CALIBRATION DATA PROBE CALIBRATION DATA Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn Client agc-cert Certificate No: 24J02Z000505 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 3953 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 05, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# C | al Date(Calibrated by, Certificate No.) Scheduled | Calibration | |--------------------------|----------------|---|-----------------------| | Power Meter NRP2 | 106277 | 19-Oct-23(CTTL, No.J23X11026) | Oct-24 | | Power sensor NRP8S | 104291 | 19-Oct-23(CTTL, No.J23X11026) | Oct-24 | | Power sensor NRP8S | 104292 | 19-Oct-23(CTTL, No.J23X11026) | Oct-24 | | Reference 10dBAttenuator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212) | Jan-25 | | Reference 20dBAttenuator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211) | Jan-25 | | Reference Probe EX3DV4 | SN 7307 | 28-May-24(SPEAG, No.EX-7307_May24) | May-25 | | DAE4 | SN 771 | 19-Jan-24(SPEAG, No.DAE4-771_Jan24) | Jan-25 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 12-Jun-24(CTTL, No.24J02X005419) | Jun-25 | | SignalGenerator APSIN26G | 181-33A6D0700- | 1959 26-Mar-24(CTTL, No.24J02X002468) | Mar-25 | | Network Analyzer E5071C | MY46110673 | 25-Dec-23(CTTL, No.J23X13425) | Dec-24 | | Reference 10d8Attenuator | BT0520 | 11-May-23(CTTL, No.J23X04061) | May-25 | | Reference 20dBAttenuator | BT0267 | 11-May-23(CTTL, No.J23X04062) | May-25 | | OCP DAK-12 | SN 1174 | 25-Oct-23(SPEAG, No.OCP-DAK12-1174_C | Oct-24 | OCP DAK-12 SN 1174 25-Oct-23(SPEAG, No.OCP-DAK12-1174_Oct23) Oct-24 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 08, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010. d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z. DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:24J02Z000505 Page 2 of 9 Add: No.52 HuaYuanBci Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953 # **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.52 | 0.54 | 0.48 | ±10.0% | | DCP(mV) ^B | 101.3 | 101.9 | 101.5 | | # **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc ^E | |-----|---------------|---|-----|-------|-----|------|-------|------------------| | | System Name | | dB | dΒ√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 173.6 | ±2.3% | | | | Y | 0.0 | 0.0 | 1.0 | | 178.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 165.6 | 1 . | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor *k*=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(<i>k</i> =2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|-------------------------| | 750 | 41.9 | 0.89 | 10.38 | 10.38 | 10.38 | 0.16 | 1.21 | ±12.7% | | 835 | 41.5 | 0.90 | 9.95 | 9.95 | 9.95 | 0.15 | 1.34 | ±12.7% | | 900 | 41.5 | 0.97 | 9.90 | 9.90 | 9.90 | 0.15 | 1.36 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.61 | 8.61 | 8.61 | 0.25 | 1.06 | ±12.7% | | 1810 | 40.0 | 1.40 | 8.45 | 8.45 | 8.45 | 0.18 | 1.14 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.31 | 8.31 | 8.31 | 0.27 | 1.00 | ±12.7% | | 2000 | 40.0 | 1.40 | 8.27 | 8.27 | 8.27 | 0.23 | 1.10 | ±12.7% | | 2300 | 39.5 | 1.67 | 8.13 | 8.13 | 8.13 | 0.47 | 0.72 | ±12.7% | | 2450 | 39.2 | 1.80 | 7.87 | 7.87 | 7.87 | 0.49 | 0.73 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.70 | 7.70 | 7.70 | 0.54 | 0.70 | ±12.7% | | 5250 | 35.9 | 4.71 | 5.50 | 5.50 | 5.50 | 0.40 | 1.50 | ±13.9% | | 5600 | 35.5 | 5.07 | 4.86 | 4.86 | 4.86 | 0.50 | 1.30 | ±13.9% | | 5750 | 35.4 | 5.22 | 4.98 | 4.98 | 4.98 | 0.50 | 1.30 | ±13.9% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Receiving Pattern (Φ), θ =0° # f=600 MHz, TEM # f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:24J02Z000505 Page 6 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@eaict.ac.cn http://www.caict.ac.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn # **Conversion Factor Assessment** f=750 MHz,WGLS R9(H_convF) f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:24J02Z000505 Page 8 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn # DASY/EASY – Parameters of Probe: EX3DV4 – SN:3953 # **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 33.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | # **DAE CALIBRATION DATA** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client: agc-cert Certificate No: 24J02Z000265 # CALIBRATION CERTIFICATE Object DAE4 - SN: 1398 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: May 20, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) °C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Scheduled Calibration** ID# Cal Date(Calibrated by, Certificate No.) **Primary Standards** Process Calibrator 753 1971018 12-Jun-23 (CTTL, No.J23X05436) Jun-24 Calibrated by: Name Function Yu Zongying Qi Dianyuan SAR Test Engineer Reviewed by: Approved by: Lin Jun SAR Test Engineer SAR Project Leader Issued: May 22, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 n V, full range = -1......