

FCC Test Report

Application No.: DNT2409100260R1603-02461 **Applicant:** Collection Design B.V. Address of Applicant: Kingsfordweg 151, 1043GR Amsterdam, Israel **EUT Description:** Portable Speaker Model No.: Speaker M **2BLEO-SPEAKERM** FCC ID: DC 3.7V From Battery; DC 5V From Adapter **Power Supply: Trade Mark:** DC 5V 47 CFR FCC Part 2, Subpart J Standards: 47 CFR Part 15, Subpart C ANSI C63.10: 2020 Date of Receipt: 2024/9/10 Date of Test: 2024/9/11 to 2024/9/20 Date of Issue: 2024/10/10 Test Result: PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon envils che fèrre che

(Testing Engineer) (Project Engineer)

(Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT2409100260R1603-02461 Report Revise Record

Page: 2/66 Date: October 10, 2024

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Oct.10, 2024	Valid	Original Report

Date: October 10, 2024

Page: 3/66

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result	
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS	
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS	
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS	
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS	
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS	
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS	
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS	
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS	
Radiated Spurious	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS	
emissions	15.205/15.209	ANOT 003.10. 2020	Clause 5.5	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS	
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS	

Note:

1. "N/A" denotes test is not applicable in this test report.

Page: 4/66

Contents

1	Test Su	ummary	
2	Genera	al Information	5
	2.1	Test Location	
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	
	2.7	Test Facility	
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	
3 <	Test re	esults and Measurement Data	
	3.1	Antenna Requirement	
	3.2	20dB Emission Bandwidth	
	3.3	Conducted Output Power	15
	3.4	Carrier Frequencies Separationy	
	3.5	Dwell Time	17
	3.6	Hopping Channel Number	18
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	
	3.9	Radiated Spurious Emissions	21
	3.10	Restricted bands around fundamental frequency	
	3.11	AC Power Line Conducted Emissions	
4	Append	dix	
	Append	dix A: 20dB Emission Bandwidth	
	Append	dix B: Maximum conducted output power	
	Append	dix C: Carrier frequency separation	44
	Append	dix D: Dwell Time	46
	Append	dix F: Number of hopping channels	47
	Append	dix F: Band edge measurements	
	Append	dix F: Conducted Spurious Emission	

Date: October 10, 2024

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: October 10, 2024

2.2 General Description of EUT

Manufacturer:	Nowgo International Co.,Ltd			
Address of Manufacturer:	1903, Building 2, Manjinghua Science and Technology Innovation Workshop, No.6 Songjiang Road, Shapu Community, Songgang Street, Baoan District, Shenzhen			
Test EUT Description:	Portable Speaker			
Model No.:	Speaker M			
Additional Model(s):				
Chip Type:	AC6965E			
Serial number:	PR2409100260R1603			
Power Supply:	DC 3.7V From Battery;DC 5V Adapter			
Trade Mark:	STYLISTIC			
Hardware Version:	V1.0			
Software Version:	V1.0			
Operation Frequency:	2402 MHz to 2480 MHz			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK			
Sample Type:	☐ Portable Device, ☐ Module, ☐ Mobile Device			
Antenna Type:	□ External, ⊠ Integrated			
Antenna Ports:	🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3			
Antenna Gain*:	☐ Provided by applicant			
	1.9dBi			
	⊠ Provided by applicant			
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);			

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Page: 7/66

2.3 Channel List

	Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz	
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz	
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz	
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
/ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz	
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz	
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: October 10, 2024

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure: 101.0~101.30 KPa				
Test mode:				
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Date: October 10, 2024

2.5 Power Setting of Test Software

Page: 9/66

J			
Software Name	\Diamond , \Diamond ,	FCC_assist_1.0.2.2	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149. IC#: 30755.

Date: October 10, 2024

Page: 10 / 66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
0,	O, O ,	± 4.8dB (Below 1GHz)		
0	Radiated Emission	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

2.9 Equipment List

	For Connec	ct EUT Anteni	na Terminal	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission				
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z) 💫
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Received and the second second

Report No.: DNT2409100260R1603-02461

Date: October 10, 2024

Page: 12/66

🕥 Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

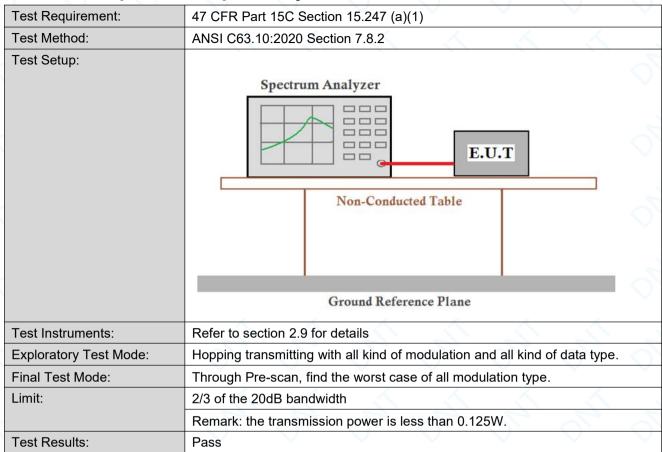
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.9dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.7
Test Setup:	
	Spectrum Analyzer
<	E.U.T
	Non-Conducted Table
<	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A


3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.4
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

The detailed test data see: Appendix D

Date: October 10, 2024

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	\bigcirc
Test Method:	ANSI C63.10:2020 Section 7.8.3	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	0, 0, 0,
	Ground Reference Plane	ς ,
Instruments Used:	Refer to section 2.9 for details	
Test Mode:	Hopping transmitting with all kind of modulation	
Limit:	At least 15 channels	<
Test Results:	Pass	

