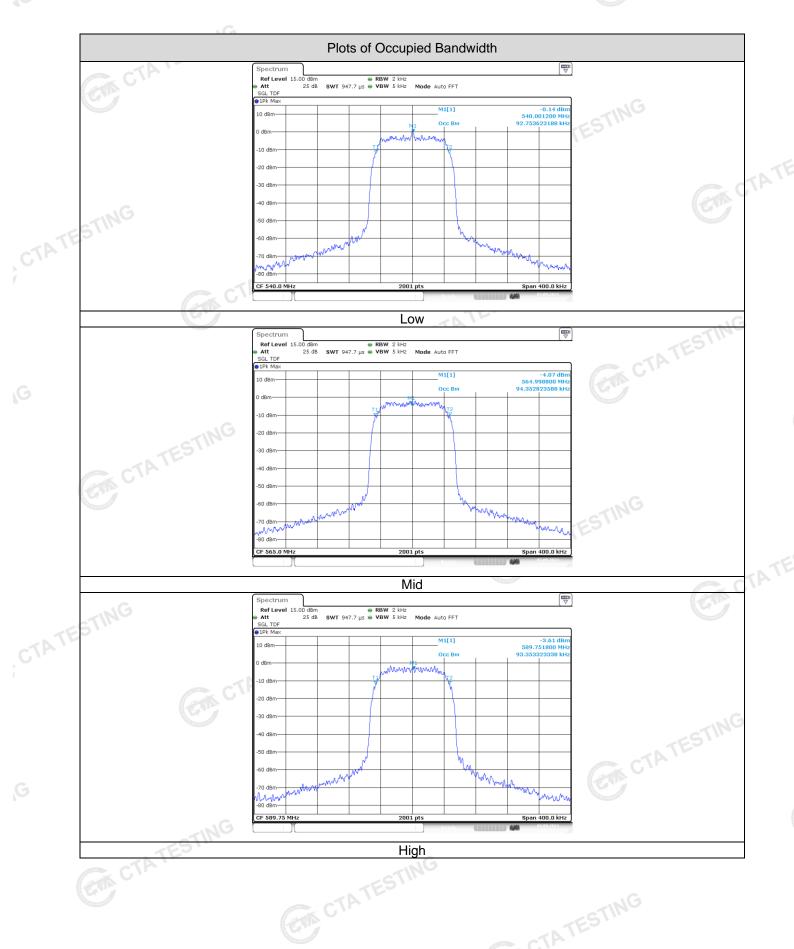
4.3 **Occupied Bandwidth**

Limit

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.

Test Procedure

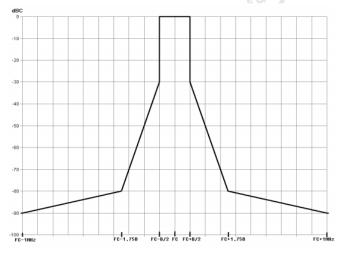
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 KHz RBW and 10 KHz VBW.


Test Configuration

Test Results

EUT		SPECTRUM ANALYZER		CTATESTING
Test Results				CTATES
Modulation	Frequency (MHz)	99% OBW (KHz)	Limit (KHz)	Result
pi/4 DQPSK	540.00	92.75	200	Pass
pi/4 DQPSK	565.00	94.35	200	Pass
pi/4 DQPSK	589.75	93.35	200	Pass
CAN CAN	CTATE	STING	CTATESTIN	

Page 14 of 30 Report No.: CTA24082700701



Page 15 of 30 Report No.: CTA24082700701

Necessary Bandwidth

Emissions within the band from one megahertz below to one megahertz above the carrier frequency shall comply with the emission mask in §8.3 of ETSI EN 300 422-1 V1.4.2 (2011-08) as below:

The transmitter output spectrum shall be within the mask defined in figure below where B is the declared CTATE channel bandwidth

TEST PROCEDURE

Principal Spectrum Mask measuring method for digital transmitters:

- Spectrum mask below 2 GHz, see figure 4; for the spectrum mask above 2 GHz, see figure 5.

NOTE: This parameter also includes the limits for spectral components within the out-of-band region. The transmitter shall be modulated with the test signals defined in clause 7.1.2. In any case the mask shall not be exceeded.

