

Shenzhen Huaxin Information Technology Service Co., Ltd

101, R & D Building, No.3 guansheng 4th Road, Luhu Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-21018313 Http: //www.tecovo.net

TEST REPORT				
Report No. ·····:	HX250318R003			
FCC ID······:	2BCAX-HY300ULTRA			
Applicant·····:	GuangDong SINOY Smart Technology CO., LTD			
Address	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, China			
Manufacturer	GuangDong SINOY Smart Technology CO., LTD			
Address	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, China			
Product Name·····:	Smart Projector			
Trade Mark······:	1			
Model/Type reference······:	HY300Ultra			
Listed Model(s) ······:	HY300Pro+, Gimbal 3S, W210, SMOON 300, HY200mini, HY200C, Gimbal 3 Pro, HY300Plus, HY300 Pro+, HY300Pro, HY300PRO, C2, AC1075			
Standard······:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of receipt of test sample:	Mar. 11, 2025			
Date of testing	Mar. 12, 2025 ~ Mar. 24, 2025			
Date of issue:	Mar. 25, 2025			
Result:	PASS			
Compiled by: (Printed name + signature)	Terry Su Terry Su			
Approved by:				
(Printed name + signature)	Michael Wu Michael Wu			
Testing Laboratory Name:	Shenzhen Huaxin Information Technology Service Co., Ltd			
Address	101, R & D Building, No.3 guansheng 4th Road, Luhu Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by Shenzhen Huaxin Information Technology Service Co., Ltd. The test results in the report only apply to the tested sample. The test report shall be invalid without the signa-				

tures of compiled engineers and approver. Any objections must be raised to Shenzhen Huaxin Information Technology Service Co., Ltd within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TES	T SUMMARY	
1	1.	Test Standards	3
1	2.	REPORT VERSION	3
1	3.	TEST DESCRIPTION	4
1	4.	Test Facility	5
1	5.	Measurement Uncertainty	5
1	6.	ENVIRONMENTAL CONDITIONS	6
2.	GEN	IERAL INFORMATION	7
2	.1.	CLIENT INFORMATION	7
2	.2.	GENERAL DESCRIPTION OF EUT	7
2	.3.	ACCESSORY EQUIPMENT INFORMATION	8
2	.4.	OPERATION STATE	9
2	.5.	Measurement Instruments List	10
3.	TEST	T ITEM AND RESULTS	11
3	.1.	CONDUCTED EMISSION	11
3	.2.	RADIATED EMISSION	14
3	.3.	RADIATED EMISSIONS RESTRICTED BAND	20
3	.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	22
3	.5.	20DB Bandwidth	
3	.6.	CHANNEL SEPARATION	
3	.7.	NUMBER OF HOPPING CHANNEL	40
3	.8.	DWELL TIME	42
3	.9.	PEAK OUTPUT POWER	47
3	.10.	DUTY CYCLE	51
3	.11.	ANTENNA REQUIREMENT	55

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS-247 Issue 3:</u> Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices. <u>RSS-Gen Issue 5</u>: General Requirements for Compliance of Radio Apparatus.

1.2. Report version

Revised No.	Date of issue	Description
01	Mar. 25, 2025	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS-247 Issue 3					
To at lite m	Standard	Section			
lest item	FCC	IC	Result	lest Engineer	
Antenna Requirement	15.203& 15.247(b)(4)	1	Pass	Sain Liao	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Ann Lu	
Restricted Bands	15.205	RSS-Gen 8.10	Pass	Sain Liao	
Hopping Channel Separation	15.247(a)(1)	RSS 247 5.1 (b)	Pass	Sain Liao	
Dwell Time	15.247(a)(1)(iii)	RSS 247 5.1 (d)	Pass	Sain Liao	
Peak Output Power	15.247(b)(1)	RSS 247 5.4 (b)	Pass	Sain Liao	
Number of Hopping Frequency	15.247(a)(1)(iii)	RSS 247 5.1 (d)	Pass	Sain Liao	
Conducted Band Edge and Spu- rious Emissions	15.247(d)	RSS 247 5.5	Pass	Sain Liao	
Radiated Emissions Restricted Band and Radiated Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Sain Liao	
Radiated Spurious Emission	15.247(d)&15.209	RSS 247 5.5& RSS-Gen 8.9	Pass	Sain Liao	
20dB Bandwidth	15.247(a)(1)	RSS 247 5.1 (b)	Pass	Sain Liao	