The detailed test data see: Appendix E

3.7 Band-edge for RF Conducted Emissions

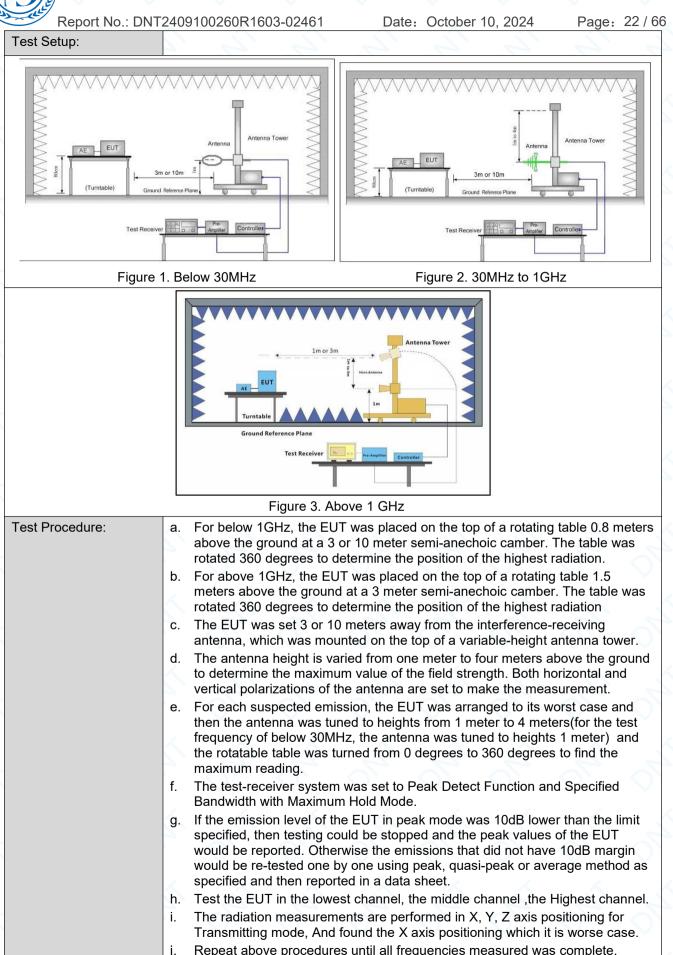
Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2020 Section 7.8.6	
Test Setup:	Spectrum Analyzer E.U.T	
	Ground Reference Plane	
Instruments Used:	Refer to section 2.9 for details	
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.	
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Results:	Pass	

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2020 Section 11.11		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Results:	Pass		

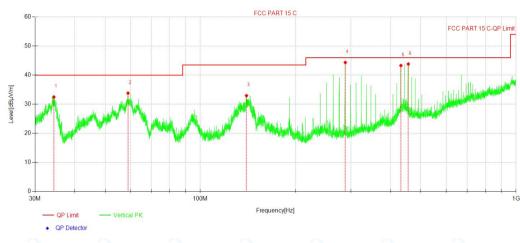
The detailed test data see: Appendix G

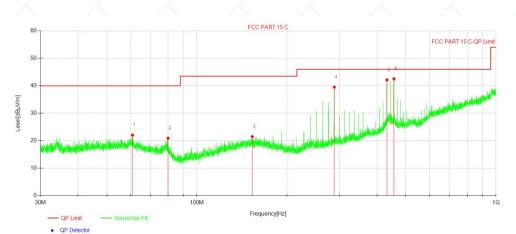

Date: October 10, 2024

Page: 21/66

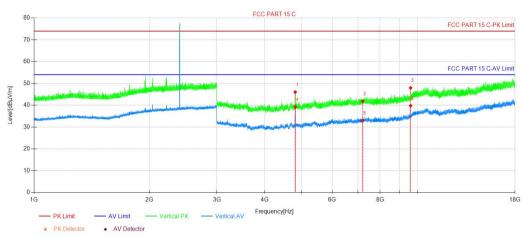
3.9 Radiated Spurious Emissions

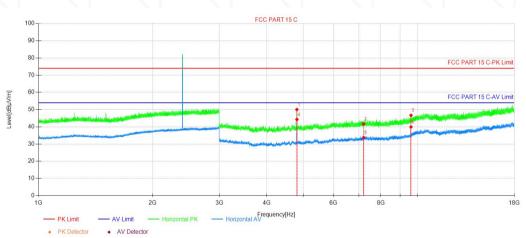
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2020 Sect	ANSI C63.10: 2020 Section 11.12			
Test Site:	Measurement Distance:	3m or 10m (Semi-/	Anechoic Ch	amber)	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average
		5 5		≥1/T (DC<0.98)	4
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300
	0.490MHz-1.705MHz	24000/F(kHz)		<u>-</u> >`	30
	1.705MHz-30MHz	30	\sim	\bigcirc -	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lin	nit



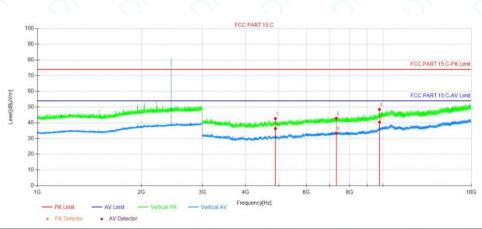

Report No.: DNT	2409100260R1603-02461 Date: October 10, 2024 Page: 23 / 66
Test Configuration:	Measurements Below 1000MHz • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz
	• $RBW = 1 MHZ$ • $VBW \ge 3 MHZ$ • Detector = Peak • Sweep time = auto
	 Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz
	 VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

