

Report No. : EED32I00065502 Page 1 of 68

TEST REPORT

Product : Thermal Receipt Printer

Trade mark : Rongta

Model/Type reference : RP80-WUS, RP850-WUS, RP804-WUS

Serial Number : N/A

Report Number : EED32I00065502 **FCC ID** : 2AD6G-RP80-WUS

Date of Issue : Sep. 22, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

XIAMEN RONGTA TECHNOLOGY CO., LTD.

3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street
Office, Huli District, Xiamen City

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by: Seal

Tom - Chen
Tom chen (Test Project)

Compiled by:

Approved by:

Kevin yang (Project Engineer)

Kevin lan (Reviewer)

Sep. 22, 2016

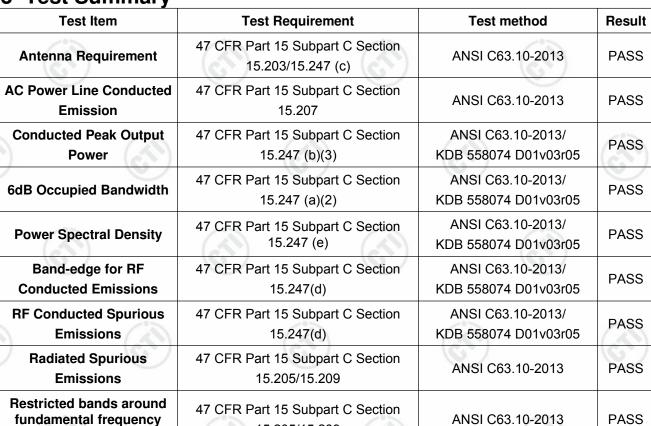
Sheek Luo (Lab supervisor)

Check No.: 2392104606

Page 2 of 68

2 Version

Version No.	Date	Description
00	Sep. 22, 2016	Original



3 Test Summary

Page 3 of 68

Remark:

(Radiated Emission)

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

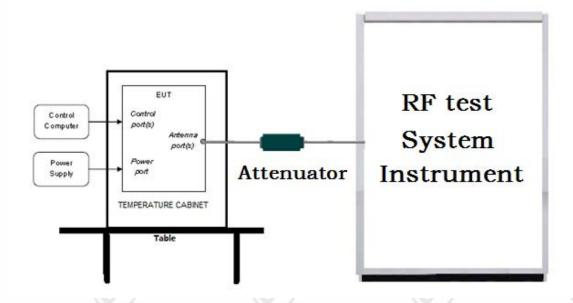
Model No.: RP80-WUS, RP850-WUS, RP820-WUS, RP804-WUS

Only the model RP80-WUS was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being the shell structure of the whole machine.

15.205/15.209

2 VERSION				2
3 TEST SUMMARY				3
4 CONTENT	•••••		•••••	4
5 TEST REQUIREMEN	VT			5
5.1.1 For Conduction 5.1.2 For Radiate 5.1.3 For Conduction 5.2 Test Environme	ted test setupd Emissions test setup ted Emissions test setup			5 6 6
6 GENERAL INFORM	ATION			8
6.2 GENERAL DESCR 6.3 PRODUCT SPECIF 6.4 DESCRIPTION OF 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM 6.8 ABNORMALITIES F 6.9 OTHER INFORMAT	STANDARDSSTANDARD CONDITIONS	STANDARD		
	Uncertainty (95% confide			
	REQUIREMENTS SPECIF			
Appendix B): 6dB Appendix C): Ban Appendix D): RF Appendix E): Pow Appendix F): Ante Appendix G): AC Appendix H): Res	ducted Peak Output Power Occupied Bandwidth d-edge for RF Conducted E Conducted Spurious Emiss ver Spectral Density enna Requirement Power Line Conducted Emi stricted bands around funda ated Spurious Emissions	Emissionsions	d)	
PHOTOGRAPHS OF 1	EST SETUP			60
PHOTOGRAPHS OF E	EUT CONSTRUCTIONAL D	ETAILS		62

1 COVER PAGE......1


Page 4 of 68

Report No.: EED32I00065502 5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

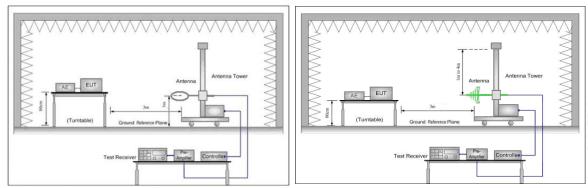


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

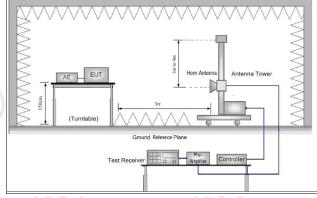
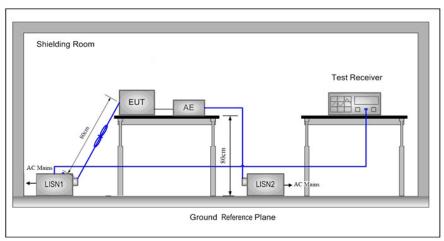


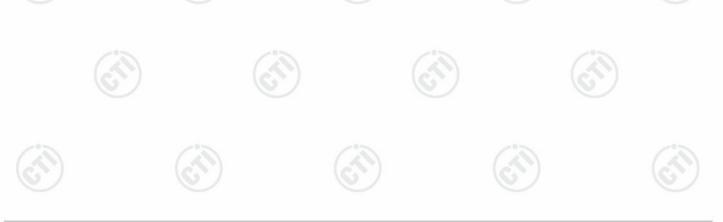
Figure 3. Above 1GHz



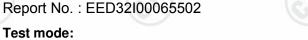
5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 68

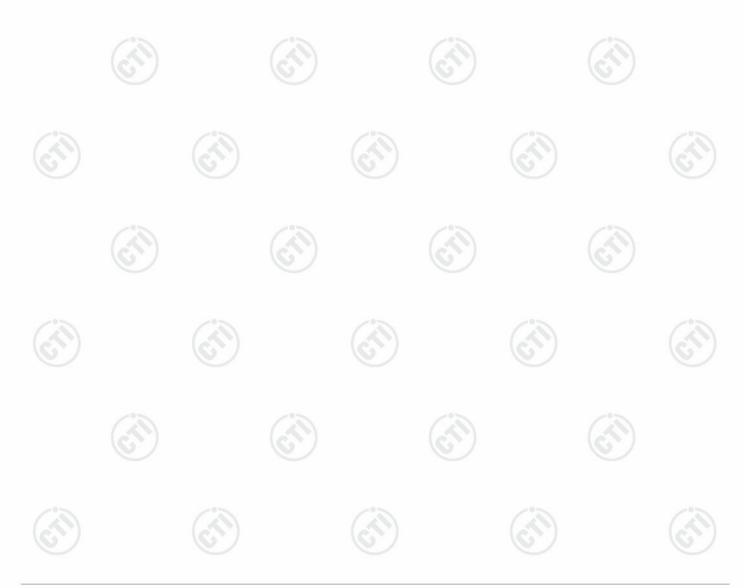

5.2 Test Environment

Operating Environment:				
Temperature:	24°C	-(1)	(25)	(3)
Humidity:	50% RH			0
Atmospheric Pressure:	1010mbar			


5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	IX/KX	Low(L)	Middle(M)	High(H)	
902 11h/a/a/UT20\	2442MU 2462 MU-	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
000 11 (117.10)	04000411 0450 0411	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				



re-scan under all r	ate at lowes	st channe	l 1					
Mode		802	2.11b		0 %	_	~ O >	
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps				
Power(dBm)	12.71	12.75	12.80	12.84			6	
Mode				802	.11g			
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps

Page 7 of 68

Power(dBm	11.02	2 11.0	1 10.98	10.87	10.85	10.81	10.76	10.72
Mode	0		802.11n (HT20)					
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	11.27	11.22	11.20	11.17	11.13	11.08	11.05	11.01
Mode		802.11n (HT40))	
Data Rate	13.5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	12.86	12.84	12.80	12.74	12.70	12.66	12.62	12.60

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Page 8 of 68

6 General Information

6.1 Client Information

Applicant:	XIAMEN RONGTA TECHNOLOGY CO., LTD.			
Address of Applicant:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City			
Manufacturer:	XIAMEN RONGTA TECHNOLOGY CO., LTD.			
Address of Manufacturer: 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian St Huli District, Xiamen City				
Factory: XIAMEN RONGTA TECHNOLOGY CO., LTD.				
Address of Factory: 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Huli District, Xiamen City				

6.2 General Description of EUT

Product Name:	Thermal Receipt Printer
Model No.(EUT):	RP80-WUS, RP850-WUS, RP820-WUS, nRP804-WUS
Test Model No.:	RP80-WUS
Trade Mark:	Rongta
EUT Supports Radios application	Wlan 2.4GHz 802.11b/g/n(HT20&HT40)
AC adapter:	AC 100-240V, 50/60Hz, 1.5A Output: DC 24V, 2.5A
Sample Received Date:	Apr. 08, 2016
Sample tested Date:	Apr. 08, 2016 to Sep. 20, 2016