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

Shenzhen Huaxin Information Technology Service Co., Ltd

Add: 101, R & D Building, No.3 guansheng 4th Road, Luhu Community, Guanhu Street, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 6855.01

Shenzhen Huaxin Information Technology Service Co., Ltd EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Company Number: 31786, CAB Identifier: CN0147)

Shenzhen Huaxin Information Technology Service Co., Ltd EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 31786.

FCC (Registration No.: 932271, Designation Number CN1344)

Shenzhen Huaxin Information Technology Service Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC)Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration NO.: 932271.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the Shenzhen Huaxin Information Technology Service Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for Shenzhen Huaxin Information Technology Service Co., Ltd

Test Items	Measurement Uncertainty	Notes
20dB Emission Bandwidth	±4.22%	(1)
Carrier Frequency Separation	±1.9%	(1)
Number of Hopping Channel	±1.9%	(1)
Time of Occupancy	±0.028%	(1)
Max Peak Conducted Output Power	±0.41dB	(1)
Band-edge Spurious Emission	±0.59dB	(1)
Conducted RF Spurious Emission	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±2.18dB	(1)
Radiated Emissions 30~1000MHz	±4.17dB	(1)
Radiated Emissions 1~18GHz	±4.82dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	GuangDong SINOY Smart Technology CO., LTD
Address:	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, China
Manufacturer:	GuangDong SINOY Smart Technology CO., LTD
Address:	5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, China

2.2. General Description of EUT

Product Name:	Smart Projector
Trade Mark:	/
Model/Type reference:	HY300Ultra
Listed Model(s):	HY300Pro+, Gimbal 3S, W210, SMOON 300, HY200mini, HY200C, Gimbal 3 Pro, HY300Plus, HY300 Pro+, HY300Pro, HY300PRO, C2, AC1075
Model Different:	All these models are identical in the same PCB, layout and electrical circuit, The difference is model name and speaker location.
Power supply:	36V-0.95A and 12V-0.7A from AC/DC Adapter
Adapter Model:	HYP317-360095US Input: 100-240V~ 50/60Hz 1.0A Max Output 1: 36V=0.95A Output 2: 12V=0.7A
Hardware version:	1
Software version:	1
Bluetooth V5.4/ BR+EDR	
Modulation:	GFSK, π/4-DQPSK, 8-DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	FPC Antenna
Antenna gain:	-3.91dBi Max

2.3. Accessory Equipment information

Equipment Information						
Name	Model	S/N	Manufacturer			
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo			
Cable Information						
Name	Shielded Type	Ferrite Core	Length			
DC In Cable	Without	Without	1.2M			
Test Software Information						
Name	Versions	1	1			
SecureCRT.exe	8.7.1	1	/			

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)	
00	2402	
01	2403	
÷	:	
38	2440	
39	2441	
40	2442	
: :	÷	
77	2479	
78	2480	

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

	RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	Spectrum Analyzer	Agilent	N9020A	MY51280803	Apr. 13, 2025	
2	Wideband Radio Communication Tester	R&S	CMW500	157763	Apr. 13, 2025	
3	MXG Vector Signal Generator	Agilent	N5182A	101795	Apr. 13, 2025	
4	EXG Analog Signal Generator	Agilent	N5181A	MY47421151	Apr. 13, 2025	
5	RF Control Unit	Techy	TR1029-1	20220428C009	Apr. 14, 2025	
6	RF Sensor Unit	Techy	TR1029-2	/	/	
7	High and low temperature test chamber	Asprey	LX-225L	2020091401	Apr. 13, 2025	
8	SRD Test Software	TACHOY	RTS	/	/	
9	2G/3G/4G Test Software	TST	TST-PASS	2023.11.24_17.14 .16	/	

	Radiated emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
1	EMI spectrum receiver	R&S	ESR7	102543	Apr. 13, 2025		
2	9*6*6 anechoic chamber	Mao Rui	9*6*6	/	Apr. 13, 2025		
3	Spectrum analyzer	R&S	FSV40-N	101795	Apr. 14, 2025		
4	Preamplifier	Agilent	8449B	3008A00551	Apr. 13, 2025		
5	Preamplifier	HP	8447D	1616A02061	Apr. 13, 2025		
6	Horn Antenna	A. H. System, Inc	SAS-571	915	Apr. 18, 2025		
7	Trilog-Broadband Antenna	SCHWARZBEC K	VULB 9168	01318	Apr. 18, 2025		
8	Test Software	SKET	EMC-I	/	/		
9	Wideband Radio Communication Tester	R&S	CMW500	157763	Apr. 13, 2025		

	Conducted emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	LISN	R&S	ENV216	101291	Apr. 13, 2025					
2	LISN	R&S	ESH3-Z5	894981/024	Apr. 13, 2025					
3	EMI Test Receiver	R&S	ESR7	102543	Apr. 13, 2025					
4	10dB Pulse Limiter	SCHWARZBEC K	1	9618	Apr. 13, 2025					
5	Test Software	SKET	EMC-I	/	/					
6	Wideband Radio Communication Tester	R&S	CMW500	157763	Apr. 13, 2025					

Note: 1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

	Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.

Test Results

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency Pange (MHz)	dBµV/m (at 3 meters)			
	Peak	Average		
Above 1000	74	54		

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 30MHz Test Setup

Test Procedure

Above 1GHz Test Setup

- 1. The EUT was setup and tested according to ANSI C63.10:2013 The EUT is placed on a turn table which is 0.8 meter above ground for be
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 30 MHz:

9kHz – 150kHz, RBW=200Hz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz – 30MHz, RBW=9kHz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using

the quasi-peak detector and reported.
(4) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value.
RBW=1MHz, VBW≥1/T Peak detector for Average value.
Note 1: For the 1/T& Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

2.Margin value = Level -Limit value

Above 1GHz

Remark: Pre-scan all modulation mode, and found the GFSK mode which were the worst case, So only show the test data for worst case.

GFSK Mode 2402MHz								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Polarization	Detector	
4804	47.15	3.7	50.85	74	-23.15	Horizontal	Peak	
4804	42.36	3.7	46.06	74	-27.94	Vertical	Peak	
4804	34.15	3.7	37.85	54	-16.15	Horizontal	Average	
4804	31.25	3.7	34.95	54	-19.05	Vertical	Average	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

3.No report for the emission which more than 10 dB below the prescribed limit

GFSK Mode 2441MHz									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Polarization	Detector		
4880	45.26	4.0	49.26	74	-24.74	Horizontal	Peak		
4880	41.31	4.0	45.31	74	-28.69	Vertical	Peak		
4880	32.58	4.0	36.58	54	-17.42	Horizontal	Average		
4880	33.44	4.0	37.44	54	-16.56	Vertical	Average		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

3.No report for the emission which more than 10 dB below the prescribed limit

GFSK Mode 2480MHz									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Polarization	Detector		
4960	46.32	4.3	50.62	74	-23.38	Horizontal	Peak		
4960	41.45	4.3	45.75	74	-28.25	Vertical	Peak		
4960	34.15	4.3	38.45	54	-15.55	Horizontal	Average		
4960	31.06	4.3	35.36	54	-18.64	Vertical	Average		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

3.No report for the emission which more than 10 dB below the prescribed limit

3.3. Radiated Emissions Restricted Band

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/m)(at 3m)			
(MHz)	Peak	Average		
2310 ~ 2390	74	54		
2483.5 ~ 2500	74	54		

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Results

Remark: Pre-scan all modulation mode, and found the GFSK mode which were the worst case, So only show the test data for worst case.

GFSK Mode	2402MHz						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Polarization	Detector
2310	46.25	-3.4	42.85	74	-31.15	Horizontal	Peak
2310	40.35	-3.4	36.95	74	-37.05	Vertical	Peak
2390	47.26	-3.1	44.16	74	-29.84	Horizontal	Peak
2390	43.15	-3.1	40.05	74	-33.95	Vertical	Peak
2310	35.16	-3.4	31.76	54	-22.24	Horizontal	Average
2310	33.52	-3.4	30.12	54	-23.88	Vertical	Average
2390	32.41	-3.1	29.31	54	-24.69	Horizontal	Average
2390	33.62	-3.1	30.52	54	-23.48	Vertical	Average

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

GFSK Mode	2480MHz						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Polarization	Detector
2483.5	46.26	-2.8	43.46	74	-30.54	Horizontal	Peak
2483.5	44.42	-2.8	41.62	74	-32.38	Vertical	Peak
2500	45.12	-2.7	42.42	74	-31.58	Horizontal	Peak
2500	41.25	-2.7	38.55	74	-35.45	Vertical	Peak
2483.5	35.14	-2.8	32.34	54	-21.66	Horizontal	Average
2483.5	33.26	-2.8	30.46	54	-23.54	Vertical	Average
2500	35.41	-2.7	32.71	54	-21.29	Horizontal	Average
2500	32.62	-2.7	29.92	54	-24.08	Vertical	Average
Domorkov							

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

Test Results

(1) Band edge Conducted Test

Test Mode	Frequency[MHz]	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
OFSK	2402	9.221	-41.052	-10.779	PASS
	2480	8.423	-53.267	-11.577	PASS
GFSK	Hop_2402	9.049	-44.704	-10.951	PASS
	Hop_2480	9.015	-53.248	-10.985	PASS
	2402	6.015	-45.599	-13.985	PASS
	2480	4.838	-54.188	-15.162	PASS
11/4-DQPSK	Hop_2402	6.119	-47.333	-13.881	PASS
	Hop_2480	5.609	-55.839	-14.391	PASS
	2402	5.379	-46.004	-14.621	PASS
0 DD6K	2480	4.982	-54.415	-15.018	PASS
0-DP3K	Hop_2402	5.183	-51.624	-14.817	PASS
	Hop_2480	6.125	-57.214	-13.875	PASS

GFSK_High_Hop_2480

(2) Conducted Spurious Emissions Test

Test Mode	Frequency [MHz]	Ref Level [dBm]	Spurious level[dBm]	Limit[dBm]	Verdict
	2402	9.221	-43.307	-10.779	PASS
GFSK	2440	8.863	-42.529	-11.137	PASS
	2441	8.423	-46.227	-11.577	PASS
	2402	6.015	-50.811	-13.985	PASS
π/4-DQPSK	2480	5.282	-45.672	-14.718	PASS
	2480	4.838	-44.764	-15.162	PASS
	2402	5.379	-46.470	-14.621	PASS
8-DPSK	2480	5.680	-49.577	-14.320	PASS
	2480	4.982	-46.235	-15.018	PASS

3.5. 20DB Bandwidth

<u>Limit</u>

N/A

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. OCB and 20dB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Results

Test Mode	Frequency[MHz]	20db EBW[MHz] 20dB Bandwidth *2/3 (kHz)		Verdict
	2402	0.933	622	PASS
GFSK	2441	0.934	623	PASS
	2480	0.934	623	PASS
π/4-DQPSK	2402	1.299	866	PASS
	2441	1.299	866	PASS
	2480	1.300	867	PASS
	2402	1.219	813	PASS
8-DPSK	2441	1.217	811	PASS
	2480	1.221	814	PASS

3.6. Channel Separation

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1)/ RSS-247 5.1 b :

Test Item	Limit	Frequency Range(MHz)
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Test Configuration

EUT	Spectrum Analyzer

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. Spectrum Setting:

(1) Set RBW = Set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth,

whichever is smaller.

- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.

Test Mode

Please refer to the clause 2.4.

Test Results

Test Mode	Frequency[MHz]	Result[MHz]	Limit[kHz]	Verdict
GFSK	Hop_2441	0.996	>623	PASS
π/4-DQPSK	Hop_2441	1.020	>866	PASS
8-DPSK	Hop_2441	0.924	>811	PASS

3.7. Number of Hopping Channel

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)/ RSS-247 5.1 d:

Section	Section Test Item	
15.247 (a)(iii)/ RSS-247 5.1 d:	Number of Hopping Channel	>15

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Freq(MHz)	Result[Num]	Limit[Num]	Verdict
GFSK	Нор	79	≥15	PASS
π/4-DQPSK	Нор	79	≥15	PASS
8-DPSK	Нор	79	≥15	PASS

3.8. Dwell Time

<u>Limit</u>

Section	Test Item	Limit
15.247(a)(iii)/ RSS-247 5.1 d	Average Time of Occupancy	0.4 sec

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
- (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

Test Mode

Please refer to the clause 2.4.

<u>Test Result</u>

Modulation type	Channel	Frequency [MHz]	Pulse Time (ms)	Total of Dwell (ms)	Period Time (ms)	Limit (Second)	Result
	DH1	2441	0.370	118.40	31.60		
GFSK	DH3	2441	1.640	262.40	31.60	≤ 0.40	Pass
	DH5	2441	2.890	308.27	31.60		
	2DH1	2441	0.390	124.80	31.60		
π/4-DQPSK	2DH3	2441	1.640	262.40	31.60	≤ 0.40	Pass
	2DH5	2441	2.890	308.27	31.60		
8-DPSK	3DH1	2441	0.380	121.60	31.60		
	3DH3	2441	1.640	262.40	31.60	≤ 0.40	Pass
	3DH5	2441	2.890	308.27	31.60		

Note: 1DH1/2DH1/3DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79 1DH3/2DH3/3DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79 1DH5/2DH5/3DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

3.9. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1) / RSS-247 5.4 b:

Test Item	Limit	Frequency Range(MHz)	
Maximum Conducted Peak Output Power	Hopping Channels>75 Pow- er<1W(30dBm) Other <125mW(21dBm)	2400~2483.5	
E.I.R.P	4 Watt or 36dBm	2400~2483.5	

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- 2. Spectrum Setting:
 - (1) Set RBW> 20DB Bandwidth.
 - (2) Set the video bandwidth (VBW) \ge RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
	2402	9.27	<=30	PASS
GFSK	2441	8.97	<=30	PASS
	2480	8.62	<=30	PASS
π/4-DQPSK	2402	8.06	<=30	PASS
	2441	7.80	<=30	PASS
	2480	7.46	<=30	PASS
	2402	8.86	<=30	PASS
8-DPSK	2441	8.59	<=30	PASS
	2480	8.23	<=30	PASS

3.10. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to test channel center frequency. Set the span to 0Hz Set the RBW to 8MHz Set the VBW to 8MHz Detector: Peak Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2402	0.82	3.76	21.81	1.22	2
GFSK	2441	0.82	3.74	21.93	1.22	2
	2480	0.82	3.76	21.81	1.22	2
π/4-DQPSK	2402	2.86	3.74	76.47	0.35	1
	2441	2.88	3.74	77.01	0.35	1
	2480	2.88	3.76	76.60	0.35	1
	2402	2.88	3.74	77.01	0.35	1
8-DPSK	2441	2.88	3.76	76.60	0.35	1
	2480	2.88	3.74	77.01	0.35	1

3.11. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.