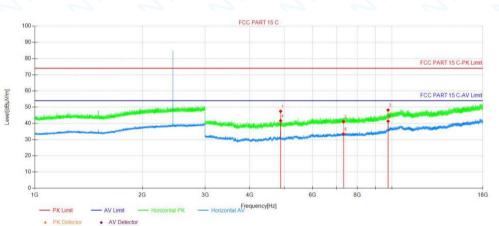
Test data For 30-1000MHz


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	34.40	41.86	-9.38	32.48	40.00	7.52	100	360	QP	Vertical
2	59.08	42.48	-8.67	33.81	40.00	6.19	100	5	QP	Vertical
3	140.14	41.42	-8.47	32.95	43.50	10.55	100	313	QP	Vertical
4	287.99	51.66	-7.30	44.36	46.00	1.64	100	164	QP	Vertical
5	431.93	46.60	-3.29	43.31	46.00	2.69	100	360	QP	Vertical
6	455.90	46.51	-2.68	43.83	46.00	2.17	100	0	QP	Vertical

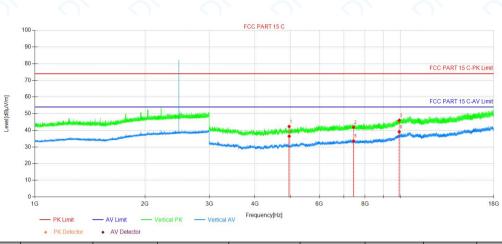

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	60.89	30.91	-8.86	22.05	40.00	17.95	100	108	QP	Horizontal
2	80.05	33.49	-12.56	20.93	40.00	19.07	100	343	QP	Horizontal
3	153.09	29.29	-7.80	21.49	43.50	22.01	100	45	QP	Horizontal
4	287.99	46.81	-7.30	39.51	46.00	6.49	100	123	QP	Horizontal
5	431.93	45.44	-3.29	42.15	46.00	3.85	100	97	QP	Horizontal
6	455.90	45.21	-2.68	42.53	46.00	3.47	100	92	QP	Horizontal

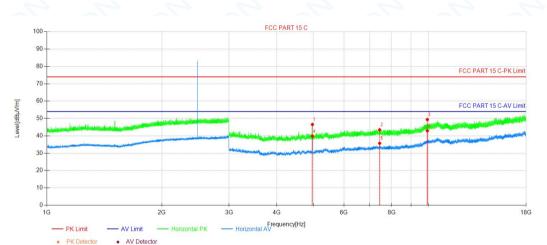
For above 1GHz 3DH5 2402MHz


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	50.64	-4.61	46.03	74.00	27.97	150	57	Peak	Vertical
2	7206.21	43.62	-1.76	41.86	74.00	32.14	150	193	Peak	Vertical
3	9607.08	47.10	0.87	47.97	74.00	26.03	150	72	Peak	Vertical
4	4804.59	43.86	-4.61	39.25	54.00	14.75	150	44	AV	Vertical
5	7206.21	34.74	-1.76	32.98	54.00	21.02	150	0	AV	Vertical
6	9607.83	38.91	0.87	39.78	54.00	14.22	150	57	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	54.64	-4.61	50.03	74.00	23.97	150	142	Peak	Horizon
2	7206.21	43.40	-1.76	41.64	74.00	32.36	150	357	Peak	Horizon
3	9607.83	45.81	0.87	46.68	74.00	27.32	150	114	Peak	Horizon
4	4804.59	48.89	-4.61	44.28	54.00	9.72	150	142	AV	Horizon
5	7206.21	35.54	-1.76	33.78	54.00	20.22	150	275	AV	Horizon
6	9607.83	39.06	0.87	39.93	54.00	14.07	150	114	AV	Horizon

3DH5 2441MHz


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	47.38	-4.72	42.66	74.00	31.34	150	40	Peak	Vertical
2	7323.96	44.35	-1.49	42.86	74.00	31.14	150	136	Peak	Vertical
3	9763.08	46.90	1.63	48.53	74.00	25.47	150	204	Peak	Vertical
4	4882.59	41.05	-4.72	36.33	54.00	17.67	150	68	AV	Vertical
5	7323.96	34.73	-1.49	33.24	54.00	20.76	150	55	AV	Vertical
6	9763.83	38.80	1.64	40.44	54.00	13.56	150	204	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	52.18	-4.72	47.46	74.00	26.54	150	184	Peak	Horizon
2	7323.21	42.55	-1.49	41.06	74.00	32.94	150	319	Peak	Horizon
3	9763.08	46.59	1.63	48.22	74.00	25.78	150	116	Peak	Horizon
4	4882.59	46.40	-4.72	41.68	54.00	12.32	150	184	AV	Horizon
5	7323.21	34.89	-1.49	33.40	54.00	20.60	150	0	AV	Horizon
6	9763.83	39.69	1.64	41.33	54.00	12.67	150	102	AV	Horizon

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	47.14	-4.86	42.28	74.00	31.72	150	346	Peak	Vertical
2	7440.22	43.18	-1.34	41.84	74.00	32.16	150	332	Peak	Vertical
3	9920.59	43.75	2.27	46.02	74.00	27.98	150	42	Peak	Vertical
4	4960.59	41.30	-4.86	36.44	54.00	17.56	150	111	AV	Vertical
5	7440.22	34.97	-1.34	33.63	54.00	20.37	150	234	AV	Vertical
6	9920.59	36.81	2.27	39.08	54.00	14.92	150	42	AV	Vertical