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz				
operation requeitey.	IEEE 802.11n(HT40): 2422MHz to 2452MHz				
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels				
Charmer Numbers.	IEEE 802.11n HT40: 7 Channels				
Channel Separation:	5MHz				
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)				
Type of Modulation.	IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK)				
IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM, QPS					
Test Power Grade: 802.11b:14, 802.11g: 10, 802.11n(HT20): 0B, 802.11n(HT40): 0E					
rest rower Grade.	(manufacturer declare)				
Test Software of EUT:	RT5350QA (manufacturer declare)				
Antenna Type:	Integral antenna				
Antenna Gain:	2.19dBi				
Test Voltage:	AC 120V, 60Hz				

Operation	Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

peration Fre	quency each of cha	nnel(802.11n HT	40)		
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2422MHz	4	2437MHz	7	2452MHz
2	2427MHz	5	2442MHz		
3	2432MHz	6	2447MHz		

Page 9 of 68

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Report No.: EED32I00065502 Page 10 of 68

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE source seasoned	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2 Redicted Chumique emission test		4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction aminaian	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 68

7 Equipment List

	RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017	
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017	
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017	
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017	
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017	
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017	

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Page 12 of 68

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017		
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018		
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017		
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017		
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017		
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017		
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017		
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	CEN.	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001	(C)	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017		

8 Radio Technical Requirements Specification

Reference documents for testing:

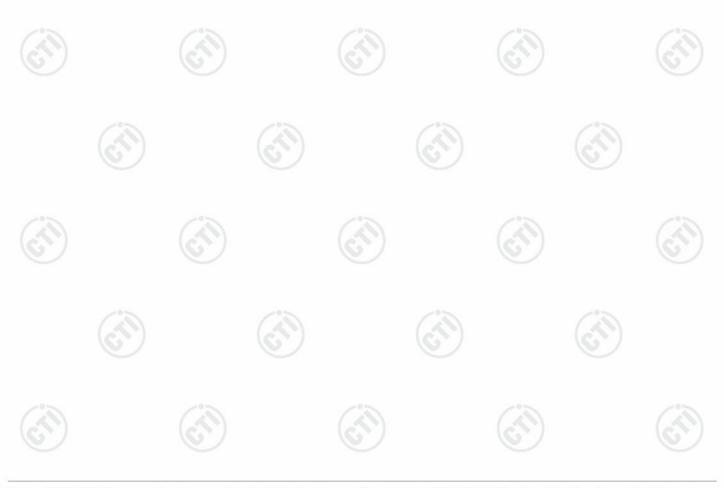
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Page 13 of 68

Test Results List:

ot ricourts Elot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32I00065502 Page 14 of 68


Appendix A): Conducted Peak Output Power

Test Procedure

- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

Tiodait Table	(.4.)	1 20 71	/ 40 Y
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	12.84	PASS
11B	MCH	13.53	PASS
11B	HCH	13.86	PASS
11G	LCH	11.02	PASS
11G	MCH	13.05	PASS
11G	HCH	13.8	PASS
11N20SISO	LCH	11.27	PASS
11N20SISO	MCH	12.99	PASS
11N20SISO	HCH	13.69	PASS
11N40SISO	LCH	12.86	PASS
11N40SISO	MCH	13.4	PASS
11N40SISO	HCH	12.98	PASS

Appendix B): 6dB Occupied Bandwidth

Result Table

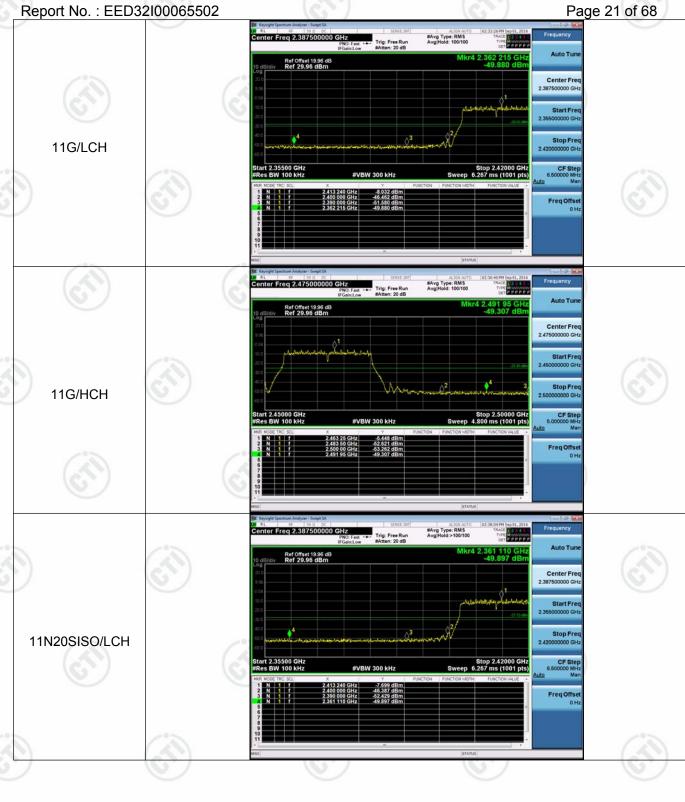
Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.21	14.941	PASS	
11B	MCH	10.20	14.934	PASS	
11B	нсн	10.21	14.905	PASS	(67)
11G	LCH	16.47	16.457	PASS	
11G	MCH	16.48	16.442	PASS	
11G	НСН	16.45	16.441	PASS	Peak
11N20SISO	LCH	17.57	17.558	PASS	detector
11N20SISO	MCH	17.62	17.566	PASS	
11N20SISO	НСН	17.62	17.562	PASS	
11N40SISO	LCH	35.70	36.041	PASS	
11N40SISO	MCH	36.02	36.074	PASS	6.
11N40SISO	НСН	36.01	36.036	PASS	

Page 15 of 68

Test Graph

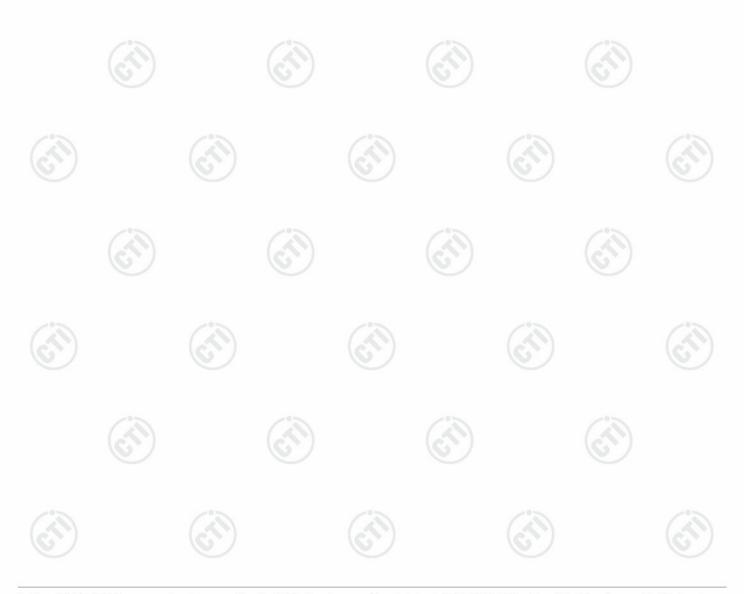
Report No.: EED32I00065502 Page 20 of 68

Appendix C): Band-edge for RF Conducted Emissions


Result Table

1000		LC V	167.7	167,7	
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-2.613	-49.812	-22.61	PASS
11B	НСН	-0.876	-49.385	-20.88	PASS
11G	LCH	-8.032	-49.880	-28.03	PASS
11G	НСН	-5.448	-49.307	-25.45	PASS
11N20SISO	LCH	-7.699	-49.897	-27.7	PASS
11N20SISO	НСН	-5.347	-49.412	-25.35	PASS
11N40SISO	LCH	-9.241	-49.478	-29.24	PASS
11N40SISO	НСН	-8.653	-47.312	-28.65	PASS

