

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website: +86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

	d the FUT complied with the standards excelling above
Test Result:	PASS*
Date of Issue:	2024-11-11
Date of Test:	2024-10-11 to 2024-10-29
Date of Receipt:	2024-10-11
	ANSI C63.10:2013
	KDB558074 D01 15.247 Meas Guidance v05r02
Standards:	47 CFR Part 15, Subpart C
FCC ID:	2BBYH-C1037
Brand Name:	N/A
Test Model No.:	SmartPace R1 Pro
Model No.:	SmartPace R1, SmartPace R1 Pro
Product:	Smart Watch
Equipment Under Test (El	(TL):
Address of Applicant:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen
Applicant:	Creek Wearable Technology Co., Ltd.
Report No.:	CQASZ20241002156E-02

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By:	Timo Loj
	(Timo Lei)
Approved By:	Alex
	(Alex Wang)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20241002156E-02	Rev.01	Initial report	2024-11-11

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 Client Information	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 Test Location 4.8 Test Facility	
4.8 TEST FACILITY	
4.9 DEVIATION FROM STANDARDS 4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSION	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Creek Wearable Technology Co., Ltd.
Address of Applicant:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen
Manufacturer:	Creek Wearable Technology Co., Ltd.
Address of Manufacturer:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen
Factory:	Creek Wearable Technology Co., Ltd.
Address of Factory:	910, 5A office building, Longguang Jiuzuan, Longhua District, Shenzhen

4.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	SmartPace R1, SmartPace R1 Pro
Test Model No.:	SmartPace R1 Pro
Trade Mark:	N/A
Software Version:	V1.0.0
Hardware Version:	V1.1
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V5.3
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	□ Mobile
Test Software of EUT:	BT FCC Tool V2.24
Antenna Type:	Composite antenna
Antenna Gain:	-4.1dBi
EUT Power Supply:	Li-ion battery: DC 3.85V 400mAh, Charge by DC 5V for adapter
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

Operation F	requency each o	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:				
Mode:	\boxtimes Special software is used.	Special software is used.		
	0 0 0	☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*		
EUT Power level:	Class2 (Power level is built-in set para selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep				
transmitting of the EUT.				
Mode	Channel	Frequency(MHz)		
	СН0	2402		
GFSK	CH19	2440		
	СН39	2480		

Run Software:

Continue of the test of test o	? × 🕱
SOLUTION ATS3085 COM COM7 115200 V	BQB Mode
RF Channel 🛛 🗸 Hopping Mode 🔜 Worma	l_R 🔻 fixed 💌
Packet Type BLE_1M - Payload Typ	e PRBS9 💌
TX Gain Index 6 🔹 RX Gain Inde	x 0 v
Access Code Ox AbDdE341 AGC Mod	le 📕
Continue TX Single Ione Stop Packet RX	Hopping TX
1开始ContinueTX测试(Chan: 0 Packet:DH5 Payload:PRBS9 TxGain: 0) 1结束ContinueTX测试,持续1.0秒	
1开始ContinueTX测试(Chan: 0 Facket: DH5 Fayload: PRBS9 TxGain: 6) 1结束ContinueTX测试,持续40.8秒	
1开始ContinueTX测试(Chan: 0 Packet:BLE_1M Payload:PRBS9 TxGain: 6)	

4.4 Test Environment

Operating Environment:	
Temperature:	24.5°C
Humidity:	59% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	MI	/	1	CQA
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
	/	1	1	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11Equipment List

· · ·			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2024/9/2	2025/9/1
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2024/9/2	2025/9/1
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

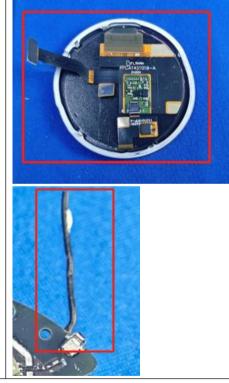
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

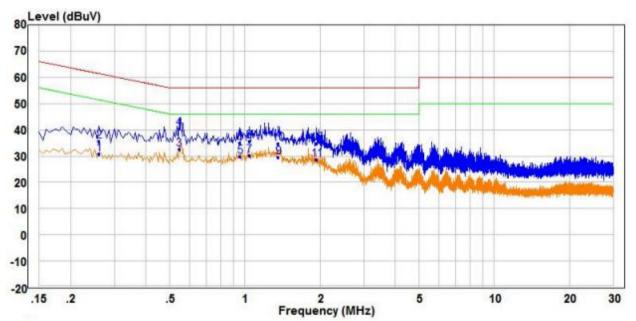
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Composite antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique couplingx. This is either permanently attachment or a unique coupling that satisfies the requirement.

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:		Limit (d	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm o	f the frequency.				
Test Procedure:	1) The mains terminal disturt room.	-				
	 2) The EUT was connected to Impedance Stabilization Na- impedance. The power call connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single LI exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal gr 4) The test was performed wi of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ed 5) In order to find the maximum equipment and all of the im ANSI C63.10: 2013 on con 	etwork) which provides oles of all other units of in 2, which was bonder are way as the LISN 1 for et outlet strip was used ISN provided the rating out of the strip was used and for floor-standing ar round reference plane, th a vertical ground reference plane was bonded to th 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least (im emission, the relative terface cables must be	a 50Ω/50µH + 5Ω linear f the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. re positions of			


Test Setup:	Shielding Room Test Receiver Test Receiver Test Receiver LISN1 LISN2 AC Mains Ground Reference Plane
Test Mode:	Through Pre-scan, find the transmitting mode at the lowest channel is the worst case.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

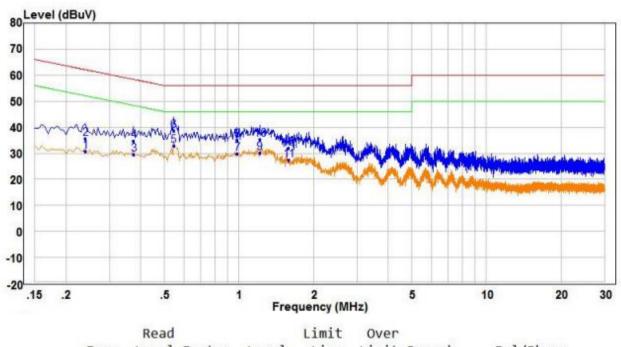
SmartPace R1 Pro

Measurement Data

Live line:

		Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	_	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.260	21.20	9.53	30.73	51.43	-20.70	Average	Line
2		0.260	26.19	9.53	35.72	61.43	-25.71	QP	Line
3	PP	0.545	22.86	9.75	32.61	46.00	-13.39	Average	Line
4	QP	0.545	30.70	9.75	40.45	56.00	-15.55	QP	Line
5		0.955	20.26	9.73	29.99	46.00	-16.01	Average	Line
6		0.955	25.26	9.73	34.99	56.00	-21.01	QP	Line
7		1.040	20.33	9.81	30.14	46.00	-15.86	Average	Line
8 9		1.040	25.95	9.81	35.76	56.00	-20.24	QP	Line
9		1.360	19.09	10.56	29.65	46.00	-16.35	Average	Line
10		1.360	24.09	10.56	34.65	56.00	-21.35	QP	Line
11		1.935	17.09	11.56	28.65	46.00	-17.35	Average	Line
12		1.935	23.05	11.56	34.61	56.00	-21.39	QP	Line

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

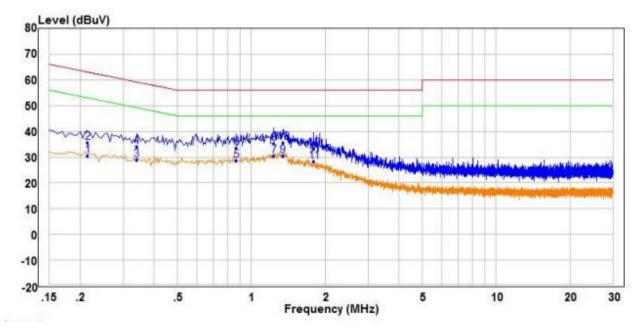
3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

	Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		-
1	0.240	21.33	9.55	30.88	52.10	-21.22	Average	Neutral
2	0.240	26.19	9.55	35.74	62.10	-26.36	QP	Neutral
3	0.375	19.88	9.58	29.46	48.39	-18.93	Average	Neutral
4	0.375	25.20	9.58	34.78	58.39	-23.61	QP	Neutral
5 PP	0.545	23.15	9.75	32.90	46.00	-13.10	Average	Neutral
6 QP	0.545	29.06	9.75	38.81	56.00	-17.19	QP	Neutral
7	0.985	20.05	9.71	29.76	46.00	-16.24	Average	Neutral
8	0.985	25.19	9.71	34.90	56.00	-21.10	QP	Neutral
9	1.215	20.59	9.71	30.30	46.00	-15.70	Average	Neutral
10	1.215	25.66	9.71	35.37	56.00	-20.63	QP	Neutral
11	1.590	17.55	9.73	27.28	46.00	-18.72	Average	Neutral
12	1.590	22.36	9.73	32.09	56.00	-23.91	QP	Neutral

Remark:

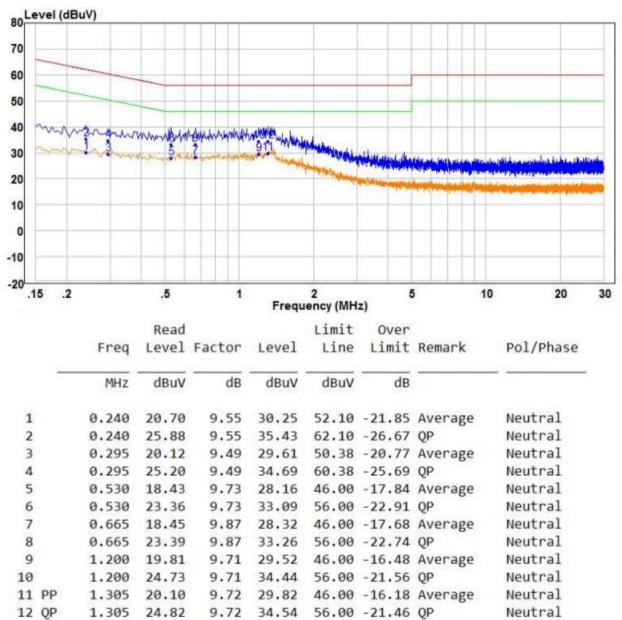
1. The following Quasi-Peak and Average measurements were performed on the EUT:


- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

SmartPace R1

Measurement Data

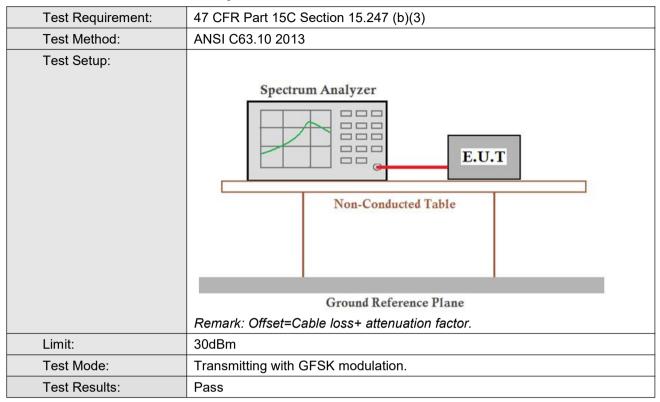
Live line:


	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.215	20.97	9.59	30.56	53.01	-22.45	Average	Line
2	0.215	26.19	9.59	35.78	63.01	-27.23	QP	Line
2 3 4	0.340	19.37	9.54	28.91	49.20	-20.29	Average	Line
4	0.340	24.56	9.54	34.10	59.20	-25.10	QP	Line
5	0.870	18.76	9.79	28.55	46.00	-17.45	Average	Line
6	0.870	23.60	9.79	33.39	56.00	-22.61	QP	Line
7 8	1.235	20.04	10.29	30.33	46.00	-15.67	Average	Line
8	1.235	25.02	10.29	35.31	56.00	-20.69	QP	Line
9 PP	1.345	19.88	10.53	30.41	46.00	-15.59	Average	Line
10 QP	1.345	25.06	10.53	35.59	56.00	-20.41	QP	Line
11	1.800	17.04	11.35	28.39	46.00	-17.61	Average	Line
12	1.800	21.94	11.35	33.29	56.00	-22.71	QP	Line

Remark:

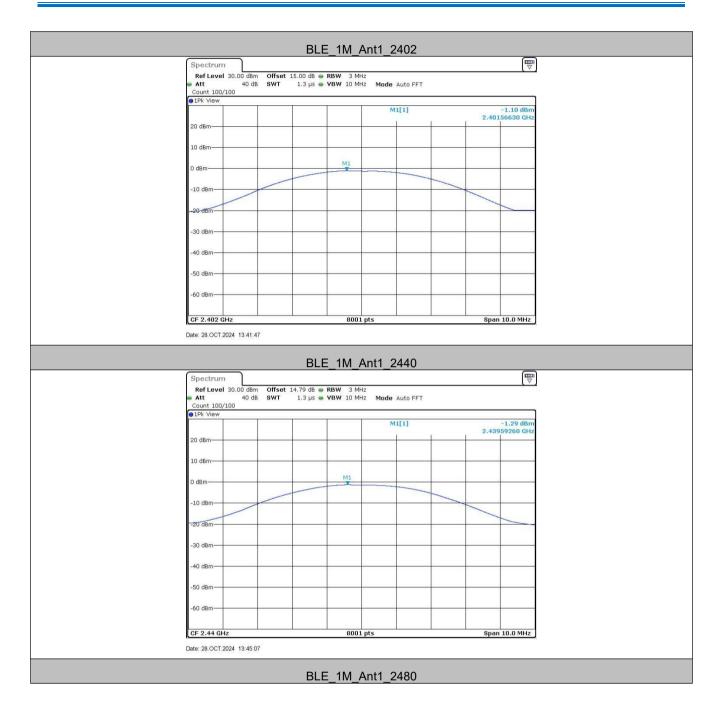
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