			[dB/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Remark	Polarity
1 49	59.84	51.39	-4.86	46.53	74.00	27.47	150	152	Peak	Horizon
2 74	40.22	44.82	-1.34	43.48	74.00	30.52	150	100	Peak	Horizon
3 99	19.09	47.11	2.26	49.37	74.00	24.63	150	100	Peak	Horizon
4 490	60.59	44.68	-4.86	39.82	54.00	14.18	150	221	AV	Horizon
5 74	40.22	37.05	-1.34	35.71	54.00	18.29	150	100	AV	Horizon
6 99 ⁻	19.84	40.61	2.26	42.87	54.00	11.13	150	113	AV	Horizon

Note:

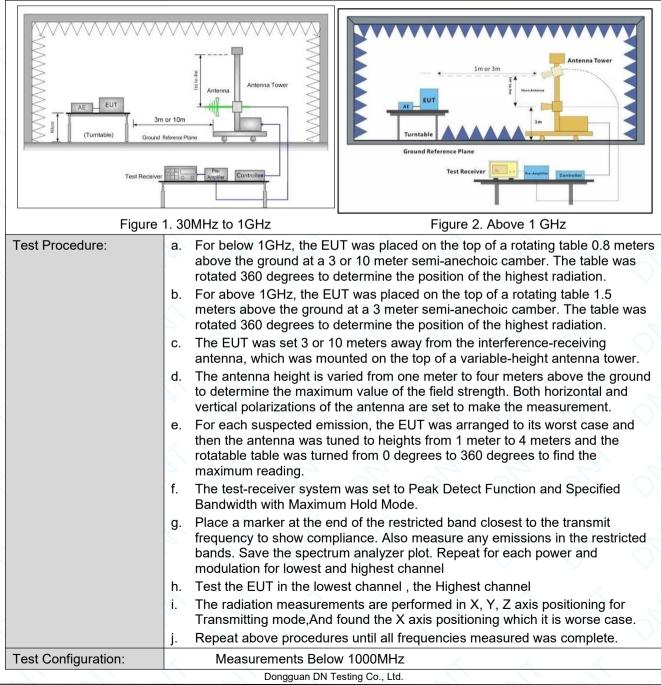
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case, only the worst case was reported.



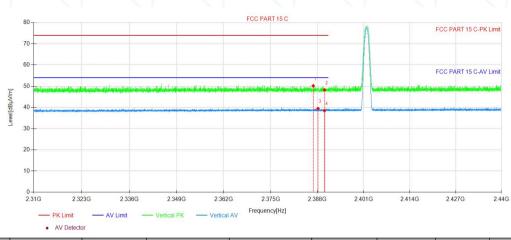
Date: October 10, 2024 Page: 29 / 66

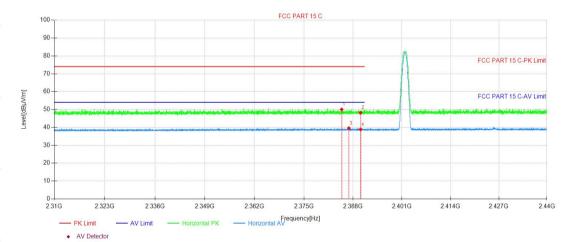
3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2020 Section	11.12	, ,							
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)							
Limit:	Frequency	Limit (dBuV/m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak							
	88MHz-216MHz	43.5	Quasi-peak							
	216MHz-960MHz	46.0	Quasi-peak							
	960MHz-1GHz	54.0	Quasi-peak							
		54.0	Average Value							
	Above 1GHz	74.0	Peak Value							

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

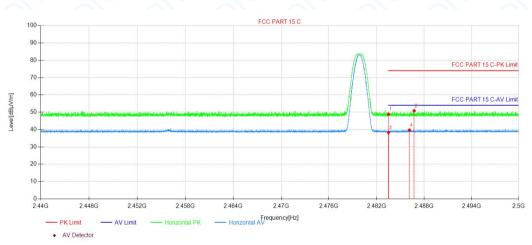

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com


Report No	.: DNT2409100260R1603-02461 Date: October 10, 2024 Page: 30 / 66
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold
	 Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz
	 Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz
	 VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its
Exploratory Test M	maximum power control level for the tested mode of operation. ode: Transmitting with all kind of modulations, data rates. Transmitting mode. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

Test Date DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2386.86	50.97	-0.81	50.16	74.00	23.84	150	340	Peak	Vertical
2	2390.01	49.04	-0.80	48.24	74.00	25.76	150	13	Peak	Vertical
3	2388.18	40.25	-0.80	39.45	54.00	14.55	150	332	AV	Vertical
4	2390.01	39.27	-0.80	38.47	54.00	15.53	150	272	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2384.99	50.86	-0.82	50.04	74.00	23.96	150	251	Peak	Horizon
2	2390.01	49.00	-0.80	48.20	74.00	25.80	150	209	Peak	Horizon
3	2386.88	40.36	-0.81	39.55	54.00	14.45	150	334	AV	Horizon
4	2390.01	39.68	-0.80	38.88	54.00	15.12	150	60	AV	Horizon



DH5 2480MHz

Report No.: DNT2409100260R1603-02461

FCC PART 15 C 90 80 FCC PART 15 C-PK Lim 70 60 ECC PART 15 C-AV Lin 50 40 30 20 10 0-2446G 2 452G 2458G 2 464G 2 47G 2 476G 2 482G 2 488G 2 494G 256 Frequency[Hz] AV Limit AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	48.09	-0.29	47.80	74.00	26.20	150	22	Peak	Vertical
2	2488.20	52.06	-0.26	51.80	74.00	22.20	150	147	Peak	Vertical
3	2483.51	38.90	-0.29	38.61	54.00	15.39	150	357	AV	Vertical
4	2488.01	40.06	-0.26	39.80	54.00	14.20	150	174	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.14	-0.29	48.85	74.00	25.15	150	314	Peak	Horizon
2	2486.75	51.07	-0.26	50.81	74.00	23.19	150	215	Peak	Horizon
3	2483.50	38.58	-0.29	38.29	54.00	15.71	150	322	AV	Horizon
4	2486.15	39.94	-0.27	39.67	54.00	14.33	150	158	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.