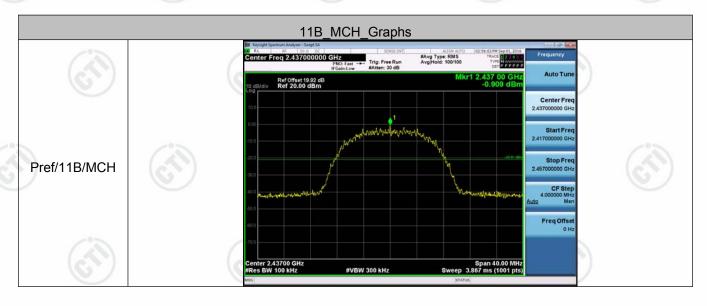
Test Graph

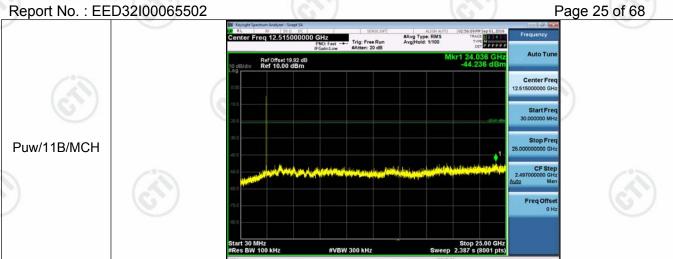


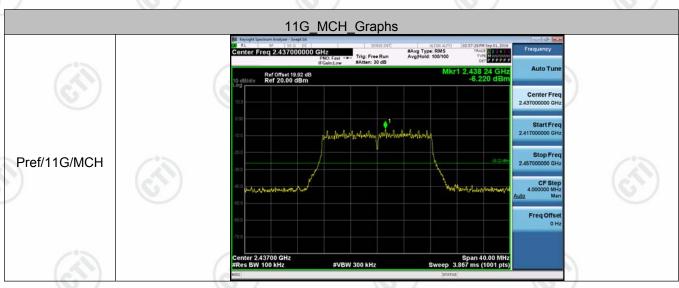
Report No. : EED32I00065502 Page 23 of 68

Appendix D): RF Conducted Spurious Emissions

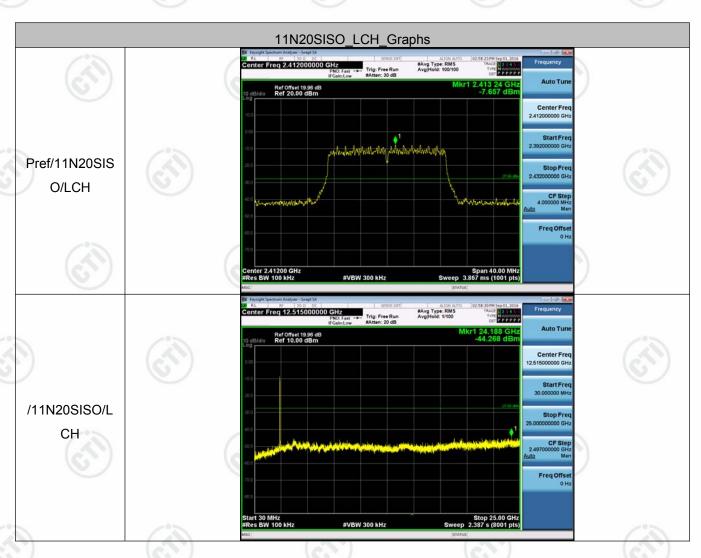
Result Table

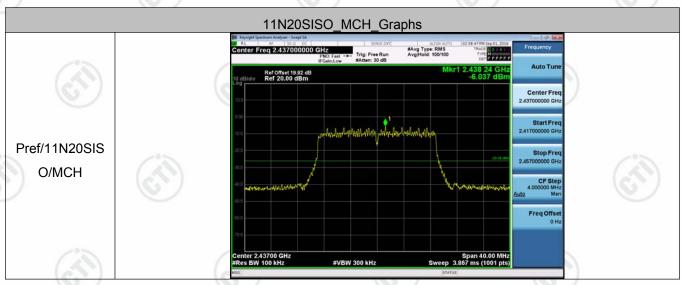

Troodit Table				
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	-2.263	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	-0.909	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	-0.542	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-7.994	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-6.22	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-5.543	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-7.657	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-6.037	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	-5.358	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-8.791	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-8.208	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-8.679	<limit< td=""><td>PASS</td></limit<>	PASS