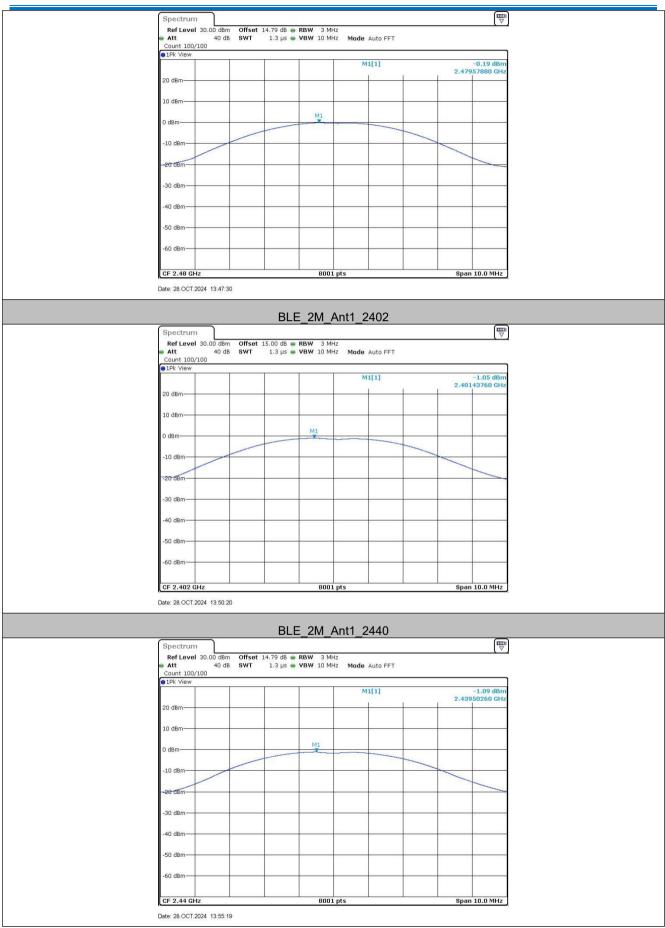
Neutral line:



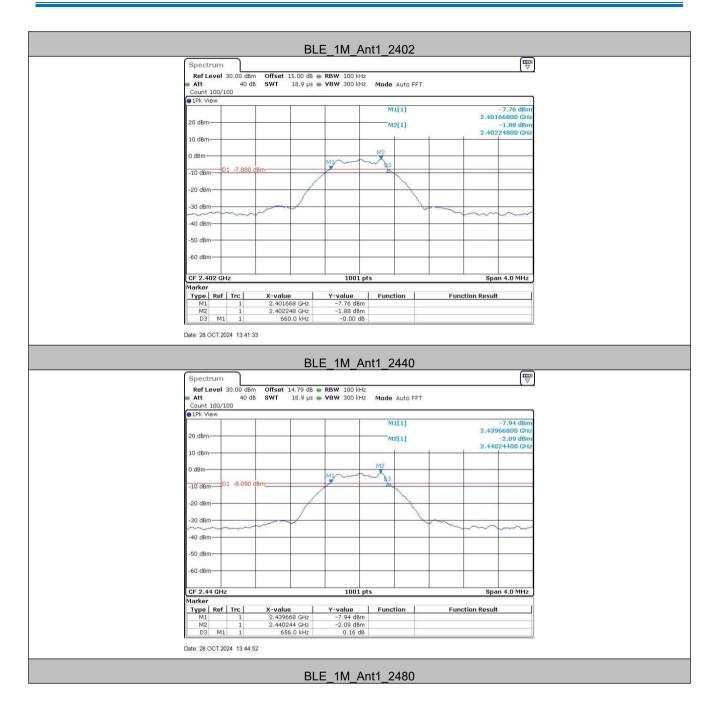
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

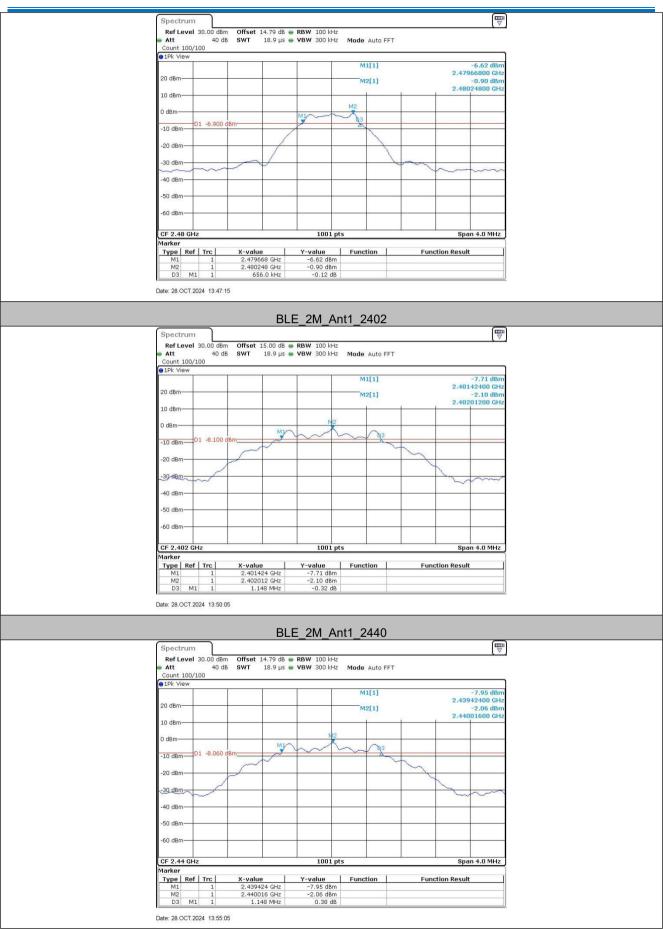

5.3 Conducted Peak Output Power


Measurement Data

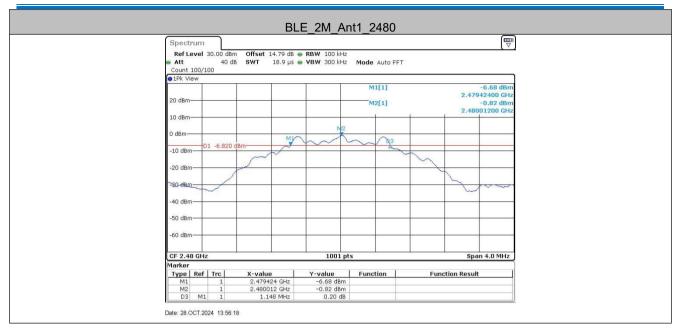
	GFSK mode (1Mbps)							
Test channel	Peak Output Power (dBm)	Peak Output Power (dBm) Limit (dBm) Result						
Lowest	-1.1	30.00	Pass					
Middle	-1.29	30.00	Pass					
Highest	-0.19	30.00	Pass					
	GFSK mode (21	Mbps)						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	-1.05	30.00	Pass					
Middle	-1.09	30.00	Pass					
Highest	0.15	30.00	Pass					