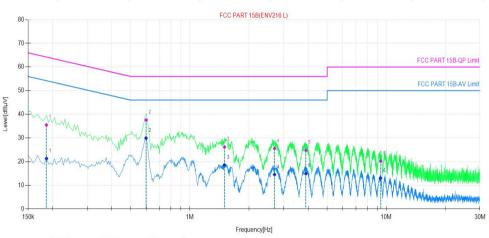
2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Test Requirement:	47 CFR Part 15C Section 7	15.207						
Test Method:	ANSI C63.10: 2020	x 2 7						
Test Frequency Range:	150kHz to 30MHz							
_imit:		📈 📈 Limit (dE	BuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm of the frequency.							
	Impedance Stabilization Na impedance. The power cat a second LISN 2, which wa plane in the same way as t multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was p ground reference plane. An placed on the horizontal gr 4) The test was performed of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the grou between the closest points the EUT and associated ed In order to find the maximu	I with a vertical ground refer rom the vertical ground refer lane was bonded to the hor 1 was placed 0.8 m from th to a ground reference plane and reference plane. This dis of the LISN 1 and the EUT. quipment was at least 0.8 m m emission, the relative post terface cables must be char	$\Omega/50\mu$ H + 5 Ω linear EUT were connected erence measured. A e power cables to a ceeded. table 0.8m above the ement, the EUT was ence plane. The rear rence plane. The izontal ground e boundary of the e for LISNs stance was All other units of from the LISN 2. sitions of					
Γest Setup:	Shielding Room	AE B B Cround Reference Plane	Test Receiver					
Exploratory Test Mode:	Transmitting with all kind o highest channel. Charge + Transmitting mod	f modulations, data rates at	lowest, middle and					

3.11 AC Power Line Conducted Emissions

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

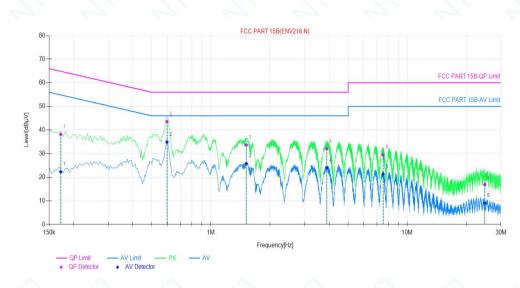


Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.18	9.92	25.57	35.49	64.22	28.73	11.39	21.31	54.22	32.91
2	0.59	9.82	27.75	37.57	56.00	18.43	20.13	29.95	46.00	16.05
3	1.50	9.73	16.44	26.17	56.00	29.83	8.83	18.56	46.00	27.44
4	2.70	9.74	15.82	25.56	56.00	30.44	4.77	14.51	46.00	31.49
5	3.89	9.75	15.02	24.77	56.00	31.23	7.18	16.93	46.00	29.07
6	9.36	9.86	10.38	20.24	60.00	39.76	3.17	13.03	50.00	36.97

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.17	9.82	28.32	38.14	64.87	26.73	12.5	22.32	54.87	32.55
2	0.59	9.78	33.76	43.54	56.00	12.46	25.14	34.92	46.00	11.08
3	1.51	9.73	23.93	33.66	56.00	22.34	16.03	25.76	46.00	20.24
4	3.89	9.95	22.12	32.07	56.00	23.93	14.06	24.01	46.00	21.99
5	7.53	9.96	19.47	29.43	60.00	30.57	11.33	21.29	50.00	28.71
6	24.82	10.14	6.79	16.93	60.00	43.07	-1.01	9.13	50.00	40.87

Remark:

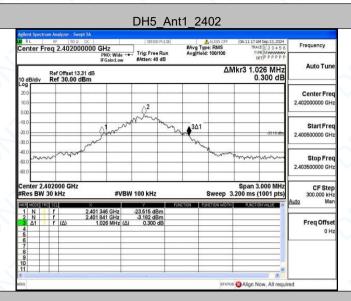
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

4 Appendix


Appendix A: 20dB Emission Bandwidth

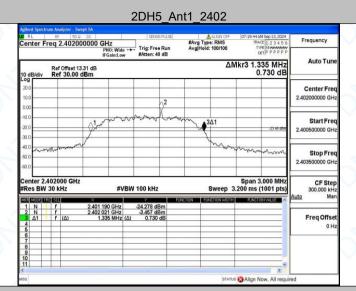
Test Result	\mathbf{O}	\bigcirc		\cap			\mathbf{O}
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	~	2402	1.026	2401.346	2402.372	🗸	<
DH5	Ant1	2441	1.032	2440.340	2441.372		
		2480	1.041	2479.328	2480.369		
	\sim	2402	1.335	2401.190	2402.525		
2DH5	Ant1	2441	1.347	2440.184	2441.531		
		2480	1.347	2479.181	2480.528	🔨	
~	~	2402	1.293	2401.214	2402.507		
3DH5	Ant1	2441	1.305	2440.208	2441.513	<u> </u>	
	\sim	2480	1.296	2479.208	2480.504		

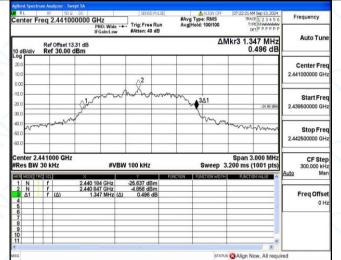
Page: 37 / 66

Test Graphs

DH5_Ant1_2441

RL RF 50 Q DC	2 3 4 5 6 Frequency
	PPPPP
Ref Offset 13.31 dB 0 dB/div Ref 30.00 dBm	MHz Auto Tur 3 dB
og 200 100	Center Fre 2.441000000 GF
0.0	2:39:45m 2.439500000 GH
0.0	2.442500000 GH
enter 2.441000 GHz Res BW 30 kHz	0 MHz 01 pts) CF Ste 300.000 kH
KE MODE THO SCI X 1 N f 2.44	Auto Ma
2 N f 2.44 3 Δ1 f (Δ) 4 5	Freq Offs 01
6 7 8 9	=
10	

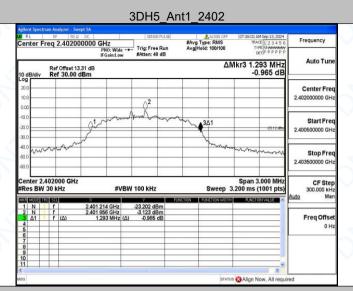

DH5_Ant1_2480



Date: October 10, 2024

Page: 38/66

2DH5_Ant1_2441


2DH5_Ant1_2480

Frequency	07:23:28 AM Sep 13, 2024 TRACE 1 2 3 4 5 6	ALIGN OFF		SENSE:P		0000 GHz	50 Q	RF	ter
	DET P P P P P	Hold: 100/100		Trig: Free R #Atten: 40 d	Wide 🔸	PNO:			
Auto Tur	/kr3 1.347 MHz 0.307 dB	ΔN					Offset 13 30.00		B/div
Center Fre 2.480000000 GH				2					
Start Fre 2.478500000 Gł	24.53 dBM	• • • • •	m.ml	~~~		glar h			
Stop Fre 2.481500000 GF	wan www.	Manno				1	m	~~~	~
CF Ste 300.000 k Auto M	Span 3.000 MHz .200 ms (1001 pts)	Sweep 3	FUNC	100 kHz	#VBW	X		2.4800 V 30 k	nter :
Freq Offs 0				-25.101 dBm -4.525 dBm 0.307 dE	SHz SHz MHz (Δ)	2.479 181 ((Δ)	f	Ν Ν Δ1
od	Alian Now, All requir	STATUS							

Date: October 10, 2024

Page: 39/66

3DH5_Ant1_2441

3DH5_Ant1_2480

RL	rum Analyzer - Sv RF 50 S	2 DC	SENSE:PULSE	ALIGN OFF	07:30:05 AM Sep 13, 2024	Frequency
Center F	req 2.4800	00000 GHz PNO: Wid IFGain:Lo	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Held: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	requercy
10 dB/div	Ref Offset 1 Ref 30.00	3.31 dB		۵	Mkr3 1.296 MHz -0.695 dB	Auto Tune
20.0 10.0			2			Center Fred 2.480000000 GH:
-10.0		Alam	-Anne-	~~~~~3∆1	-23 02 dBn	Start Free 2.478500000 GH:
-40.0	mar	~~~			www.	Stop Free 2.481500000 GH
			/BW 100 kHz	Sweep 3	Span 3.000 MHz 3.200 ms (1001 pts)	CF Step 300.000 kH Auto Ma
1 N 2 N 3 ∆1 4 5 6 7	f f f (Δ)	2.479 208 GHz 2.479 694 GHz 1.296 MHz	-23.244 dBm -3.019 dBm (Δ) -0.695 dB			Freq Offse 0 H
7 8 9 10 11						
KSG				STATU	S 🕄 Align Now, All requir	red

Dongguan DN Testing Co., Ltd.

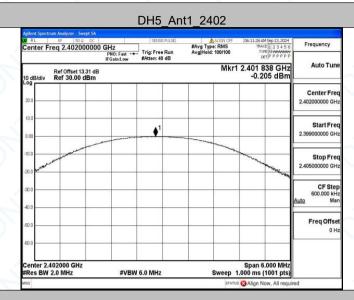
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: October 10, 2024

Page: 40/66


Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	-0.21	≤20.97	PASS
DH5	Ant1	2441	0.01	≤20.97	PASS
		2480	-0.45	≤20.97	PASS
		2402	0.38	≤20.97	PASS
2DH5	Ant1	2441	0.69	≤20.97	PASS
		2480	0.42	≤20.97	PASS
		2402	0.83	≤20.97	PASS
3DH5 🔍	Ant1	2441	1.05	≤20.97	PASS
		2480	0.83	≤20.97	PASS

Page: 41/66

Test Graphs

DH5_Ant1_2441

RL	RF 5D Q DC		SENSE:PULSE	ALIGN OFF	06:27:57 AM Sep 13, 2024	Frequency
Center F	req 2.441000000	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MUMUUMU DET P P P P P P	
10 dB/div	Ref Offset 13.31 dB Ref 30.00 dBm			Mkr1	2.441 018 GHz 0.011 dBm	Auto Tun
20.0						Center Fre 2.441000000 GH
0.00			↓ ¹			Start Fre 2.438000000 GH
-10.0						Stop Fre 2.444000000 GH
-30.0						CF Ste 600.000 kF Auto Ma
-50.0						Freq Offse 0 F
-60.0						
Center 2.4 #Res BW	41000 GHz 2.0 MHz	#VBW	6.0 MHz	Sweep 1	Span 6.000 MHz .000 ms (1001 pts)	
#Res BW	2.0 MHz	#VBW	6.0 MHz		.000 ms (1001 pts)	red