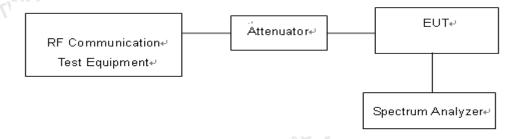
- Step 1: Measure the "Carrier Power" with the spectrum analyser setup:
 - Centre Frequency = fc
 - Span = Zero span
 - Detector = RMS
 - Trace Mode = Average
 - RBW&VBW = $5 \times B$
 - Sweep time $\geq 2 \text{ s}$
- Step 2: Measure the "Maximum Relative Level (dBc) at Specified Carrier Offsets" with the following spectrum analyser setup:
 - Centre Frequency = fc
 - Span $\geq 5 \times B$
 - Detector = RMS
 - Trace Mode = Peak Hold
 - RBW&VBW = 1 kHz
 - Sweep time $\geq 2 \text{ s}$

- Step 3: Measure the "transmitter wide band noise floor":

The measurement of transmitter broad band noise floor shall be carried out according to clause 8.3.2.1.

- Step 3a: Measure the "lower frequency transmitter wide band noise floor":
 - Start Frequency = $fc 5 \times B$
 - Stop Frequency = $fc 1.75 \times B$
 - Detector = RMS
 - Trace Mode = Average
 - RBW&VBW = 1 kHz
 - Sweep time = 2 s per 200 kHz

Report No.: CTA24082700701

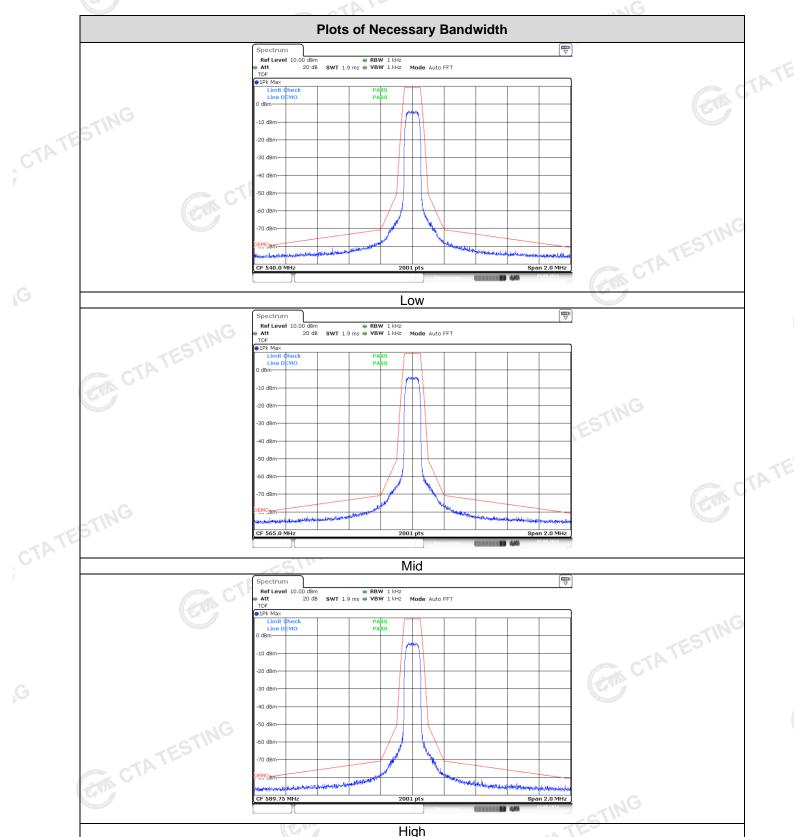

Page 16 of 30

- Start Frequency = $fc + 1.75 \times B$
- Stop Frequency = $fc + 5 \times B$
- Detector = RMS
- Trace Mode = Average
- RBW&VBW = 1 kHz
- Sweep time = 2 s per 200 kHz

Both spectrum ranges shall be measured.

Limits: The spectrum mask for digital systems shall not be exceeded. See figure 4 for systems operating CTATE below 2 GHz and figure 5 for systems operating above 2 GHz.

TEST CONFIGURATION



Page 17 of 30 Report No.: CTA24082700701

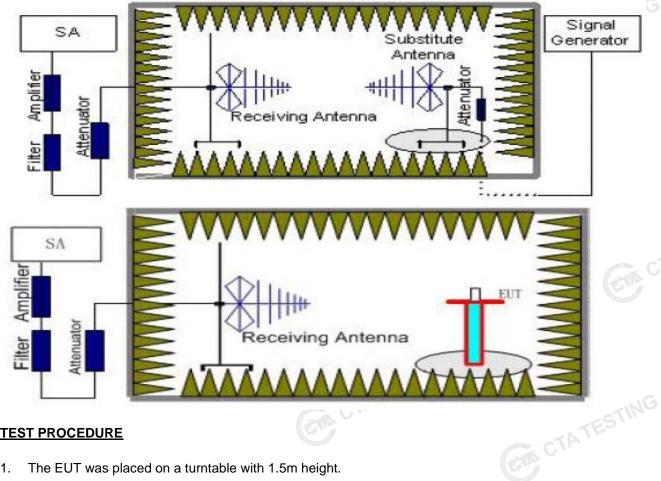
TEST RESULTS

Note:

	Bandwidth(B)	B/2	0.35B
Manufacturer declare	200 KHz	100KHz	70KHz

Report No.: CTA24082700701 Page 18 of 30

4.5 **Transmitter spurious emissions**


Limit

Spurious emissions are emissions outside the frequency range(s) of the equipment. The power of the spurious emissions shall not exceed the limits of table as below:

State		Frequency							
	47 MHz to 74 MHz 87,5 MHz to 137 MHz 174 MHz to 230 MHz 470 MHz to 862 MHz	Other Frequencies below 1 000 MHz	Frequencies above 1 000 MHz						
Operation	4 nW	250 nW	1 μW						
Standby	2 nW	2 nW	20 nW						

CTATES **Test Configuration**

Effective Radiated Power measurement (30 MHz to 12.75 GHz)

TEST PROCEDURE

- The EUT was placed on a turntable with 1.5m height. 1.
- 2. The test distance between the receiving antenna and the EUT is 3 meter, while the receiving (test) antenna is kept at 1.5 meter height.
- 3. Set EUT in continuous transmitting with maximum output power at test frequency.
- 4. The table was rotated from 0 to 360 degree to search the highest radiated emission.
- 5. Repeat step 3 to 4 for each polarization and test channel to find the worst emission level.
- 6. The results obtained are compared to the limits in order to prove compliance with the requirement.

Page 19 of 30 Report No.: CTA24082700701

TEST RESULTS

The test frequency range from 25MHz to 4GHz and recorded worst at below:

Frequency (MHz)	Pol /Ant	Measurement			
` ,	Pol./Ant	EIRP (dBm)	Limit (dBm)	Margin (dB)	Result
331.00	V	-65.70	-36.00	29.70	PASS
1080.00	V	-63.57	-30.00	33.57	
1620.00	V	-68.57	-30.00	38.57	(0.110
	V				
331.00	Н	-64.07	-36.00	28.07	A CONTRACTOR OF THE PARTY OF TH
1080.00	Н	-64.75	-30.00	34.75	
1620.00	Н	-71.30	-30.00	41.30	
	H _61				
	TES				
	1620.00 331.00 1080.00 1620.00	1620.00 V V 331.00 H 1080.00 H 1620.00 H	1620.00 V -68.57 V 331.00 H -64.07 1080.00 H -64.75 1620.00 H -71.30	1620.00 V -68.57 -30.00 V 331.00 H -64.07 -36.00 1080.00 H -64.75 -30.00 1620.00 H -71.30 -30.00	1620.00 V -68.57 -30.00 38.57 V 331.00 H -64.07 -36.00 28.07 1080.00 H -64.75 -30.00 34.75 1620.00 H -71.30 -30.00 41.30

	Test mode: Tx (565.00MHz)									
Frequency (MHz)	Pol./Ant	Measurement EIRP (dBm)	Limit (dBm)	Margin (dB)	Result					
955.40	V	-65.72	-36.00	29.72	PASS					
1130.00	V	-63.98	-30.00	33.98						
1695.00	V	-69.07	-30.00	39.07						
	V			- Somme						
955.40	. С. Н	-64.50	-36.00	28.50						
1130.00	ING H	-66.46	-30.00	36.46						
1695.00	Н	-71.17	-30.00	41.17						
110	Н	11/0								
1		-65111								

	Test mode: Tx (589.75MHz)								
	Frequency (MHz)	Pol./Ant	Measurement EIRP (dBm)	Limit (dBm)	Margin (dB)	Result			
	980.00	V	-66.17	-36.00	30.17	PASS			
	1179.50	V	-64.60	-30.00	34.60				
	1769.25	V	-68.74	-30.00	38.74				
	-ING	V							
	980.00	Н	-64.94	-36.00	28.94				
CTATL	1179.50	Н	-64.77	-30.00	34.77				
, 6 ,	1769.25	H	-71.32	-30.00	41.32				
1		H		6					

Remark:

- The test frequency range from 25MHz to 4GHz, RBW/VBW: 100 KHz/300KHz below 1GHz, RBW/VBW: 1000 KHz/3000KHz above 1GHz.
- "--"Other emission levels were very low against the limit and not reported.

Report No.: CTA24082700701 Page 20 of 30

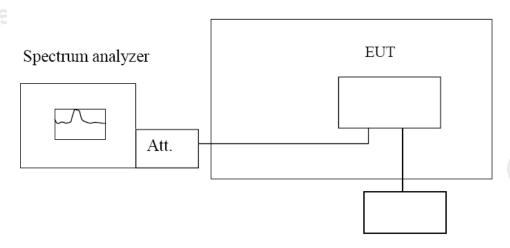
Frequency Stability

Limit

The frequency tolerance of the carrier signal shall be maintained within ±0.005% of the operating frequency over a temperature variation of −20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

Test Procedure

Frequency stability versus environmental temperature


- Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15 °C to 25 °C. Otherwise, an environmental chamber set for a temperature of 20 °C shall be used.
- Turn on EUT and set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3 kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- Repeat step 2 with a 10°C decreased per stage until the lowest temperature -20°C is measured, record all 4. measurement frequencies.

Frequency stability versus input voltage

- Setup asTest Configuration for frequencies measured at ambient temperature if it is within 15℃to 25℃. Otherwise, an environmental chamber set for a temperature of 20 °C shall be used. Install new batteries in the EUT.
- 2. Set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 3kHz, VBW to 10kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- For non hand carried, battery operated device, supply the EUT primary voltage with 85 and 115 percent of the nominal value and record the frequency.

Test Configuration

Temperature Chamber

Variable Power Supply CTATESTING

Page 21 of 30 Report No.: CTA24082700701

Test Results

			Refere	ence Frequency: (540.00MHz		
	Voltage (\	V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result
			-20	0.00407	0.000754%	ATE	
			-10	0.00284	0.000526%		
				0.00447	0.000828%		
	C 2 00		10	0.00238	0.000441%		(EVA
	3.00		20	0.00211	0.000391%	.0.005	PASS
CTATE	5,		30	0.00272	0.000504%	±0.005	PASS
CIL			40	0.00154	0.000285%		
7			50	0.00058	0.000107%		
	3.30		20	-0.00058	-0.000107%		
	2.70	A VOUNTUIN	20	-0.00144	-0.000267%		100

	Refere	ence Frequency: 5	565.00MHz		
Voltage (V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result
-18	G -20	0.00426	0.000754%		
TESTIN	-10	0.00344	0.000609%		
CTATESTIN	0	0.00457	0.000809%		
3.00	10	0.00342	0.000605%		
3.00	20	0.00191	0.000338%	.0.005	PASS
	30	0.00194	0.000343%	±0.005	PASS
	40	0.00078	0.000138%		
	50	0.00072	0.000127%		
3.30	20	0.00121	0.000214%		
2.70	20	-0.00089	-0.000158%		

	Refere	ence Frequency: 5	589.75MHz		
Voltage (V)	Temperature (°C)	Frequency error (MHz)	Frequency Tolerance (%)	Limit (%)	Result
	-20	0.00242	0.000410%		-10
	-10	0.00246	0.000417%		TEST"
	0	0.00235	0.000398%		TATESTIN
2.00	10	0.00074	0.000125%		
3.00	20	0.00110	0.000187%	.0.005	DACC
	30	0.00095	0.000161%	±0.005	PASS
	40	0.00195	0.000331%		
	50	0.00057	0.000097%		
3.30	20	-0.00041	-0.000070%		
2.70	20	-0.00241	-0.000409%		
			G G G T	ATESIM	

Page 22 of 30 Report No.: CTA24082700701

Test Setup Photos of the EUT 5

Page 23 of 30 Report No.: CTA24082700701

Photos of the EUT

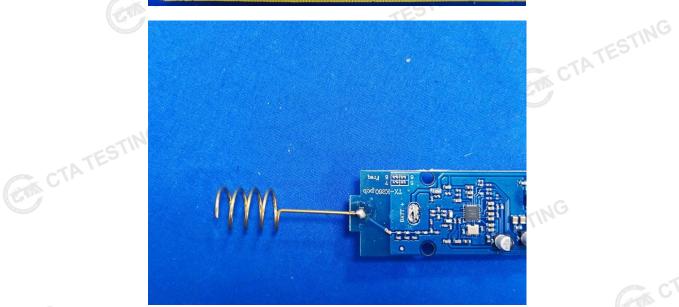
Page 24 of 30 Report No.: CTA24082700701

Page 25 of 30 Report No.: CTA24082700701

Page 26 of 30 Report No.: CTA24082700701

Page 27 of 30 Report No.: CTA24082700701

Page 28 of 30 Report No.: CTA24082700701



Page 29 of 30 Report No.: CTA24082700701

Report No.: CTA24082700701 Page 30 of 30