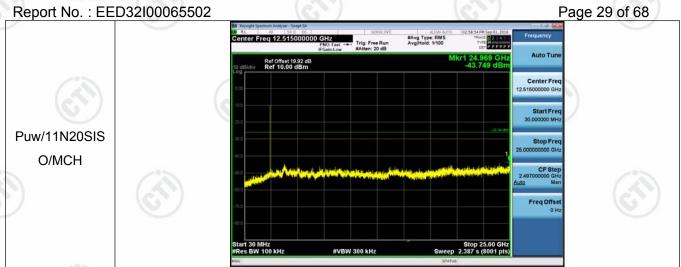


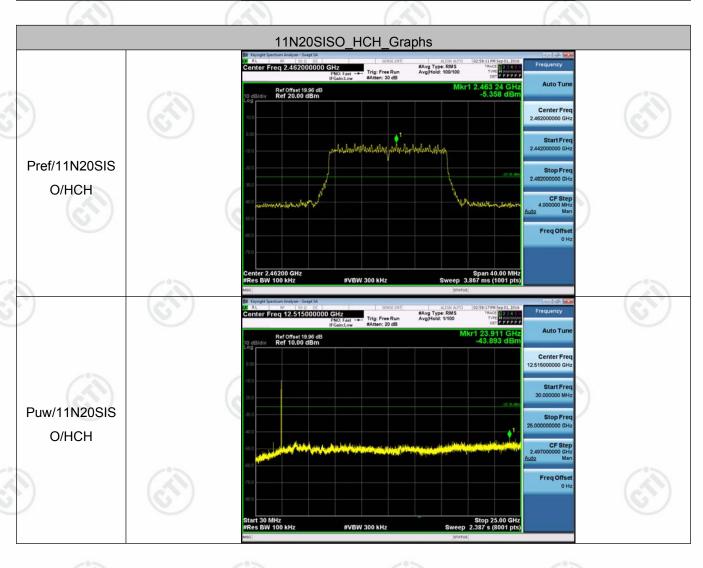


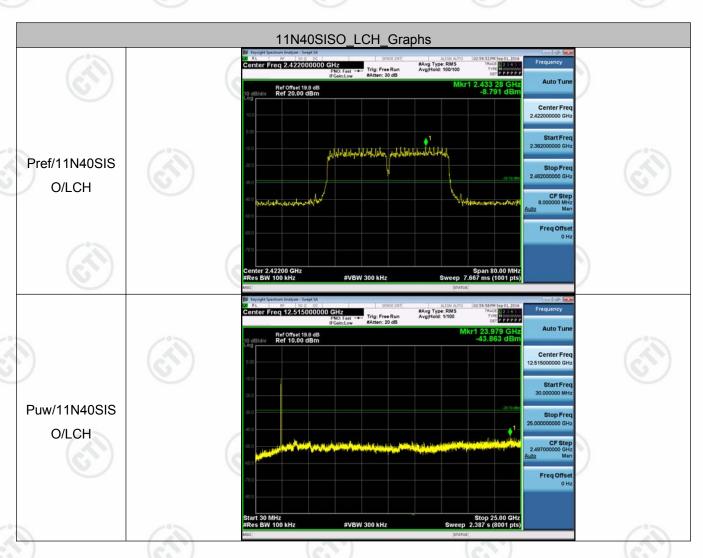


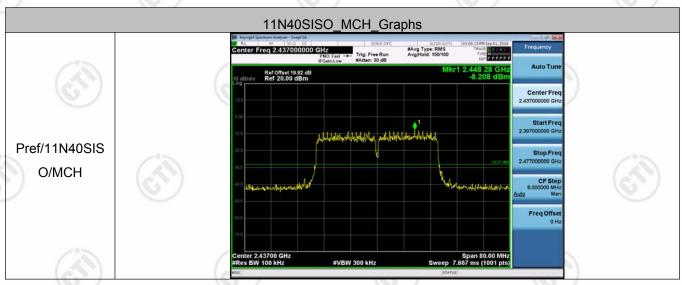


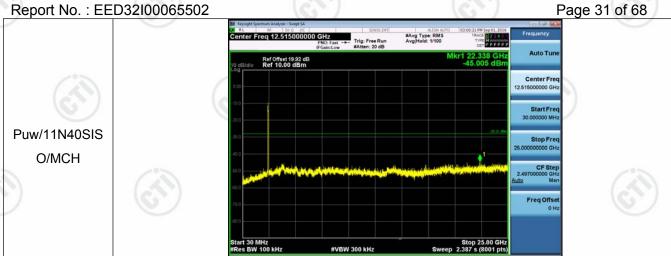


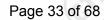






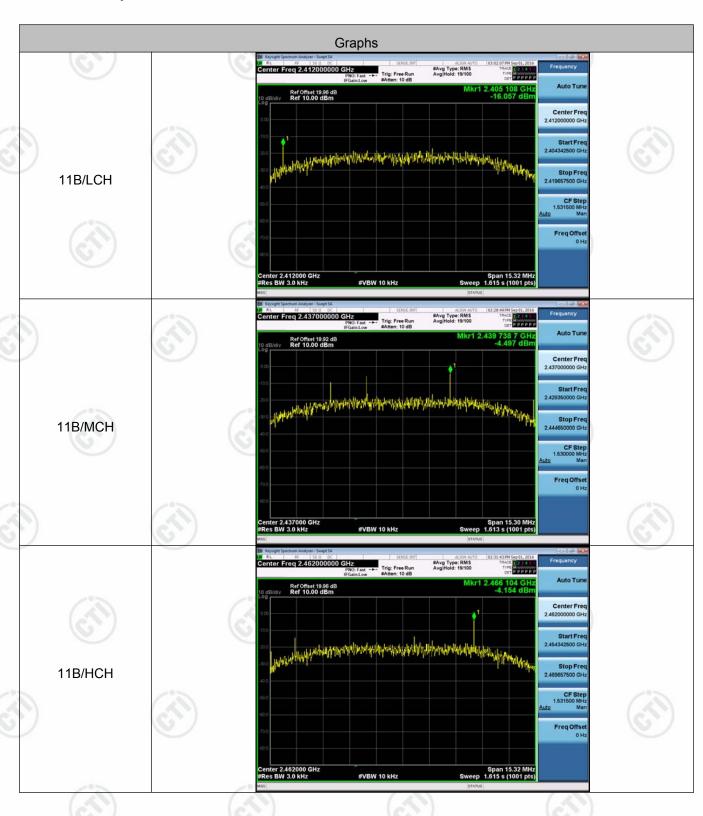





Report No. : EED32I00065502 Page 32 of 68

Appendix E): Power Spectral Density

Result Table


Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-16.057	8	PASS
11B	MCH	-4.497	8	PASS
11B	нсн	-4.154	8	PASS
11G	LCH	-24.181	8	PASS
11G	MCH	-22.293	8	PASS
11G	НСН	-21.015	8	PASS
11N20SISO	LCH	-23.300	8	PASS
11N20SISO	MCH	-21.668	8	PASS
11N20SISO	НСН	-20.954	8	PASS
11N40SISO	LCH	-26.876	8	PASS
11N40SISO	МСН	-26.553	8	PASS
11N40SISO	НСН	-25.866	8	PASS



Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.19dBi.

Appendix G): AC Power Line Conducted Emission

Page 38 of 68

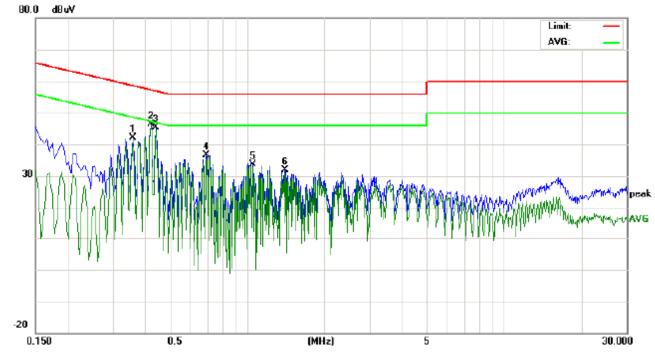
Test Procedure:	Test frequency range :150KHz-30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.						
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrang		_			
	4) The test was performed with shall be 0.4 m from the reference plane was bonde was placed 0.8 m from the reference plane for LISNs distance was between the coff the EUT and associated of the statement of the	vertical ground ref d to the horizontal boundary of the uni mounted on top o closest points of the	ference plane. The ver ground reference plane. It under test and bonded of the ground reference ELISN 1 and the EUT. A	tical ground The LISN 1 to a ground plane. This Il other units			
	5) In order to find the maximum the interface cables must measurement.	emission, the relat	ive positions of equipme	ent and all o			
Limit:							
	Eroquonov rongo (MHz)	Limit	(dBµV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

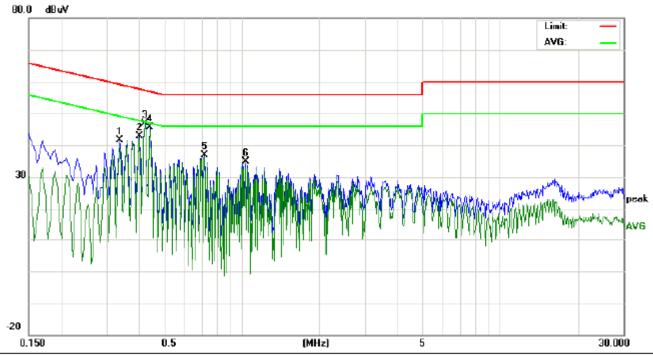
NOTE: The lower limit is applicable at the transition frequency



Page 39 of 68

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3580	32.34	32.10	31.38	9.86	42.20	41.96	41.24	58.77	48.77	-16.81	-7.53	Р	
2	0.4220	36.36	36.11	36.05	9.90	46.26	46.01	45.95	57.41	47.41	-11.40	-1.46	Р	
3	0.4420	35.45	35.34	35.24	9.90	45.35	45.24	45.14	57.02	47.02	-11.78	-1.88	Р	
4	0.6940	26.83	26.03	25.72	9.90	36.73	35.93	35.62	56.00	46.00	-20.07	-10.38	Р	
5	1.0540	35.60	32.50	21.98	10.00	45.60	42.50	31.98	56.00	46.00	-13.50	-14.02	Р	
6	1.4100	21.99	21.50	20.81	10.00	31.99	31.50	30.81	56.00	46.00	-24.50	-15.19	Р	



Page 40 of 68

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)	nent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3379	31.69	30.80	30.53	9.84	41.53	40.64	40.37	59.25	49.25	-18.61	-8.88	Р	
2	0.4020	32.89	32.30	32.29	9.90	42.79	42.20	42.19	57.81	47.81	-15.61	-5.62	Р	
3	0.4211	36.98	36.39	36.31	9.90	46.88	46.29	46.21	57.43	47.43	-11.14	-1.22	Р	
4	0.4420	35.67	35.59	35.53	9.90	45.57	45.49	45.43	57.02	47.02	-11.53	-1.59	Р	
5	0.7180	26.87	26.70	26.36	9.90	36.77	36.60	36.26	56.00	46.00	-19.40	-9.74	Р	
6	1.0339	24.81	24.50	24.07	10.00	34.81	34.50	34.07	56.00	46.00	-21.50	-11.93	Р	

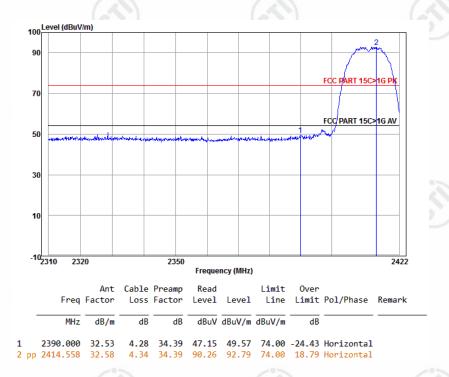
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32I00065502 Page 41 of 68

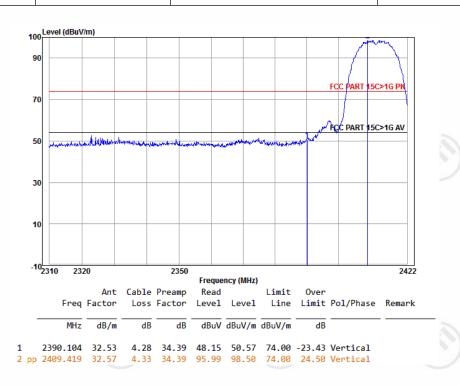
Appendix H): Restricted bands around fundamental frequency (Radiated)

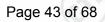
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGHZ	Peak	1MHz	10Hz	Average
Test Procedure:	a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the to. The antenna height is determine the maximum polarizations of the and for each suspected each the antenna was turned from 0 determined	on the top of a rochoic camber. The choic camber. The of the highest rate eters away from op of a variable-rowaried from one um value of the finatenna are set to emission, the EUT of the highest to 360 degrees to 360 degrees to 360 degreem was set to Penum Hold Mode. The end of the restrict end of the restrict end for the test site of the test site of the end to the end to the test site of the end to the	the table was adiation. The interfer neight anter to found the interfer make the make the make the make the make the forces to find eak Detect and the casure anyot. Repeat the Highest rmed in X, kis positionic uencies mediation.	ence-receinna tower. Fur meters a the maximum the maximum the maximum the maximum the maximum the missions for each possible of the maximum the maximum the missions for each possible of the meter to 1 eter). The channel of the maximum the maximum the missions for each possible of the meter to 1 eter). The channel of the maximum the maximum the missions for each possible of the maximum	above the groundizontal and verticent. worst case and and the rotatable and specified and specified and the restricted and module and module and specified and module and module and module and specified and specified and specified and module and specified and specifie
l imit:		Limit (dBµV	/m @3m)	Rer	mark
Limit:	Frequency			0	l - \ / - l - : -
_imit:	30MHz-88MHz	40.0)		eak Value
Limit:	30MHz-88MHz 88MHz-216MHz	40.0	5	Quasi-pe	eak Value
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0	5 0	Quasi-pe	eak Value eak Value
Limit:	30MHz-88MHz 88MHz-216MHz	40.0 43.9 46.0 54.0	5 5 0	Quasi-pe Quasi-pe Quasi-pe	eak Value eak Value eak Value
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0	0 5 0 0	Quasi-pe Quasi-pe Quasi-pe Averag	eak Value eak Value