+3m VDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.244 ± 0.15% (k=2) | 404.228 ± 0.15% (k=2) | 403.683 ± 0.15% (k=2) | | Low Range | 3.97446 ± 0.7% (k=2) | 3.99237 ± 0.7% (k=2) | 3.96950 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 47.5° ± 1 ° | |---|-------------| Certificate No: 24J02Z000265 Page 3 of 3 # **DIPOLE CALIBRATION DATA** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client agc-cert **Certificate No:** J23Z60235 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 968 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 18, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No.J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | **Function** Name Calibrated by: SAR Test Engineer Zhao Jing Reviewed by: Lin Hao **SAR Test Engineer** Approved by: SAR Project Leader Qi Dianyuan Issued: May 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60235 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # **Measurement Conditions** | SY system configuration, as far as
ASY Version | DASY52 | 52.10.4 | |---|--------------------------|------------| | trapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | 54-54-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6- | | with Cases | | Phantom | Imple Flat Flattom 5.15 | | |------------------------------|-------------------------|-------------| | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | **Head TSL parameters** parameters and calculations were applied. | ne following parameters and calculations were | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-----------------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.0 W/kg ± 18.7 % (<i>k</i> =2) | Page 3 of 6 Certificate No: J23Z60235 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9Ω+ 3.63jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.9dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.059 ns | |----------------------------------|----------| | Electrical Boldy (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Page 4 of 6 Certificate No: J23Z60235 Date: 2023-05-18 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 968 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.824 S/m; ϵ_r = 40.07; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.68 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.6% Maximum value of SAR (measured) = 22.3 W/kg Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Impedance Measurement Plot for Head TSL Certificate No: J23Z60235 Page 6 of 6 # **SAR Reference Dipole Calibration Report** Ref: ACR.118.24.22.BES.A # ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1-2/F, BUILDING 19, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAI STREETBAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 5200-5800 MHZ SERIAL NO.: SN 17/22 DIP5G000-671 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 04/28/2022 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). ### SAR REFERENCE DIPOLE CALIBRATION REPORT | | Name | Function | Date | Signature | |---------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 4/28/2022 | JES | | Checked by : | Jérôme Luc | Technical Manager | 4/28/2022 | JES | | Approved by: | Yann Toutain | Laboratory Director | 4/28/2022 | Gann TOUTANN | 2022.04.28 17:04:56 +02'00' | | Customer Name | |----------------|---| | Distribution : | ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. | | Issue | Name | Date | Modifications | |-------|------------|-----------|-----------------| | A | Jérôme Luc | 4/28/2022 | Initial release | | | | | | | | | | | | | | | | # TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|------------------------------|---| | 2 | Devi | ce Under Test4 | | | 3 | Prod | uct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method4 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | oration Measurement Results6 | | | | 6.1 | Return Loss | 6 | | | 6.2 | Mechanical Dimensions | | | 7 | Vali | lation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | Measurement Result | | | | 7.3 | Body Measurement Result | | | 8 | List | of Equipment | | ### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### DEVICE UNDER TEST | | Device Under Test | |--------------------------------|--| | Device Type | COMOSAR 5200-5800 MHz REFERENCE DIPOLE | | Manufacturer | MVG | | Model | SID5000 | | Serial Number | SN 17/22 DIP5G000-671 | | Product Condition (new / used) | New | #### PRODUCT DESCRIPTION 3 #### 3.1 **GENERAL INFORMATION** MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole #### 4 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 <u>MECHANICAL