DH5_Ant1_2480

RL RF 502 DC Center Freq 2.48000000	PNO: Fast Trig	SENSE:PULSE Free Run en: 40 dB	#Avg Type Avg Hold:	ALIGN OFF : RMS 100/100	TRAC	1 2 3 4 5 6 1 2 3 4 5 6 1 M WWWWW T P P P P P P	Frequency
Ref Offset 13.31 d 0 dB/div Ref 30.00 dBm	il ddiniedh			Mkr1	2.479 7 -0.4	72 GHz 48 dBm	Auto Tun
20.0							Center Fre 2.480000000 GH
0.00		♦ ¹					Start Fre 2.477000000 GF
10.0 20.0 area marked and and and and and and and and and an					and a strength of the strength	Markan Starte	Stop Fre 2.483000000 GH
80.0							CF Ste 600.000 kF Auto Ma
50.0							Freq Offs 0 F
60.0					Prop 6	.000 MHz	
Res BW 2.0 MHz	#VBW 6.01	MHz	5		.000 ms (1001 pts)	

Date: October 10, 2024

Page: 42/66

Frequency	19:53 AM Sep 13, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P	RMS 00/100	#Avg Type Avg Hold:	sense Pulse	Z IO: Fast ↔	2 DC 00000 GH PI			e Ri Cen
Auto Tur	01 772 GHz 0.377 dBm	Mkr1		Atten. 40 db	ain:Low	3.31 dB	Ref Offset 1 Ref 30.00		l0 dE
Center Fre 2.402000000 GF									20.0
Start Fre 2.399000000 GH				♦ ¹					10.0
Stop Fre 2.405000000 GH	the water and a street	an un an					Sector Contraction	and a start of	10.0
CF Ste 600.000 kF Auto Ma								2	30.0 40.0
Freq Offs				_					50.0
(23)				_		<u></u>			60.0
	pan 6.000 MHz ms (1001 pts)	weep 1.		0 MHz	#VBW	:	2000 GH: 0 MHz	er 2.40 BW 2	

2DH5_Ant1_2441

		SENSE:PULSE		RF 5DQ DC	RL
TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P		Trig: Free Run #Atten: 40 dB	GHz PNO: Fast ↔ IFGain:Low	req 2.44100000	Center F
2.440 880 GHz 0.694 dBm	Mkr1			Ref Offset 13.31 dB Ref 30.00 dBm	10 dB/div
					20.0
		•1			0.00
Marine and the standing				Wind and the state of the state	-10.0
4					-30.0
					-50.0
Span 6.000 MHz					
	Sweep 1	6.0 MHz	#VBW		Center 2. #Res BW
	2.440 880 GHz	Avg Type: RMS AvgHold: 100100 Mkr1 2.404 980 GHz 0.694 dBm	#Arg Type: RMS Mact El 214 5 6 WagHold: 100/100 #Arg Type: RMS Mact El 214 5 6 WagHold: 100/100 #Atten: 40 dB Mkr1 2.440 880 GHz 0.694 dBm 1 0 1	GHZ PHO: Fast PG: Ghat PG: Gaint.cow Arten: 40 dB Mkr1 2:445 BS GHZ 0.694 dBm 0.694 dBm 0.6	reg 2.44100000 GHz Trig: Free Run Avg Type: RMS The Ref 2.45 for the RMS Type: RMS The Ref 2.45 for the RMS Type: R

2DH5_Ant1_2480

	rum Analyzer - Swept Si	<u>, </u>						
Center F	RF 50 Q DC reg 2.4800000	00 GHz	SENSE:PULSE	#Avg Type	ALIGN OFF	TRA	CE 1 2 3 4 5 6	Frequency
		PNO: Fast ↔ IFGain:Low	≓ Trig: Free Run #Atten: 40 dB	Avg Hold:			PE MWWWWW ET P P P P P P	A
10 dB/div	Ref Offset 13.31 d Ref 30.00 dBm				Mkr1		754 GHz 18 dBm	Auto Tune
20.0								Center Freq 2.480000000 GHz
0.00								Start Freq 2.477000000 GHz
-10.0	www.and and and and and and and and and and				and the state of t	and the second	and registered	Stop Freq 2.483000000 GHz
-30.0								CF Step 600.000 kHz Auto Mar
-50.0								Freq Offset 0 Hz
-60.0								
Center 2. #Res BW	480000 GHz 2.0 MHz	#VB	V 6.0 MHz		Sweep 1		6.000 MHz (1001 pts)	
MSG					STATUS	8 Align N	low, All requir	red

Date: October 10, 2024

Page: 43/66

Frequency	AM Sep 13, 2024 RACE 1 2 3 4 5 6 TYPE M WWWWWW DET P P P P P P	TR	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100			PNO: Fast -	50 Q DC 2000000 G	req 2.4	enter F
Auto Tur	640 GHz 829 dBm	1 2.401	Mkr	a D	satten: 40	IFGain:Low	t 13.31 dB 00 dBm) dB/div
Center Fre 2.402000000 GH									0.0
Start Fre 2.399000000 GH				*******	● ¹				
Stop Fre 2.405000000 GH	an all the state of the	-						www	0.0 0.0 alaran
CF Ste 600.000 kF Auto Ma				2		2			0.0
Freq Offso 0 H									0.0
									0.0
	6.000 MHz (1001 pts)		Sweep	-	V 6.0 MHz	#VBV	Hz	402000	