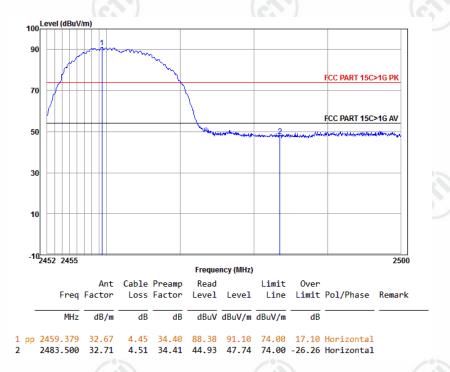
Test plot as follows:

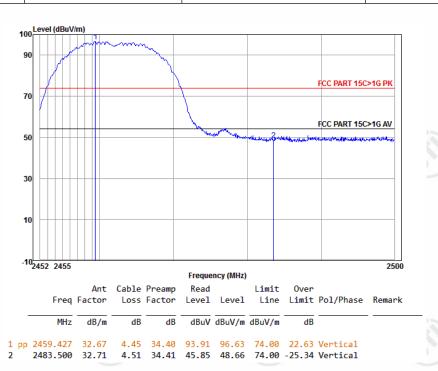
Worse case mode:


802.11b (11Mbps)

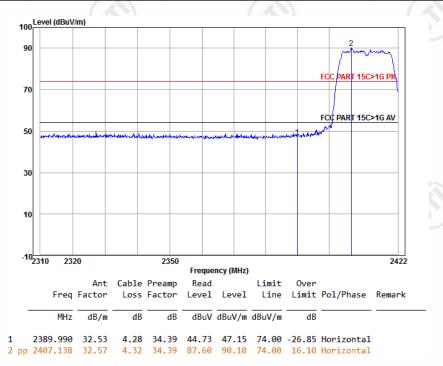

Frequency: 2390.0MHz | Test channel: Lowest | Polarization: Horizontal | Remark: Peak

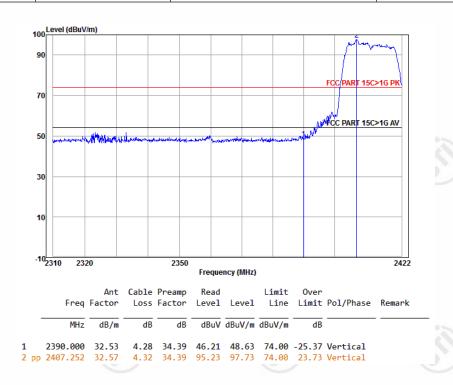
Page 42 of 68


Worse case mode:	802.11b (11Mbps)	(6,1)	(6,0)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



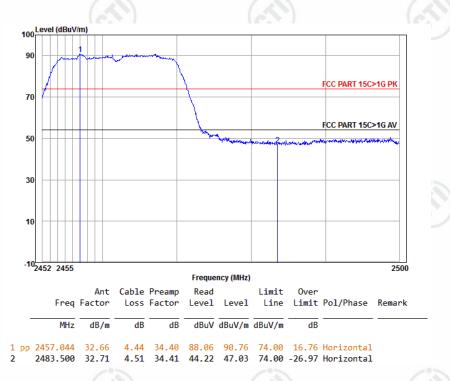
Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

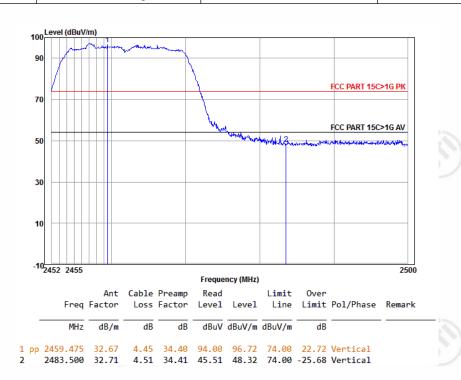

Worse case mode:	802.11b (11Mbps)	(6,7)	(0,1)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Page 44 of 68

Worse case mode:	802.11g (6Mbps)	(217)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

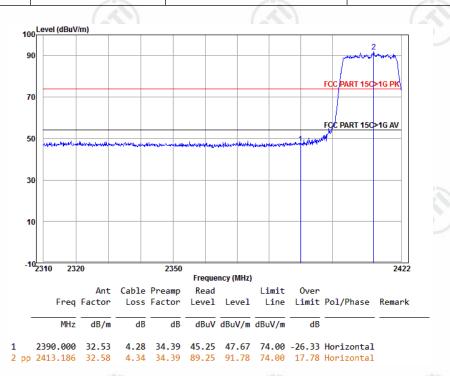


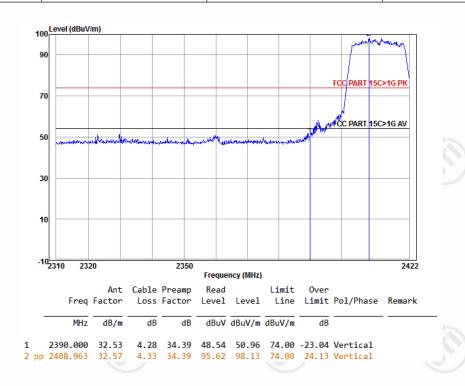


Worse case mode: 802.11g (6Mbps)

Frequency: 2483.5MHz Test channel: Highest Polarization: Horizontal Remark: Peak

Worse case mode:	802.11g (6Mbps)	(6,2)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

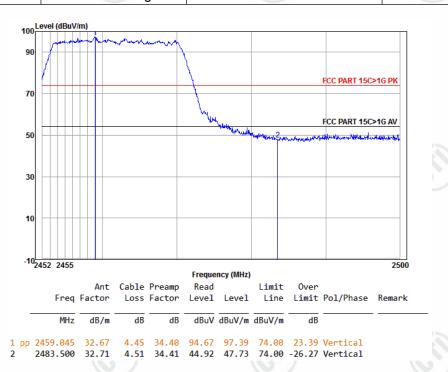



Worse case mode: 802.11n(HT20) (6.5Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak

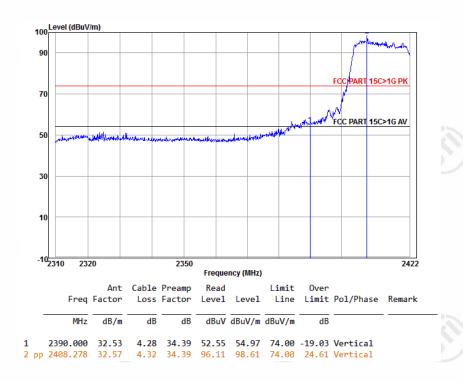

Worse case mode: 802.11n(HT20) (6.5Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak



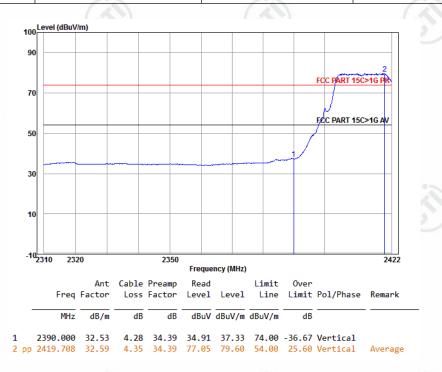
Worse case mode:	rse case mode: 802.11n(HT20) (6.5Mbps)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

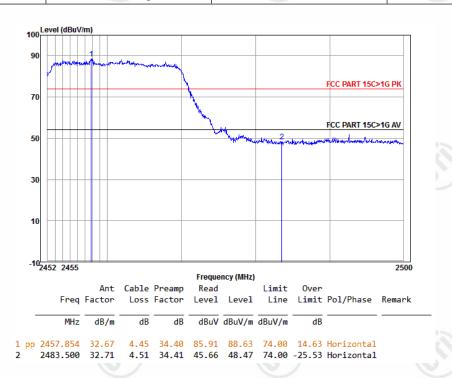
Worse case mode:	802.11n(HT20) (6.5Mb)	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



Worse case mode:	802.11n(HT40) (135Mbps)				
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak		

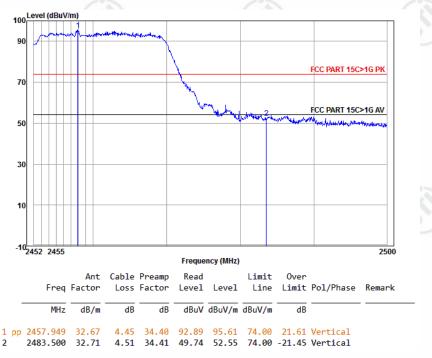
Worse case mode:	802.11n(HT40) (135Mbps)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