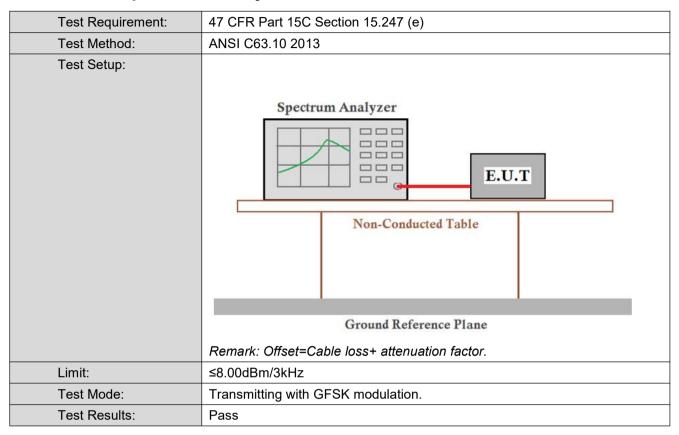

5.4 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10 2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.			
Limit:	≥ 500 kHz			
Instruments Used:	Refer to section 4.11 for details.			
Test Results:	Pass			

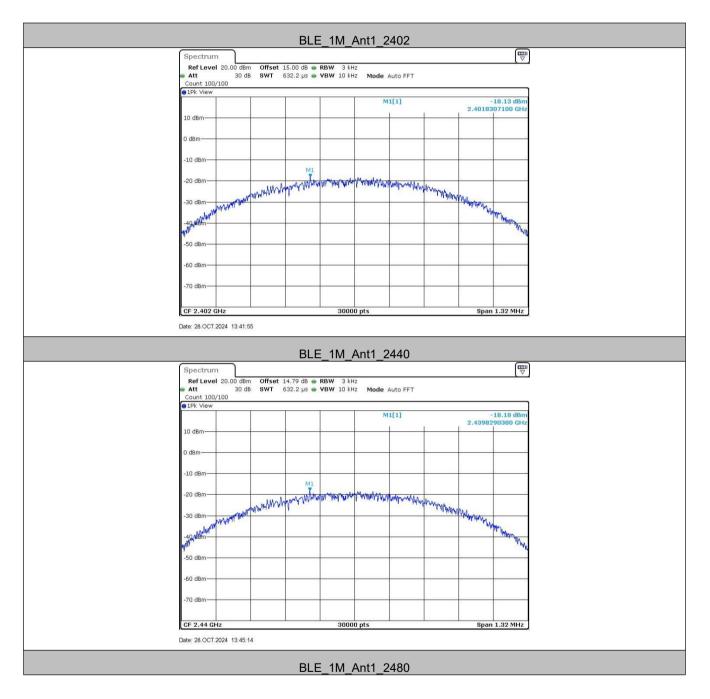

Measurement Data

GFSK mode (1Mbps)				
Test channel	6dB Occupy Bandwidth (MHz) Limit (kHz) Resu			
Lowest	0.66	≥500	Pass	
Middle	0.66	≥500	Pass	
Highest	0.66	≥500	Pass	
GFSK mode (2Mbps)				
Test channel	6dB Occupy Bandwidth (MHz) Limit (kHz)		Result	
Lowest	1.15	≥500	Pass	
Middle	1.15	≥500	Pass	
Highest	1.15	≥500	Pass	

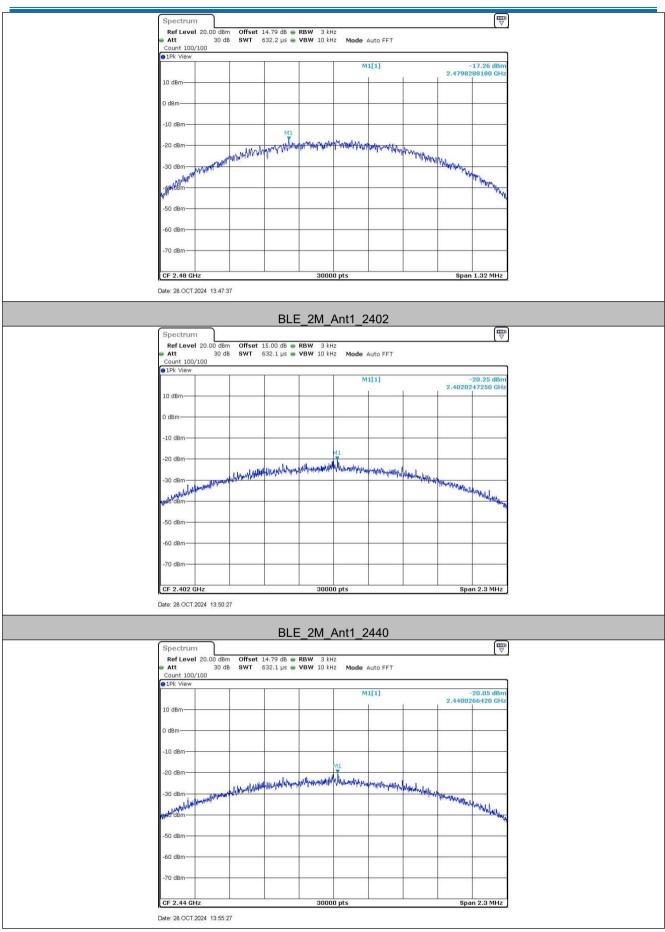


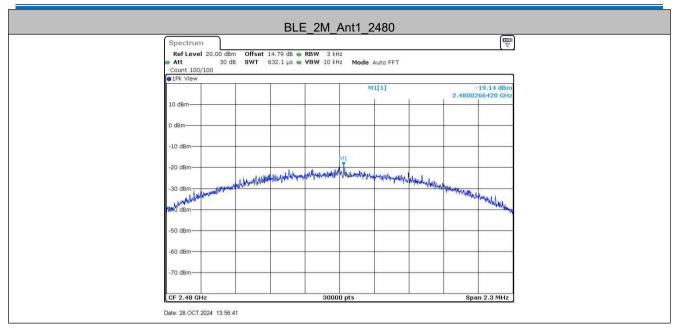


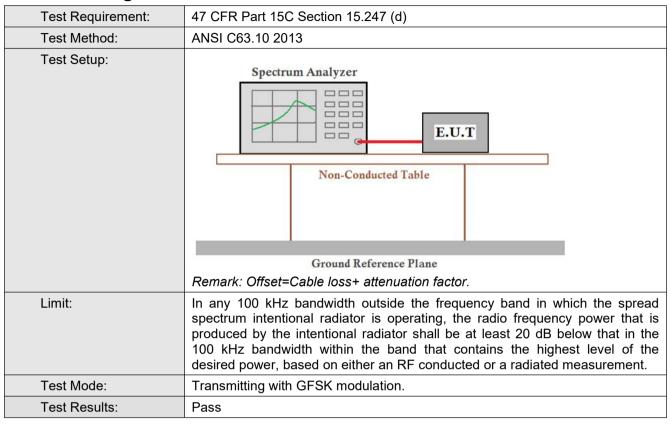
5.5 Power Spectral Density

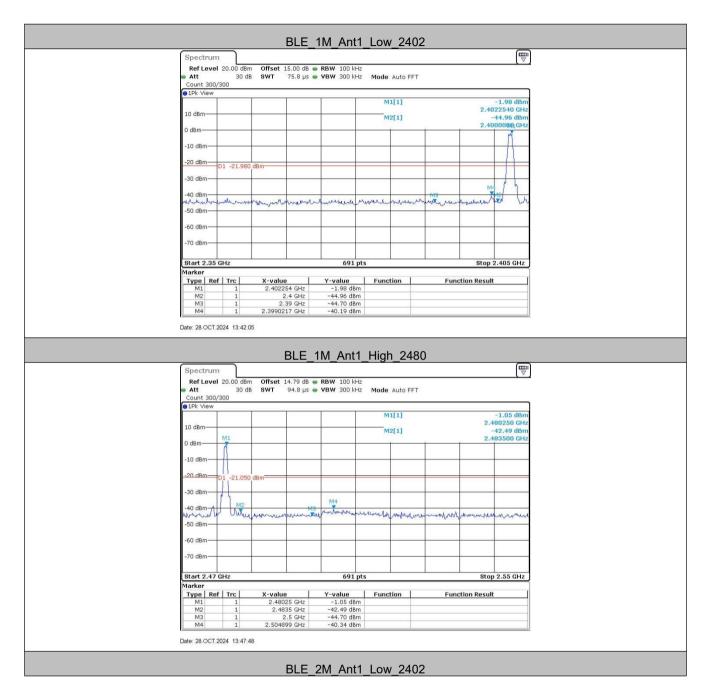


Measurement Data


	GFSK mode (1Mbps)				
Test channel	Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz) Re		Result		
Lowest	-18.13 ≤8.00		Pass		
Middle	-18.18	≤8.00	Pass		
Highest	-17.26	≤8.00	Pass		
	GFSK mode (2Mbps)				
Test channel	Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz)		Result		
Lowest	-20.25	≤8.00	Pass		
Middle	-20.05	≤8.00	Pass		
Highest	-19.14	≤8.00	Pass		

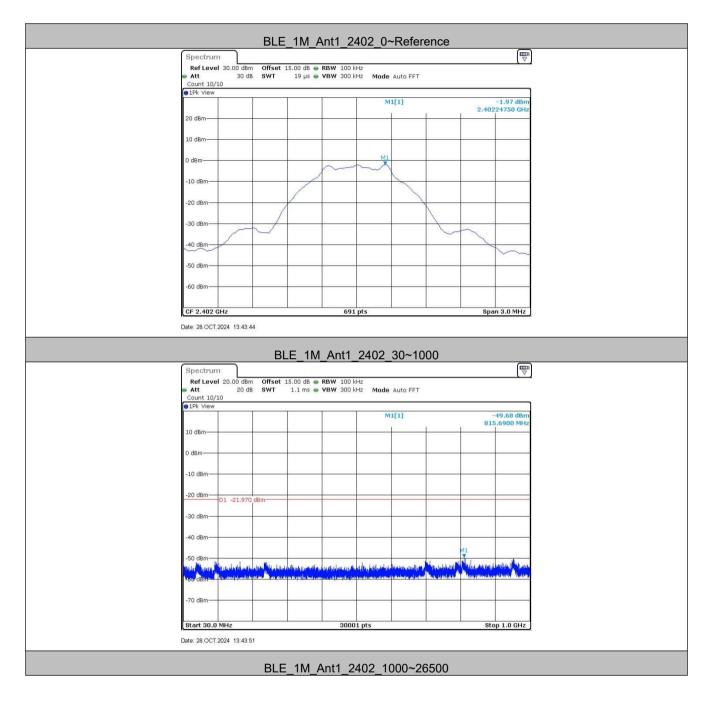

Test plot as follows:



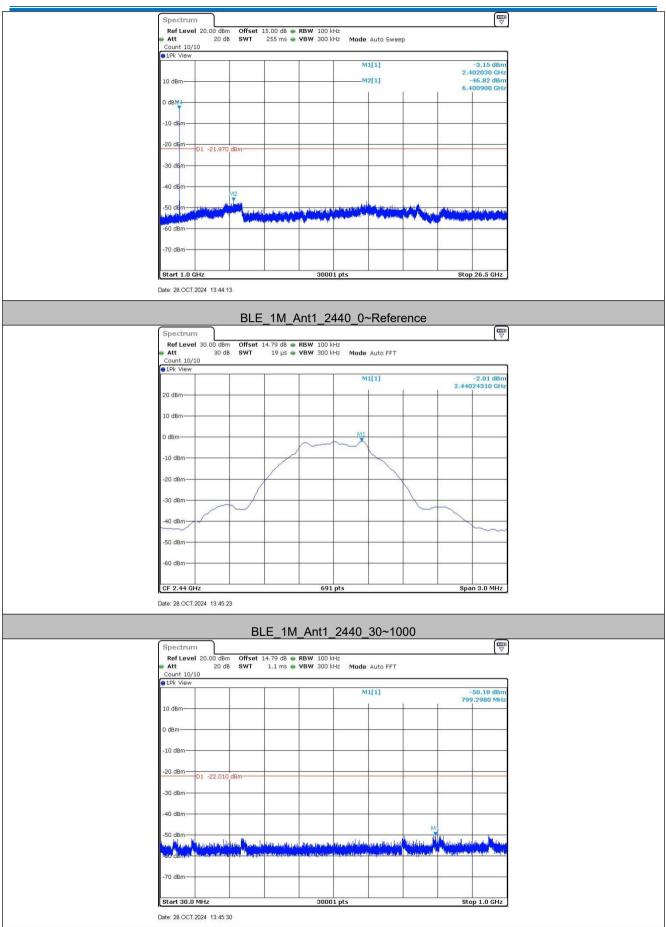

5.6 Band-edge for RF Conducted Emissions

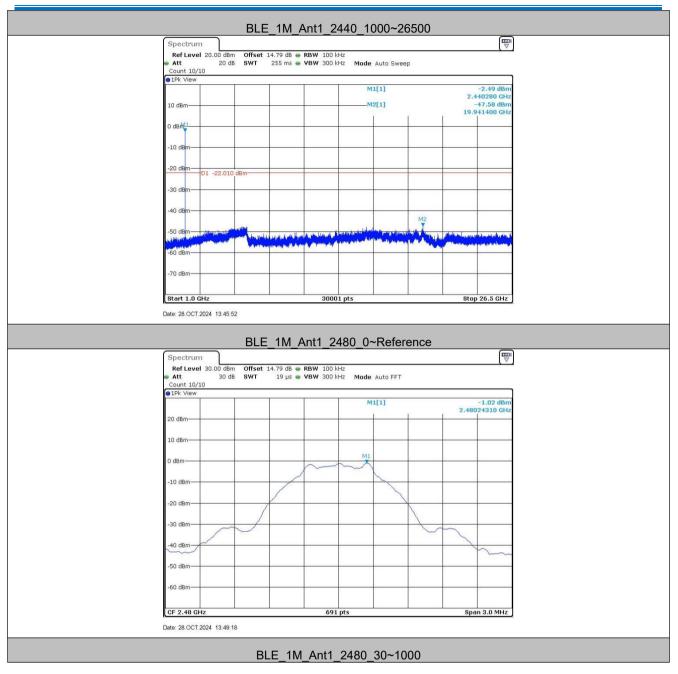

TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	-1.98	-40.19	≤-21.98	PASS
BLE_1M	High	2480	-1.05	-40.34	≤-21.05	PASS
BLE_2M	Low	2402	-1.99	-35.63	≤-21.99	PASS
	High	2480	-1.16	-41.25	≤-21.16	PASS

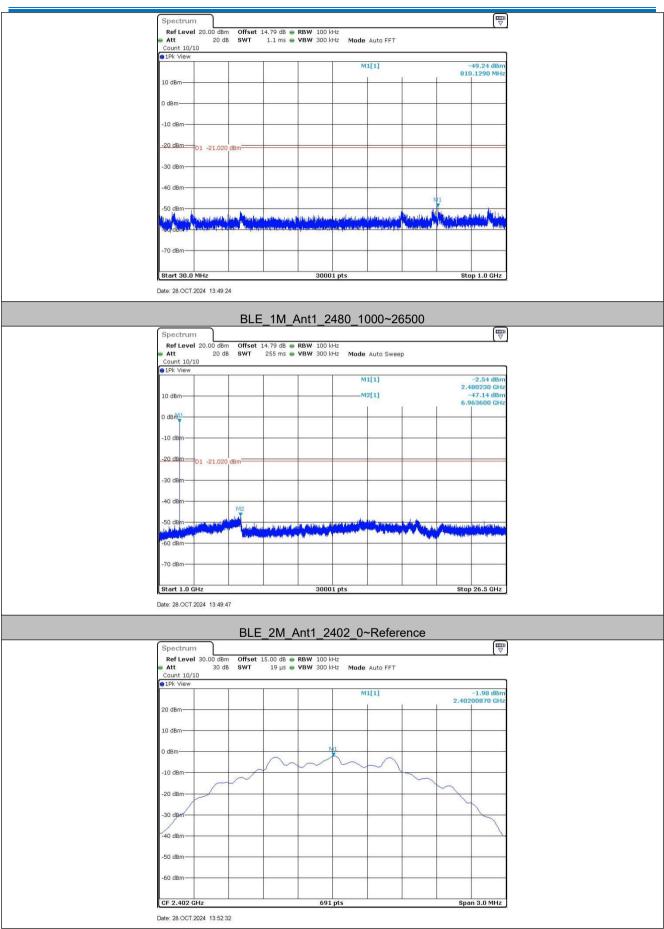
Test plot as follows:

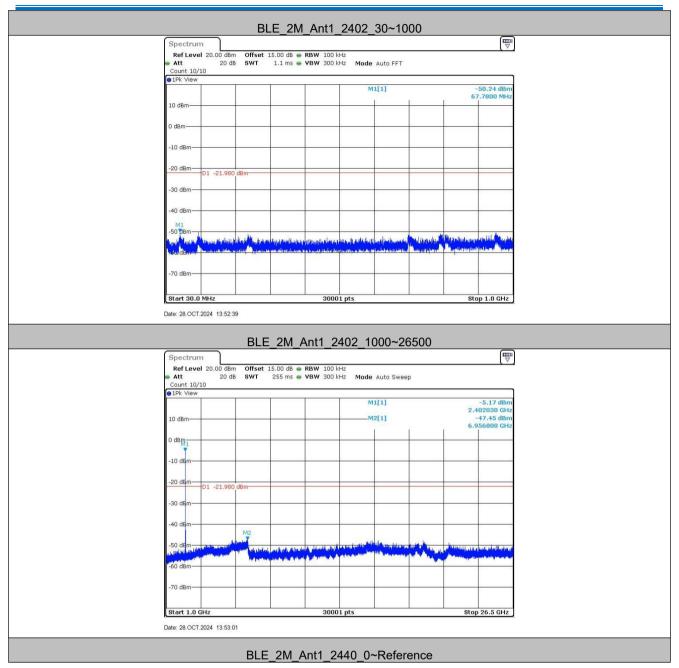


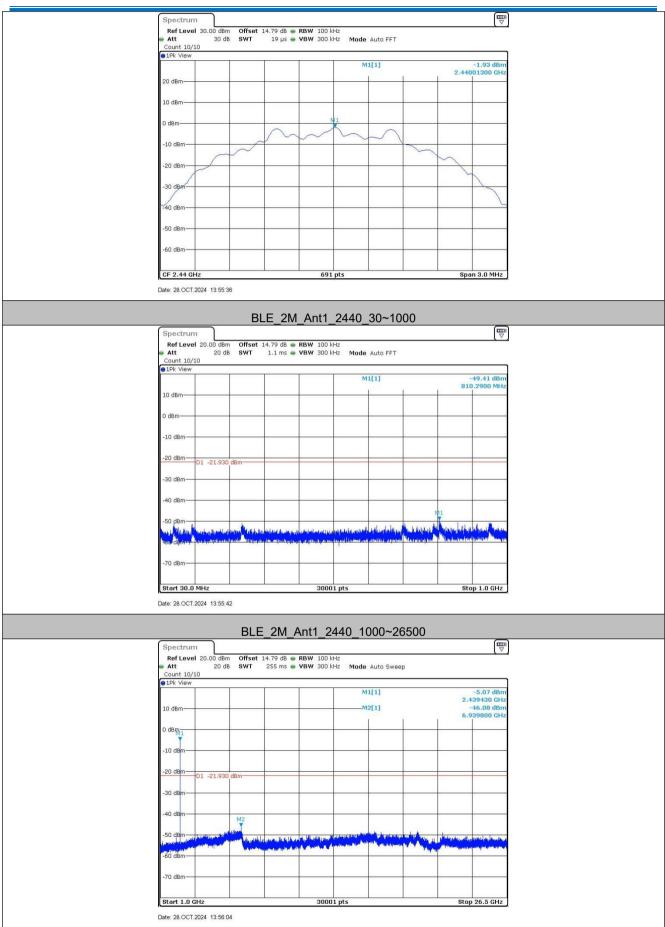
5.7 Spurious RF Conducted Emissions

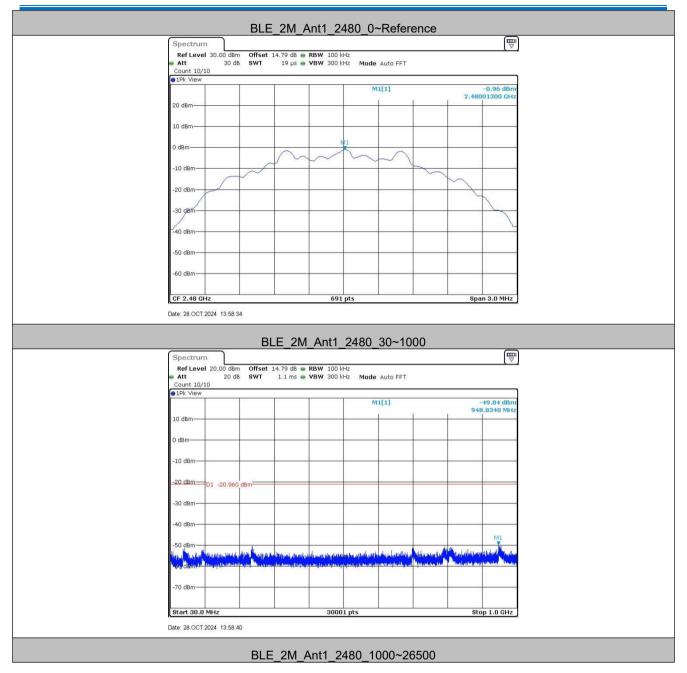

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Test Results:	Pass	

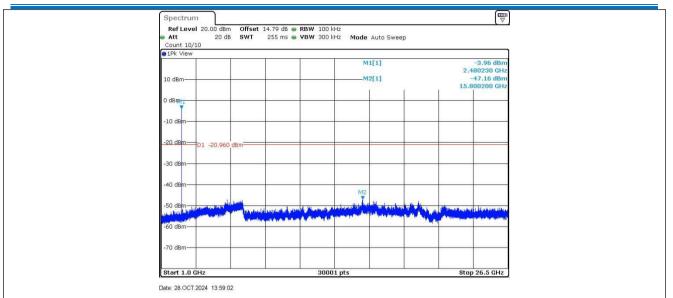

Test plot as follows:









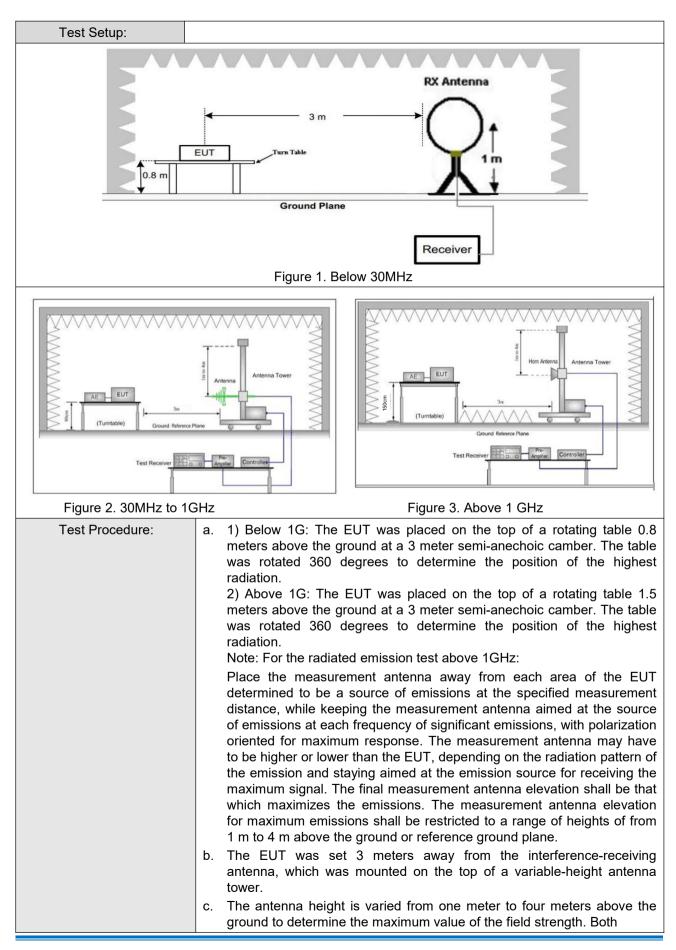


Report No.: CQASZ20241002156E-02

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

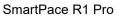
Г

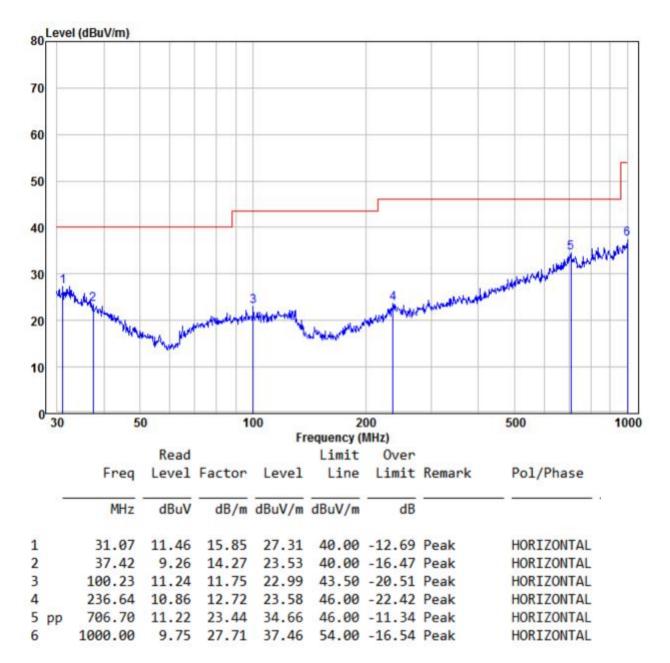

Report No.: CQASZ20241002156E-02

5.8 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	: 3MHz	Peak			
	Above IGH2		Peak	1MHz	: 10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (r			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	IB above the oment under t	maximum est. This p	permitted ave	erage emissio			

Page:43 of 54


	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass


Report No.: CQASZ20241002156E-02

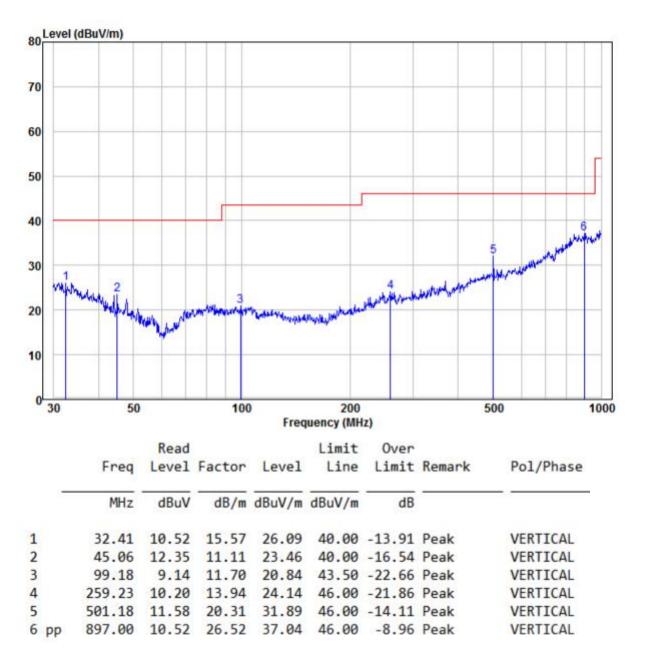
Radiated Emission below 1GHz

30MHz~1GHz, the worst case

SmartPace R1 Pro		
Test mode:	Transmitting mode	Horizontal

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

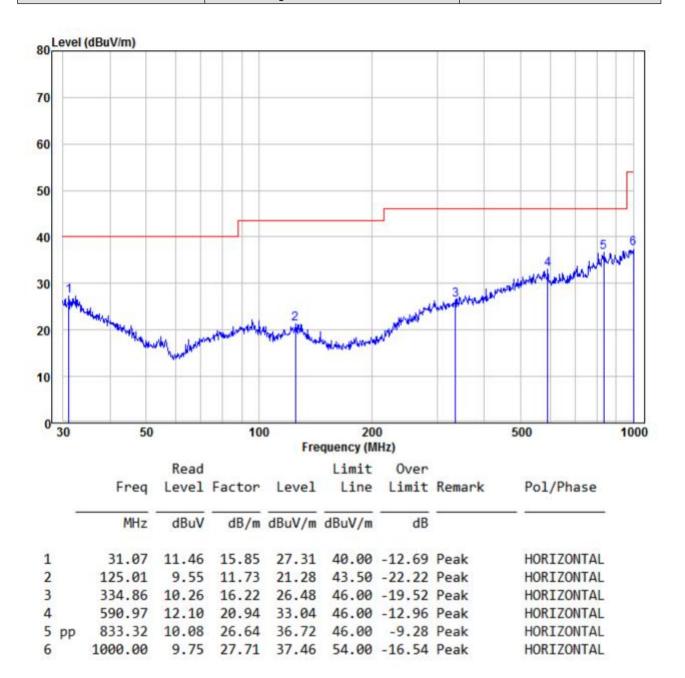
Report No.: CQASZ20241002156E-02

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Vertical

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,


Level = Read Level + Factor,

Report No.: CQASZ20241002156E-02

SmartPace R1

ĺ	Test mode:	Transmitting mode	Horizontal

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

30MHz~1GHz	, the wor	st case)						
Test mode:			Transm	nitting mo	de		Ve	ertical	
80 Level (dBa 70 60 50 40 30 -1	2 444		Transm	All and a second s			Ve	5	6
10 0 30	50			100 F	requency	200 (MHz)		500	1000
F		Read evel	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB			
				28.07				VERTICAL	
		3.76	11.54		40.00			VERTICAL	
		0.14	11.70		43.50			VERTICAL	
		9.89	11.65 20.31		43.50	-21.96		VERTICAL	
6 pp 842	2.13 1	0.18	26.82	37.00	46.00	-9.00	Peak	VERTICAL	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Transmitter	Emission	above	1GHz
-------------	----------	-------	------

Worse case mode:		GFSK(1Mbps	s)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.52	-9.2	46.32	74	-27.68	Peak	Н
2400	55.18	-9.39	45.79	74	-28.21	Peak	н
4804	52.30	-4.33	47.97	74	-26.03	Peak	н
7206	48.62	1.01	49.63	74	-24.37	Peak	Н
2390	54.13	-9.2	44.93	74	-29.07	Peak	V
2400	52.03	-9.39	42.64	74	-31.36	Peak	V
4804	54.23	-4.33	49.90	74	-24.10	Peak	V
7206	49.96	1.01	50.97	74	-23.03	Peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	51.76	-4.11	47.65	74	-26.35	peak	н
7320	50.66	1.51	52.17	74	-21.83	peak	н
4880	54.08	-4.11	49.97	74	-24.03	peak	V
7320	48.97	1.51	50.48	74	-23.52	peak	V

Worse case mode:		GFSK(1Mbp	GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2483.5	56.03	-9.29	46.74	74	-27.26	Peak	Н	
4960	51.36	-4.04	47.32	74	-26.68	Peak	н	
7440	48.40	1.57	49.97	74	-24.03	Peak	н	
2483.5	57.35	-9.29	48.06	74	-25.94	Peak	V	
4960	51.71	-4.04	47.67	74	-26.33	Peak	V	
7440	48.50	1.57	50.07	74	-23.93	Peak	V	

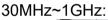
Worse case mode:		GFSK(2Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.91	-9.2	44.71	74	-29.29	Peak	н
2400	54.68	-9.39	45.29	74	-28.71	Peak	н
4804	52.02	-4.33	47.69	74	-26.31	Peak	н
7206	49.17	1.01	50.18	74	-23.82	Peak	н
2390	53.76	-9.2	44.56	74	-29.44	Peak	V
2400	52.80	-9.39	43.41	74	-30.59	Peak	v
4804	52.51	-4.33	48.18	74	-25.82	Peak	V
7206	50.82	1.01	51.83	74	-22.17	Peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.26	-4.11	48.15	74	-25.85	peak	н
7320	50.77	1.51	52.28	74	-21.72	peak	н
4880	53.92	-4.11	49.81	74	-24.19	peak	V
7320	51.06	1.51	52.57	74	-21.43	peak	V

Worse case mode:		GFSK(2Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.99	-9.29	45.70	74	-28.30	Peak	н
4960	53.08	-4.04	49.04	74	-24.96	Peak	н
7440	50.98	1.57	52.55	74	-21.45	Peak	н
2483.5	57.41	-9.29	48.12	74	-25.88	Peak	V
4960	51.49	-4.04	47.45	74	-26.55	Peak	V
7440	48.46	1.57	50.03	74	-23.97	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emission

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20241002156E-01.

*** END OF REPORT ***