3DH5_Ant1_2441

Center Freq 2.44100000 Ref Offset 13.31 dE	PNO: Fast +++	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Held: 100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P 1 2.440 838 GHz	Frequency	
10 dB/div Ref 30.00 dBm			Mkr	2 440 929 CH-		
Log				1.049 dBm	Auto Tune	
20.0					Center Free 2.441000000 GH	
0.00		<u></u> 1			Start Free 2.438000000 GH	
-20.0				and the second s	Stop Free 2.444000000 GH	
-40.0					CF Step 600.000 kH Auto Ma	
-50.0					Freq Offse 0 H	
Center 2.441000 GHz				Span 6.000 MHz		
#Res BW 2.0 MHz	#VBW	6.0 MHz		1.000 ms (1001 pts)		

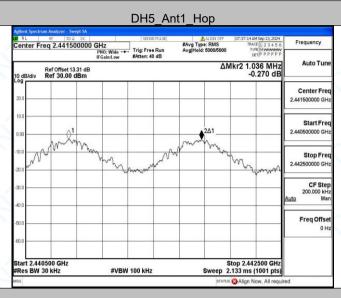
3DH5_Ant1_2480

RL	RF 50.0 D		SENSE:PULSE	A /	LIGN OFF	07:30:13 AM	Sep 13, 2024	
Center F	req 2.4800000	Trig: Free Run #Atten: 40 dB	#Avg Type:	Hold: 100/100 TV		VE 123456 VPE MWWWWWWW DET P P P P P P	Frequency	
10 dB/div	Ref Offset 13.31 Ref 30.00 dBr						02 GHz 32 dBm	Auto Tune
20.0								Center Free 2.480000000 GH
0.00			● ¹		~			Start Free 2.477000000 GH
-10.0	and and a second s				C. S.	and and a second second	"Badara	Stop Fre 2.483000000 GH
-30.0							-	CF Stej 600.000 kH Auto Ma
-50.0								Freq Offse 0 H
-60.0								
Center 2. #Res BW	480000 GHz 2.0 MHz	#VBW	6.0 MHz	S	weep 1	Span 6. .000 ms (1	000 MHz 1001 pts)	
ASG					STATUS	Align No	w. All requir	ed

Appendix C: Carrier frequency separation

Date: October 10, 2024

Page: 44/66


Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.036	≥0.694	PASS
2DH5	Ant1	Нор	1.142	≥0.898	PASS
3DH5	Ant1	Нор	0.966	≥0.870	PASS

Page: 45/66

Test Graphs

2DH5_Ant1_Hop

RL enter Fr	RF 50 Q DC reg 2.44150000	IL GHZ	SENSE:PULSE	#Avg Type: RMS	07:55:16 AM Sep 13, 2024 TRACE 1 2 3 4 5 6	Frequency	
unter m	100 2.44 10000	PNO: Wide IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Hold: 5000/5000	DET P P P P P		
dB/div	Ref Offset 13.31 d Ref 30.00 dBm			Δ	Mkr2 1.142 MHz -2.576 dB	Auto Tun	
						Center Fre 2.441500000 GH	
00	1			22	J1	Start Fre 2.440500000 GH	
0.0	mon	marrow way	m M	mm.	renow	Stop Fre 2.442500000 GH	
						CF Ste 200.000 kF Auto Ma	
0.0						Freq Offse 0 F	
0.0							
art 2.44 Res BW	0500 GHz 30 kHz	#VBW	100 kHz	Sweep	Stop 2.442500 GHz 2.133 ms (1001 pts)		
8				STAT	us 🔀 Align Now, All requi	red	

3DH5_Ant1_Hop

12000000000000	07:56:50 AM Sep 13, 2024	JGN OFF	4	SENSE:PULSE		RF 50.0 DC	RL	
Frequency	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P	RMS 100/5000	#Avg Type Avg Hold:	Trig: Free Run #Atten: 40 dB	GHz PNO: Wide	req 2.441500000	Center Fi	
Auto Tun	∆Mkr2 966 kHz -1.633 dB			STATE TO BE	FoamLow	Ref Offset 13.31 dB 0 dB/div Ref 30.00 dBm		
Center Fre 2.441500000 GH							20.0	
Start Fre 2.440500000 GH			▲2∆			01	0.00	
Stop Fre 2.442500000 GH	- Marine	why	w Xn	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	man	-10.0 ~~~~	
CF Ste 200.000 kH Auto Ma			0				-30.0	
Freq Offse 0 H							50.0	
							-60.0	
	top 2.442500 GHz .133 ms (1001 pts)		1	100 kHz	#VBW	0500 GHz 30 kHz	Start 2.44 #Res BW	
be	Align Now, All require	STATUS					ASG	

Date: October 10, 2024

Page: 46/66

Appendix D: Dwell Time

Test Result

restresult							
Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор 🗸	0.374	320	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.631	160	0.261	≤0.4	PASS
DH5	Ant1	Нор	2.879	106.67	0.307	≤0.4	PASS
2DH1	Ant1	Нор	0.384	320	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.637	160	0.262	≤0.4	PASS
2DH5	Ant1	🗸 Hop 🗸	2.884	106.67	0.308	≤0.4	PASS
3DH1	Ant1	Нор	0.386	320	0.124	≤0.4	PASS
3DH3	Ant1	Нор	1.635	160	0.262	≤0.4	PASS
3DH5	Ant1	Нор	2.887	106.67	0.308	≤0.4	PASS