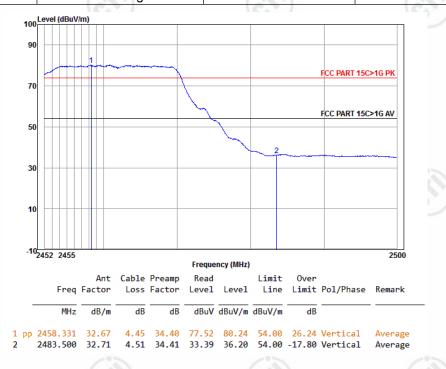




Worse case mode: 802.11n(HT40) (13..5Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: average


Worse case mode:	802.11n(HT40) (135Mbps)				
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak		



Page 50 of 68

Worse case mode:	802.11n(HT40) (135Mbps)	-0-
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Vertical	Remark: average

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 51 of 68

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Ab a a 401 l=	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

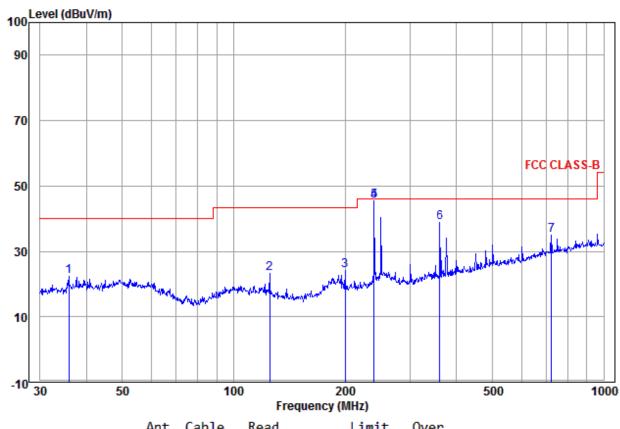
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ı	im	it.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)			30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 52 of 68

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	25	25	/°>
Test mode:	Transmitting	Horizontal	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	-								
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		,			,	,			
1	35 875	13.56	0.78	8 16	22 50	40 00	-17 50	Horizontal	
2	125.007	11.27	1.58	10.35	23.20	43.50	-20.30	Horizontal	
3	199.986	11.60	2.21	10.47	24.28	43.50	-19.22	Horizontal	
4 pp	239.987	12.25	2.32	30.88	45.45	46.00	-0.55	Horizontal	
5 qp	239.987	12.25	2.32	30.81	45.38	46.00	-0.62	Horizontal	QP
6	360.448	15.13	2.73	20.91	38.77	46.00	-7.23	Horizontal	
7	721.726	20.83	3.94	10.23	35.00	46.00	-11.00	${\it Horizontal}$	

Page 53 of 68

Transmitter Emission above 1GHz

	Page 54 of 68
	1 age 34 01 00

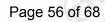
Test mode:	st mode: 802.11b(11Mbps) Test Frequency: 2412MHz			Remark: Peak					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1659.574	31.16	2.97	34.54	50.34	49.93	74.00	-24.07	Pass	Horizontal
3018.502	33.58	5.62	34.50	45.85	50.55	74.00	-23.45	Pass	Horizontal
3766.785	32.97	5.48	34.58	45.45	49.32	74.00	-24.68	Pass	Horizontal
4824.000	34.73	5.10	34.35	42.58	48.06	74.00	-25.94	Pass	Horizontal
7236.000	36.42	6.69	34.90	38.59	46.80	74.00	-27.20	Pass	Horizontal
9134.575	37.35	8.13	35.17	38.98	49.29	74.00	-24.71	Pass	Horizontal
1659.574	31.16	2.97	34.54	52.06	51.65	74.00	-22.35	Pass	Vertical
2995.538	33.59	5.61	34.50	46.86	51.56	74.00	-22.44	Pass	Vertical
3216.838	33.41	5.58	34.52	46.27	50.74	74.00	-23.26	Pass	Vertical
4821.757	34.73	5.11	34.35	45.76	51.25	74.00	-22.75	Pass	Vertical
6267.190	36.04	7.16	34.47	43.24	51.97	74.00	-22.03	Pass	Vertical
7282.792	36.43	6.73	34.90	44.67	52.93	74.00	-21.07	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	Test Frequency: 2437MHz		Remark: P	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1759.638	31.33	3.05	34.47	52.06	51.97	74.00	-22.03	Pass	Horizontal
3003.173	33.60	5.62	34.50	47.95	52.67	74.00	-21.33	Pass	Horizontal
4871.103	34.83	5.09	34.34	42.63	48.21	74.00	-25.79	Pass	Horizontal
5791.646	35.74	6.97	34.30	42.57	50.98	74.00	-23.02	Pass	Horizontal
7319.964	36.43	6.77	34.90	39.46	47.76	74.00	-26.24	Pass	Horizontal
9088.188	37.30	8.17	35.18	42.05	52.34	74.00	-21.66	Pass	Horizontal
1545.405	30.96	2.87	34.63	50.44	49.64	74.00	-24.36	Pass	Vertical
1759.638	31.33	3.05	34.47	51.70	51.61	74.00	-22.39	Pass	Vertical
2995.538	33.59	5.61	34.50	47.79	52.49	74.00	-21.51	Pass	Vertical
4871.103	34.83	5.09	34.34	40.32	45.90	74.00	-28.10	Pass	Vertical
7301.355	36.43	6.75	34.90	40.96	49.24	74.00	-24.76	Pass	Vertical
7941.185	36.49	7.31	34.90	42.72	51.62	74.00	-22.38	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1746.251	31.31	3.04	34.48	49.73	49.60	74.00	-24.40	Pass	Horizontal	
2995.538	33.59	5.61	34.50	48.15	52.85	74.00	-21.15	Pass	Horizontal	
4933.497	34.96	5.06	34.32	40.53	46.23	74.00	-27.77	Pass	Horizontal	
6461.583	36.14	6.97	34.59	42.91	51.43	74.00	-22.57	Pass	Horizontal	
7394.878	36.44	6.84	34.90	41.31	49.69	74.00	-24.31	Pass	Horizontal	
9251.580	37.49	8.03	35.15	41.38	51.75	74.00	-22.25	Pass	Horizontal	
1676.558	31.19	2.98	34.53	52.36	52.00	74.00	-22.00	Pass	Vertical	
1953.211	31.63	3.20	34.33	50.94	51.44	74.00	-22.56	Pass	Vertical	
2995.538	33.59	5.61	34.50	47.95	52.65	74.00	-21.35	Pass	Vertical	
3283.018	33.35	5.56	34.53	47.77	52.15	74.00	-21.85	Pass	Vertical	
4920.955	34.94	5.07	34.32	44.46	50.15	74.00	-23.85	Pass	Vertical	
7394.878	36.44	6.84	34.90	40.24	48.62	74.00	-25.38	Pass	Vertical	

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	12MHz	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1759.638	31.33	3.05	34.47	51.87	51.78	74.00	-22.22	Pass	Horizontal
3003.173	33.60	5.62	34.50	46.68	51.40	74.00	-22.60	Pass	Horizontal
4821.757	34.73	5.11	34.35	39.89	45.38	74.00	-28.62	Pass	Horizontal
6678.987	36.25	6.76	34.72	42.92	51.21	74.00	-22.79	Pass	Horizontal
7227.389	36.42	6.68	34.90	36.90	45.10	74.00	-28.90	Pass	Horizontal
9275.160	37.51	8.01	35.14	40.21	50.59	74.00	-23.41	Pass	Horizontal
1659.574	31.16	2.97	34.54	49.30	48.89	74.00	-25.11	Pass	Vertical
2995.538	33.59	5.61	34.50	47.10	51.80	74.00	-22.20	Pass	Vertical
4834.046	34.75	5.10	34.35	40.96	46.46	74.00	-27.54	Pass	Vertical
5880.782	35.81	7.17	34.30	42.97	51.65	74.00	-22.35	Pass	Vertical
7338.621	36.44	6.78	34.90	40.39	48.71	74.00	-25.29	Pass	Vertical
9734.779	38.02	7.62	35.05	40.42	51.01	74.00	-22.99	Pass	Vertical





Test mode:	802.11g(6N	1bps)	Test Fred	quency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1655.354	31.15	2.97	34.55	51.65	51.22	74.00	-22.78	Pass	Horizontal
1746.251	31.31	3.04	34.48	50.41	50.28	74.00	-23.72	Pass	Horizontal
2995.538	33.59	5.61	34.50	47.46	52.16	74.00	-21.84	Pass	Horizontal
4871.103	34.83	5.09	34.34	41.85	47.43	74.00	-26.57	Pass	Horizontal
7319.964	36.43	6.77	34.90	41.47	49.77	74.00	-24.23	Pass	Horizontal
8484.545	36.85	7.80	35.05	42.43	52.03	74.00	-21.97	Pass	Horizontal
1655.354	31.15	2.97	34.55	52.39	51.96	74.00	-22.04	Pass	Vertical
1759.638	31.33	3.05	34.47	52.39	52.30	74.00	-21.70	Pass	Vertical
2995.538	33.59	5.61	34.50	46.62	51.32	74.00	-22.68	Pass	Vertical
4883.519	34.86	5.08	34.33	40.95	46.56	74.00	-27.44	Pass	Vertical
7319.964	36.43	6.77	34.90	40.50	48.80	74.00	-25.20	Pass	Vertical
9490.104	37.75	7.83	35.10	41.04	51.52	74.00	-22.48	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	62MHz	Remark: P			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1659.574	31.16	2.97	34.54	52.90	52.49	74.00	-21.51	Pass	Horizontal
1764.123	31.34	3.05	34.46	52.33	52.26	74.00	-21.74	Pass	Horizontal
2995.538	33.59	5.61	34.50	47.17	51.87	74.00	-22.13	Pass	Horizontal
4920.955	34.94	5.07	34.32	41.79	47.48	74.00	-26.52	Pass	Horizontal
7394.878	36.44	6.84	34.90	38.76	47.14	74.00	-26.86	Pass	Horizontal
8484.545	36.85	7.80	35.05	41.32	50.92	74.00	-23.08	Pass	Horizontal
1764.123	31.34	3.05	34.46	52.06	51.99	74.00	-22.01	Pass	Vertical
2995.538	33.59	5.61	34.50	46.94	51.64	74.00	-22.36	Pass	Vertical
3283.018	33.35	5.56	34.53	47.31	51.69	74.00	-22.31	Pass	Vertical
4920.955	34.94	5.07	34.32	43.06	48.75	74.00	-25.25	Pass	Vertical
7394.878	36.44	6.84	34.90	39.25	47.63	74.00	-26.37	Pass	Vertical
10560.940	38.87	7.47	34.48	38.64	50.50	74.00	-23.50	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2412M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Lir (dBµ	-	Over Limit (dB)	Result	Antenna Polaxis
1746.251	31.31	3.04	34.48	52.42	52.29	74.	00	-21.71	Pass	Horizontal
3003.173	33.60	5.62	34.50	47.28	52.00	74.	00	-22.00	Pass	Horizontal
4213.211	33.34	5.35	34.53	43.91	48.07	74.	00	-25.93	Pass	Horizontal
4821.757	34.73	5.11	34.35	40.81	46.30	74.	00	-27.70	Pass	Horizontal
7245.810	36.43	6.70	34.90	38.59	46.82	74.	00	-27.18	Pass	Horizontal
9660.722	37.94	7.69	35.07	38.86	49.42	74.	00	-24.58	Pass	Horizontal
1764.123	31.34	3.05	34.46	50.97	50.90	74.	00	-23.10	Pass	Vertical
2995.538	33.59	5.61	34.50	47.20	51.90	74.	00	-22.10	Pass	Vertical
3216.838	33.41	5.58	34.52	45.89	50.36	74.	00	-23.64	Pass	Vertical
4821.757	34.73	5.11	34.35	40.92	46.41	74.	00	-27.59	Pass	Vertical
7245.810	36.43	6.70	34.90	40.64	48.87	74.	00	-25.13	Pass	Vertical
8334.700	36.74	7.67	35.00	41.82	51.23	74.	00	-22.77	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)		mit V/m)	Over Limit (dB)	Result	Antenna Polaxis	
1541.476	30.95	2.87	34.64	52.71	51.89	74	.00	-22.11	Pass	Horizontal	
1663.803	31.17	2.97	34.54	51.77	51.37	74	.00	-22.63	Pass	Horizontal	
1746.251	31.31	3.04	34.48	51.66	51.53	74	.00	-22.47	Pass	Horizontal	
4883.519	34.86	5.08	34.33	42.08	47.69	74	.00	-26.31	Pass	Horizontal	
7319.964	36.43	6.77	34.90	39.02	47.32	74	.00	-26.68	Pass	Horizontal	
9587.228	37.86	7.75	35.08	40.74	51.27	74	.00	-22.73	Pass	Horizontal	
1659.574	31.16	2.97	34.54	49.48	49.07	74	.00	-24.93	Pass	Vertical	
1764.123	31.34	3.05	34.46	47.75	47.68	74	.00	-26.32	Pass	Vertical	
2995.538	33.59	5.61	34.50	47.43	52.13	74	.00	-21.87	Pass	Vertical	
3249.760	33.38	5.57	34.53	47.15	51.57	74	.00	-22.43	Pass	Vertical	
4871.103	34.83	5.09	34.34	42.19	47.77	74	.00	-26.23	Pass	Vertical	
7319.964	36.43	6.77	34.90	36.42	44.72	74	.00	-29.28	Pass	Vertical	

raye so or oc	Page	58	of	68
---------------	------	----	----	----

Test mode:	802.11n(HT	720)(6.5N	1bps)	Test Freque	ency: 2462M	Hz	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	01	mit V/m)	Over Limit (dB)	Result	Antenna Polaxis
1541.476	30.95	2.87	34.64	50.79	49.97	74.	.00	-24.03	Pass	Horizontal
1746.251	31.31	3.04	34.48	51.12	50.99	74.	.00	-23.01	Pass	Horizontal
3003.173	33.60	5.62	34.50	47.89	52.61	74.	.00	-21.39	Pass	Horizontal
4920.955	34.94	5.07	34.32	41.27	46.96	74.	.00	-27.04	Pass	Horizontal
7099.747	36.41	6.56	34.90	44.00	52.07	74.	.00	-21.93	Pass	Horizontal
7394.878	36.44	6.84	34.90	42.14	50.52	74.	.00	-23.48	Pass	Horizontal
1668.044	31.18	2.98	34.54	47.88	47.50	74	.00	-26.50	Pass	Vertical
2995.538	33.59	5.61	34.50	47.22	51.92	74	.00	-22.08	Pass	Vertical
3283.018	33.35	5.56	34.53	47.74	52.12	74	.00	-21.88	Pass	Vertical
4933.497	34.96	5.06	34.32	43.60	49.30	74	.00	-24.70	Pass	Vertical
7394.878	36.44	6.84	34.90	39.87	48.25	74	.00	-25.75	Pass	Vertical
9298.801	37.54	7.99	35.14	40.29	50.68	74	.00	-23.32	Pass	Vertical

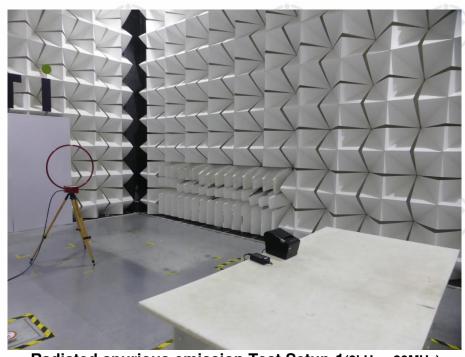
Test mode:	802.11n(HT	40)(13.5	Mbps)	Γest Frequ	ency: 2422M	Hz R	emark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limi (dBµV/	Limit	Result	Antenna Polaxis
1597.401	31.05	2.92	34.59	47.89	47.27	74.00	-26.73	Pass	Horizontal
3003.173	33.60	5.62	34.50	47.19	51.91	74.00	-22.09	Pass	Horizontal
4834.046	34.75	5.10	34.35	41.06	46.56	74.00	-27.44	Pass	Horizontal
5806.408	35.76	7.00	34.30	42.31	50.77	74.00	-23.23	Pass	Horizontal
7245.810	36.43	6.70	34.90	40.38	48.61	74.00	-25.39	Pass	Horizontal
8250.266	36.68	7.59	34.98	42.96	52.25	74.00	-21.75	Pass	Horizontal
1668.044	31.18	2.98	34.54	47.50	47.12	74.00	-26.88	Pass	Vertical
2995.538	33.59	5.61	34.50	47.10	51.80	74.00	-22.20	Pass	Vertical
3233.257	33.39	5.57	34.53	46.12	50.55	74.00	-23.45	Pass	Vertical
4858.719	34.80	5.09	34.34	41.06	46.61	74.00	-27.39	Pass	Vertical
7264.278	36.43	6.72	34.90	41.31	49.56	74.00	-24.44	Pass	Vertical
9251.580	37.49	8.03	35.15	41.02	51.39	74.00	-22.61	Pass	Vertical

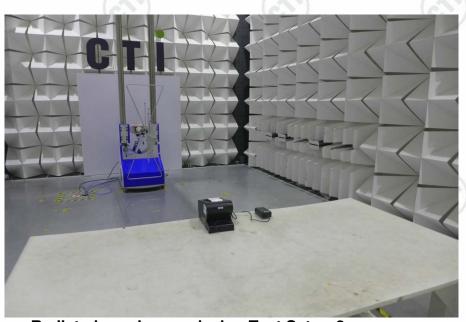
Test mode:	802.11n(HT	40)(13.5 N	Mbps)	Test Fr	Test Frequency: 2437MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m	Over Limit (dB)	Result	Antenna Polaxis		
1663.803	31.17	2.97	34.54	51.85	51.45	74.00	-22.55	Pass	Horizontal		
2995.538	33.59	5.61	34.50	48.18	52.88	74.00	-21.12	Pass	Horizontal		
4858.719	34.80	5.09	34.34	41.00	46.55	74.00	-27.45	Pass	Horizontal		
6283.164	36.05	7.14	34.48	42.59	51.30	74.00	-22.70	Pass	Horizontal		
7451.566	36.45	6.89	34.90	41.56	50.00	74.00	-24.00	Pass	Horizontal		
9228.060	37.46	8.05	35.15	41.90	52.26	74.00	-21.74	Pass	Horizontal		
1028.397	29.78	2.30	35.16	47.98	44.90	74.00	-29.10	Pass	Vertical		
1668.044	31.18	2.98	34.54	47.07	46.69	74.00	-27.31	Pass	Vertical		
4874.000	34.84	5.09	34.33	41.69	47.29	74.00	-26.71	Pass	Vertical		
5703.861	35.68	6.77	34.30	42.55	50.70	74.00	-23.30	Pass	Vertical		
7311.000	36.43	6.76	34.90	38.68	46.97	74.00	-27.03	Pass	Vertical		
9748.000	38.03	7.61	35.05	36.79	47.38	74.00	-26.62	Pass	Vertical		

Test mode:	802.11n(HT	40)(13.5	Mbps) T	est Freque	ency: 2452M	Hz	Rema	rk: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1238.405	30.32	2.56	34.92	48.07	46.03	74.00		-27.97	Pass	Horizontal
1672.296	31.18	2.98	34.53	49.37	49.00	74.00		-25.00	Pass	Horizontal
4904.000	34.90	5.07	34.33	40.54	46.18	74.00		-27.82	Pass	Horizontal
6063.190	35.93	7.36	34.34	40.26	49.21	74.00		-24.79	Pass	Horizontal
7356.000	36.44	6.80	34.90	36.88	45.22	74.00		-28.78	Pass	Horizontal
9808.000	38.10	7.56	35.04	37.01	47.63	74.00		-26.37	Pass	Horizontal
1110.008	30.00	2.41	35.06	48.86	46.21	74.00		-27.79	Pass	Vertical
1597.401	31.05	2.92	34.59	47.05	46.43	74.00		-27.57	Pass	Vertical
4904.000	34.90	5.07	34.33	41.45	47.09	74.00		-26.91	Pass	Vertical
5762.235	35.72	6.90	34.30	42.46	50.78	74.00		-23.22	Pass	Vertical
7356.000	36.44	6.80	34.90	37.27	45.61	74.00		-28.39	Pass	Vertical
9808.000	38.10	7.56	35.04	35.91	46.53	74	.00	-27.47	Pass	Vertical

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specifi ed above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

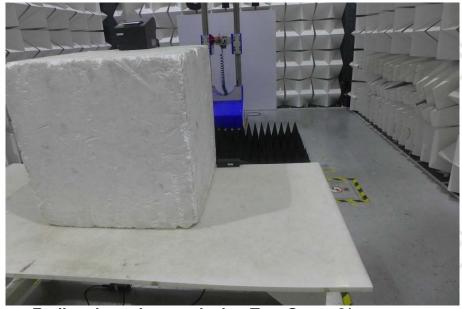

Page 60 of 68

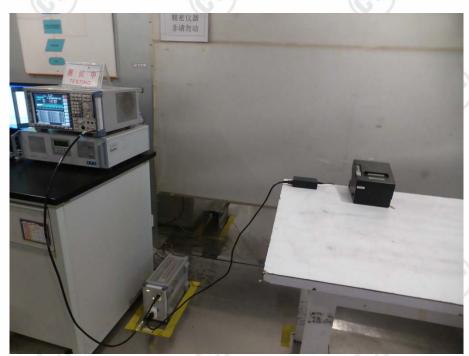
PHOTOGRAPHS OF TEST SETUP

Test model No.: RP80-WUS

Radiated spurious emission Test Setup-1(9kHz~30MHz)

Radiated spurious emission Test Setup-2(30- 1000MHz)





Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00065502 Page 62 of 68

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: RP80-WUS

View of Product-1

View of Product-2

View of Product-3

View of Product-4

View of Product-5

View of Product-6


View of Product-7

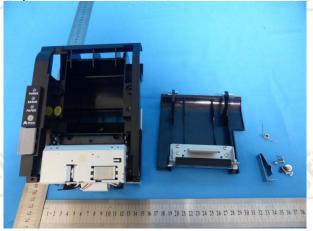
View of Product-8

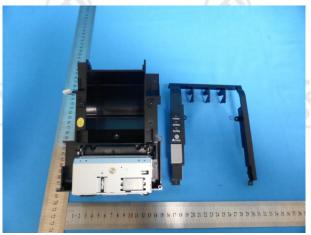
View of Product-9

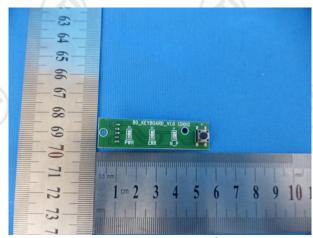
View of Product-10

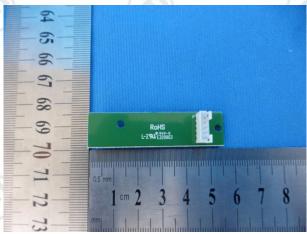
View of Product-11

View of Product-12






View of Product-13

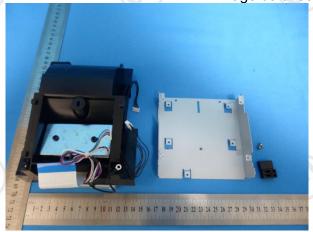

View of Product-14

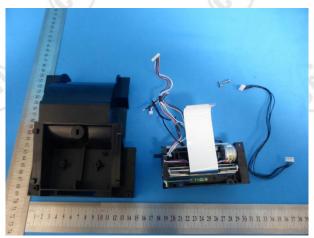
View of Product-15

View of Product-16

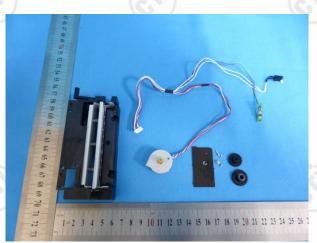
View of Product-17

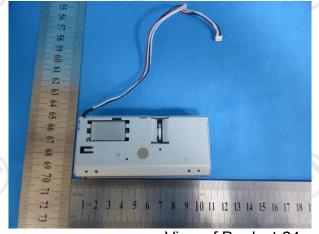
View of Product-18





View of Product-19

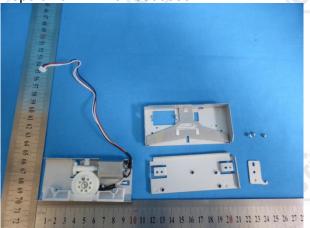

View of Product-20


View of Product-21

View of Product-22

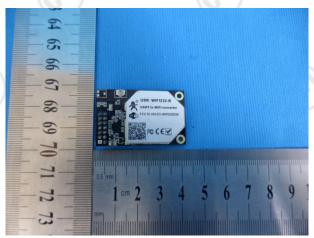
View of Product-23

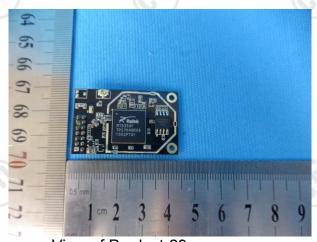
View of Product-24

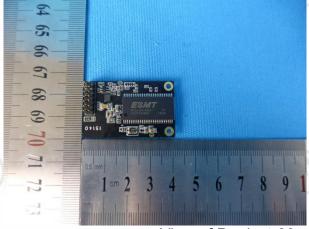







View of Product-25

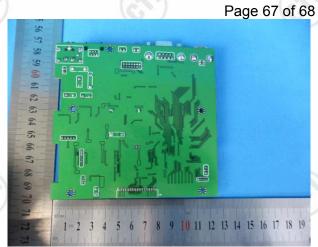

View of Product-26


View of Product-27

View of Product-28

View of Product-29

View of Product-30



View of Product-31

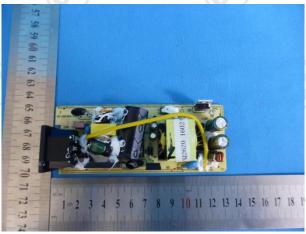
View of Product-32

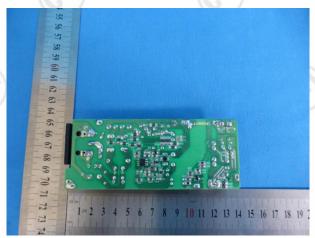
View of Product-33

View of Product-34

View of Product-35

View of Product-36




View of Product-37

View of Product-38


View of Product-39

View of Product-40

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