REQUIREMENTS</u> The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | # 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 0 - 300 | 0.20 mm | | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | Page: 5/14 # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 <u>RETURN LOSS IN HEAD LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-------------------------------| | 5200 | -20.52 | -20 | 54.06 Ω + 8.44 jΩ | | 5400 | -30.10 | -20 | $47.05 \Omega + 1.02 j\Omega$ | | 5600 | -21.30 | -20 | $49.63 \Omega + 8.57 j\Omega$ | | 5800 | -26.14 | -20 | 47.44 Ω - 4.21 jΩ | # 6.2 <u>RETURN LOSS IN BODY LIQUID</u> Page: 6/14 #### SAR REFERENCE DIPOLE CALIBRATION REPORT | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-------------------------------| | 5200 | -20.99 | -20 | $54.17 \Omega + 7.83 j\Omega$ | | 5400 | -32.30 | -20 | $48.30 \Omega + 1.73 j\Omega$ | | 5600 | -20.79 | -20 | 48.10 Ω + 8.89 jΩ | | 5800 | -26.11 | -20 | 48.36 Ω - 4.67 jΩ | #### 6.3 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | hmm | | d mm | | |---------------|-------------------|-----------|-------------------|-----------|------------------|-----------| | | required | m easured | required | m easured | required | m easured | | 5000 to 6000 | 20.6 ±1 %. | 20.77 | 40.3 ±1 %. | 40.21 | 3.6 ±1 %. | 3.61 | # 7 VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 <u>HEAD LIQUID MEASUREMENT</u> | Frequency
MHz | Relative permittivity (ε _r ') | | Conductivity (σ) S/m | | |------------------|--|-----------|----------------------|----------| | | required | m easured | required | measured | | 5000 | 36.2 ± 10 % | | 4.45 ±10 % | | | 5100 | 36.1 ± 10 % | | 4.56 ±1 0 % | | | 5200 | 36.0 ± 10 % | 34.44 | 4.66 ± 10 % | 4.64 | | 5300 | 35.9 ±10 % | | 4.76 ±10 % | | | 5400 | 35.8 ±10 % | 33.63 | 4.86 ±10 % | 4.88 | | 5500 | 35.6 ±10 % | | 4.97 ± 10 % | | | 5600 | 35.5 ±10 % | 32.80 | 5.07 ± 10 % | 5.12 | | 5700 | 35.4 ± 10 % | | 5.17 ± 10 % | | | 5800 | 35.3 ± 10 % | 32.33 | 5.27 ± 10 % | 5.31 | | 5900 | 35.2 ±10 % | | 5.38 ± 10 % | | | 6000 | 35.1 ±10 % | | 5.48 ± 10 % | | Page: 7/14 # 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to $1\,\mathrm{W}$ net power. In bracket, the measured SAR is given with the used input power. | Software | OPENSAR V5 | |------------------------------------|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values 5200 MHz: eps' :34.44 sigma : 4.64
Head Liquid Values 5400 MHz: eps' :33.63 sigma : 4.88
Head Liquid Values 5600 MHz: eps' :32.80 sigma : 5.12
Head Liquid Values 5800 MHz: eps' :32.33 sigma : 5.31 | | Distance between dipole and liquid | 10 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency (MHz) | 1 g SAR (W/kg) | | 10 g SAR (W/kg) | | |-----------------|----------------|--------------|-----------------|--------------| | | required | measured | required | measured | | 5200 | 76.50 | 73.43 (7.34) | 21.60 | 21.83 (2.18) | | 5400 | - | 78.43 (7.84) | - | 23.90 (2.39) | | 5600 | - | 78.20 (7.82) | - | 24.12 (2.41) | | 5800 | 78.00 | 75.69 (7.57) | 21.90 | 22.44 (2.24) | Page: 9/14 # mvg # 7.3 BODY LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (&') | | Conductivity (σ) S/m | | |------------------|----------------------------|----------|----------------------|----------| | | required | measured | required | measured | | 5200 | 49.0 ±10 % | 45.50 | 5.30 ±10 % | 5.63 | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10 % | 44.78 | 5.53 ±10 % | 5.95 | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | 44.85 | 5.77 ±10 % | 6.26 | | 5800 | 48.2 ±10 % | 44.45 | 6.00 ±10 % | 6.58 | # 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | 0.0 | OPENICA DATE | |------------------------------------|--| | Software | OPENSAR V5 | | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Body Liquid Values 5200 MHz: eps' :45.50 sigma : 5.63
Body Liquid Values 5400 MHz: eps' :44.78 sigma : 5.95
Body Liquid Values 5600 MHz: eps' :44.85 sigma : 6.26
Body Liquid Values 5800 MHz: eps' :44.45 sigma : 6.58 | | Distance between dipole and liquid | 10 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency (MHz) | 1 g SAR (W/kg) | 10 g SAR (W/kg) | |-----------------|----------------|-----------------| | | measured | measured | | 5200 | 72.30 (7.23) | 22.09 (2.21) | | 5400 | 75.13 (7.51) | 22.91 (2.29) | | 5600 | 74.81 (7.48) | 23.01 (2.30) | | 5800 | 71.92 (7.19) | 22.41 (2.24) | # BODY SAR MEASUREMENT PLOTS @ 5400 MHz # BODY SAR MEASUREMENT PLOTS @ 5600 MHz Page: 12/14 # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | L SN 13/09 SAM68 | Validated. No cal
required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | мvg | SN 41/18 EPGO333 | 10/2021 | 10/2022 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2019 | 11/2022 | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | |