FCC Radio Test Report FCC ID: TE7EX220G2V1 This report concerns: Class II Permissive Change **Project No.** : 1905C079C **Equipment**: AX1500 Wi-Fi 6 Router Brand Name : tp-link Test Model : EX220-G2 Series Model : N/A **Applicant**: TP-Link Technologies Co., Ltd. Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and Technology Park, Shennan Rd, Nanshan, Shenzhen, China **Manufacturer**: TP-Link Technologies Co., Ltd. Address : Building 24(floors1,3,4,5) and 28(floors1-4) Central Science and Technology Park, Shennan Rd, Nanshan, Shenzhen, China Date of Receipt : Nov. 28, 2019 Aug. 17, 2020 **Date of Test** : Nov. 29, 2019 ~ Jan. 16, 2020 Aug. 24, 2020 ~ Aug. 25, 2020 **Issued Date** : Sep. 25, 2020 Report Version : R00 Test Sample : Engineering Sample No.: DG2020010657,DG2020082033 **Standard(s)**: FCC Part15, Subpart E(15.407) ANSI C63.10-2013 FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. Prepared by : Chay Cai Approved by: Ethan Ma lac-mra Certificate #5123.02 Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com #### **Declaration** **BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s). **BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government. This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval. **BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report. BTL is not responsible for the sampling stage, so the results only apply to the sample as received. The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use. #### Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results. | Table of Contents | Page | |--|------| | | | | REPORT ISSUED HISTORY | 6 | | 1 . SUMMARY OF TEST RESULTS | 7 | | 1.1 TEST FACILITY | 8 | | 1.2 MEASUREMENT UNCERTAINTY | 8 | | 1.3 TEST ENVIRONMENT CONDITIONS | 9 | | 2 . GENERAL INFORMATION | 10 | | 2.1 GENERAL DESCRIPTION OF EUT | 10 | | 2.2 TEST MODES | 13 | | 2.3 PARAMETERS OF TEST SOFTWARE | 16 | | 2.4 DUTY CYCLE | 18 | | 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 20 | | 2.6 SUPPORT UNITS | 20 | | 3 . AC POWER LINE CONDUCTED EMISSIONS TEST | 21 | | 3.1 LIMIT | 21 | | 3.2 TEST PROCEDURE | 21 | | 3.3 DEVIATION FROM TEST STANDARD | 21 | | 3.4 TEST SETUP | 22 | | 3.5 EUT OPERATION CONDITIONS | 22 | | 3.6 TEST RESULTS | 22 | | 4 . RADIATED EMISSIONS TEST | 23 | | 4.1 LIMIT | 23 | | 4.2 TEST PROCEDURE | 24 | | 4.3 DEVIATION FROM TEST STANDARD | 24 | | 4.4 TEST SETUP | 25 | | 4.5 EUT OPERATION CONDITIONS | 26 | | 4.6 TEST RESULTS - 9 KHZ to 30 MHZ | 26 | | 4.7 TEST RESULTS - 30 MHz TO 1000 MHz | 26 | | 4.8 TEST RESULTS - ABOVE 1000 MHz | 26 | | 5 . BANDWIDTH TEST | 27 | | 5.1 LIMIT | 27 | | 5.2 TEST PROCEDURE | 27 | | 5.3 TEST PROCEDURE | 27 | | | | | Table of Contents | Page | | | | |---|------|--|--|--| | | | | | | | 5.4 TEST SETUP | 27 | | | | | 5.5 EUT OPERATION CONDITIONS | 27 | | | | | 5.6 TEST RESULTS | 27 | | | | | 6 . MAXIMUM OUTPUT POWER TEST | 28 | | | | | 6.1 LIMIT | 28 | | | | | 6.2 TEST PROCEDURE | 28 | | | | | 6.3 DEVIATION FROM STANDARD | 28 | | | | | 6.4 TEST SETUP | 28 | | | | | 6.5 EUT OPERATION CONDITIONS | 28 | | | | | 6.6 TEST RESULTS | 28 | | | | | 7 . POWER SPECTRAL DENSITY TEST | 29 | | | | | 7.1 LIMIT | 29 | | | | | 7.2 TEST PROCEDURE | 29 | | | | | 7.3 DEVIATION FROM STANDARD | 29 | | | | | 7.4 TEST SETUP | 29 | | | | | 7.5 EUT OPERATION CONDITIONS | 29 | | | | | 7.6 TEST RESULTS | 29 | | | | | 8 . FREQUENCY STABILITY MEASUREMENT | 30 | | | | | 8.1 LIMIT | 30 | | | | | 8.2 TEST PROCEDURE | 30 | | | | | 8.3 DEVIATION FROM STANDARD | 30 | | | | | 8.4 TEST SETUP | 30 | | | | | 8.5 EUT OPERATION CONDITIONS | 30 | | | | | 8.6 TEST RESULTS | 30 | | | | | 9. MEASUREMENT INSTRUMENTS LIST | 31 | | | | | 10 . EUT TEST PHOTOS | 33 | | | | | APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | 37 | | | | | APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ | 40 | | | | | APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1 GHZ 45 | | | | | | APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ | 48 | | | | | APPENDIX E - BANDWIDTH | 265 | | | | | | | | | | | Table of Contents | Page | |-------------------------------------|------| | | | | APPENDIX F - MAXIMUM OUTPUT POWER | 277 | | APPENDIX G - POWER SPECTRAL DENSITY | 304 | | APPENDIX H - FREQUENCY STABILITY | 341 | # **REPORT ISSUED HISTORY** | Report Version | Description | Issued Date | |----------------|--|---------------| | R00 | Compared with previous report (BTL-FCCP-2-1905C079A), changed the adapter, so the radiated emissions of below 1GHz and AC Power Line Conducted Emissions have been re-evaluated and recorded in the test report, the rest are kept the same. | Sep. 25, 2020 | #### 1. SUMMARY OF TEST RESULTS Test procedures according to the technical standard(s): | | FCC Part15, Subpart E(15.407) | | | | | |-------------------------------------|---|--|-----------|----------|--| | Standard(s)
Section | Test Item | Test Result | Judgement | Remark | | | 15.207
15.407(b) | AC Power Line Conducted Emissions | APPENDIX A | PASS | | | | 15.407(b)
15.205(a)
15.209(a) | Radiated Emissions | APPENDIX B
APPENDIX C
APPENDIX D | PASS | | | | 15.407(a)
15.407(e) | Spectrum Bandwidth | APPENDIX E | PASS | | | | 15.407(a) | Maximum Output Power | APPENDIX F | PASS | | | | 15.407(a) | Power Spectral Density | APPENDIX G | PASS | | | | 15.407(g) | Frequency Stability | APPENDIX H | PASS | | | | 15.203 | Antenna Requirements | | PASS | NOTE (3) | | | 15.407(c) | Automatically Discontinue
Transmission | | PASS | NOTE (3) | | #### Note: | (1) | "N/A" | denotes | test is | not | app | licabl | e in | this | test | repor | t. | |-----|-------|---------|---------|-----|-----|--------|------|------|------|-------|----| |-----|-------|---------|---------|-----|-----|--------|------|------|------|-------|----| - (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203. - (3) During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission. | (4) | For UNII-1 this device was functioned as a | | |-----|--|--| | | | | #### 1.1 TEST FACILITY The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240 #### 1.2 MEASUREMENT UNCERTAINTY ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table: #### A. AC power line conducted emissions test: | Test Site | Method | Measurement Frequency Range | U, (dB) | |-----------|--------|-----------------------------|---------| | DG-C02 | CISPR | 150kHz ~ 30MHz | 2.68 | #### B. Radiated emissions test: | Test Site | Method | Measurement Frequency Range | Ant.
H / V | U, (dB) | | | | | | | |-----------|--------|-----------------------------|----------------|---------|-------|-------|-------|-------|-------------------|---| | | | 9kHz ~ 30MHz | V | 3.79 | | | | | | | | | | 9kHz ~ 30MHz | Н | 3.57 | | | | | | | | | CISPR | 30MHz ~ 200MHz | V | 4.26 | | | | | | | | | | CICDD | 30MHz ~ 200MHz | Τ | 3.38 | | | | | | | DG-CB03 | | | CICDD | CICDD | CICDD | CICDD | CICDD | CICDD | 200MHz ~ 1,000MHz | V | | DG-CB03 | | 200MHz ~ 1,000MHz | Ι | 3.94 | | | | | | | | | | 1GHz ~ 6GHz | 1 | 3.96 | | | | | | | | | | 6 | 6GHz ~ 18GHz | 1 | 5.24 | | | | | | | | | 18GHz ~
26.5GHz | - | 3.62 | | | | | | | | | | 26.5GHz ~ 40GHz | - | 4.00 | | | | | | | #### C. Other Measurement: | Test Item | Uncertainty | |--------------------------------|-------------| | Spectrum Bandwidth | ±3.8 % | | Maximum Output Power ±0.95 | | | Power Spectral Density ±0.86 d | | | Frequency Stability | ±0.16 dB | | Temperature | ±0.08 °C | | Time | ±0.58 % | | Supply voltages | ±0.3 % | Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification. # 1.3 TEST ENVIRONMENT CONDITIONS | Test Item | Temperature | Humidity | Test Voltage | Tested By | |-----------------------------------|---------------------|----------|---------------------|------------| | AC Power Line Conducted Emissions | 25°C | 53% | AC 120V/60Hz | Hand Huang | | Radiated Emissions-9K-30MHz | 25°C | 60% | AC 120V/60Hz | Kwok Guo | | Radiated Emissions-30 MHz to 1GHz | 24°C | 68% | AC 120V/60Hz | Kwok Guo | | Radiated Emissions-Above 1000 MHz | 24°C | 68% | AC 120V/60Hz | Kwok Guo | | Spectrum Bandwidth | 25°C | 62% | DC 12V | Jonas Chen | | Maximum Output Power | 25°C | 62% | DC 12V | Jonas Chen | | Power Spectral Density | 25°C | 62% | DC 12V | Jonas Chen | | Frequency Stability | Normal &
Extreme | 62% | Normal &
Extreme | Jonas Chen | # 2. GENERAL INFORMATION # 2.1 GENERAL DESCRIPTION OF EUT | Equipment | AX1500 Wi-Fi 6 Router | |--|---| | Brand Name | tp-link | | Test Model | EX220-G2 | | Series Model | N/A | | Model Difference(s) | N/A | | Software Version | 1.0.0 P1[20191103-rel80377] | | Hardware Version | 1.0 | | Power Source | DC voltage supplied from AC/DC adapter. Model: T120100-2B1 | | Power Rating | I/P: 100-240V~ 50/60Hz 0.3A
O/P: 12V === 1A | | Operation Frequency | UNII-1: 5150 MHz~5250 MHz
UNII-3: 5725 MHz~5850 MHz | | Modulation Type | IEEE 802.11a/n/ac: OFDM
IEEE 802.11ax: OFDMA | | Bit Rate of Transmitter | Up to 2402 Mbps | | Maximum Output Power for UNII-1 Non-Beamforming | IEEE 802.11a: 26.42 dBm (0.4385 W) IEEE 802.11ac (VHT20): 25.49 dBm (0.3540 W) IEEE 802.11ac (VHT40): 25.04 dBm (0.3192 W) IEEE 802.11ac (VHT80): 20.56 dBm (0.1138 W) IEEE 802.11ax (HEW20): 26.08 dBm (0.4055 W) IEEE 802.11ax (HEW40): 24.88 dBm (0.3076 W) IEEE 802.11ax (HEW 80): 21.95 dBm (0.1567 W) | | Maximum Output Power for UNII-3
Non-Beamforming | IEEE 802.11a: 25.86 dBm (0.3855 W) IEEE 802.11ac (VHT20): 25.75 dBm (0.3758 W) IEEE 802.11ac (VHT40): 25.85 dBm (0.3846 W) IEEE 802.11ac (VHT80): 23.83 dBm (0.2415 W) IEEE 802.11ax (HEW20): 26.06 dBm (0.4036 W) IEEE 802.11ax (HEW40): 26.38 dBm (0.4345 W) IEEE 802.11ax (HEW80): 24.28 dBm (0.2679 W) | | Maximum Output Power for UNII-1 Beamforming | IEEE 802.11ac (VHT20): 26.25 dBm (0.4217 W) IEEE 802.11ac (VHT40): 24.13 dBm (0.2588 W) IEEE 802.11ac (VHT80): 19.96 dBm (0.0991 W) IEEE 802.11ax (HEW20): 26.15 dBm (0.4121 W) IEEE 802.11ax (HEW40): 23.58 dBm (0.2280 W) IEEE 802.11ax (HEW80): 19.93 dBm (0.0984 W) | | Maximum Output Power for UNII-3 Beamforming | IEEE 802.11ac (VHT20): 26.22 dBm (0.4188 W) IEEE 802.11ac (VHT40): 25.69 dBm (0.3707 W) IEEE 802.11ac (VHT80): 21.11 dBm (0.1291 W) IEEE 802.11ax (HEW20): 26.34 dBm (0.4305 W) IEEE 802.11ax (HEW40): 26.03 dBm (0.4009 W) IEEE 802.11ax (HEW80): 21.26 dBm (0.1337 W) | #### Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual. # 2. Channel List: | IEEE 802.11a
IEEE 802.11ac (VHT20)
IEEE 802.11ax (HEW20): | | IEEE 802.11ac (VHT40)
IEEE 802.11ax (HEW40) | | IEEE 802.11ac (VHT80)
IEEE 802.11ax (HEW80) | | |---|--------------------|--|--------------------|--|--------------------| | UNII-1 | | UNII-1 | | UNII-1 | | | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 36 | 5180 | 38 | 5190 | 42 | 5210 | | 40 | 5200 | 46 | 5230 | | | | 44 | 5220 | | | | | | 48 | 5240 | | | | | | IEEE 802.11a
IEEE 802.11ac (VHT20)
IEEE 802.11ax (HEW20): | | IEEE 802.11ac (VHT40)
IEEE 802.11ax (HEW40) | | IEEE 802.11ac (VHT80)
IEEE 802.11ax (HEW80) | | |---|--------------------|--|--------------------|--|--------------------| | UNII-3 | | UNII-3 | | UNII-3 | | | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 149 | 5745 | 151 | 5755 | 155 | 5775 | | 153 | 5765 | 159 | 5795 | | | | 157 | 5785 | | | | | | 161 | 5805 | | | | | | 165 | 5825 | | | | | 3. Antenna Specification: | Ant. | Brand | P/N | Antenna Type | Connector | Gain (dBi) | Note | |------|------------------|------------|--------------|-----------|------------|--------| | 1 | TP-LINK ° | 3101502560 | Dipole | I-PEX | 4.37 | UNII-1 | | 2 | TP-LINK ° | 3101502559 | Dipole | I-PEX | 4.37 | UNII-1 | | 1 | TP-LINK ° | 3101502560 | Dipole | I-PEX | 5.80 | UNII-3 | | 2 | TP-LINK ° | 3101502559 | Dipole | I-PEX | 5.80 | UNII-3 | Note: This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT}+Array Gain, where Array Gain is as follows: #### 1. For UNII-1 Non-Beamforming function, For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$. So Directional gain = G_{ANT} + Array Gain =10 log (N_{ANT}/ N_{SS}) dB =4.37+10log(2/1)dBi=7.38. Then, the power spectral density limit is 17-(7.38-6)=15.62. For power measurements, Array Gain = 0 dB (N_{ANT} ≤ 4), so the Directional gain=4.37. #### For UNII-3 Non-Beamforming function, For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$. So Directional gain = G_{ANT} + Array Gain =10 log (N_{ANT} / N_{SS}) dB =5.80+10log(2/1)dBi=8.81. Then, the power spectral density limit is 30-(8.81-6)=27.19. For power measurements, Array Gain = 0 dB ($N_{ANT} \le 4$), so the Directional gain=5.80. # 2. For UNII-1 Beamforming function, Beamforming Gain: 3.00 dB. So Directional gain = 4.37+3.00=7.37. Then, output power limit is 30-(7.37-6)=28.63, the power density limit is 17-(7.37-6)=15.63. For UNII-3 Beamforming function, Beamforming Gain: 3.00 dB. So Directional gain = 5.80+3.00=8.80. Then, output power limit is 30-(8.80-6)=27.20, the power density limit is 30-(8.80-6)=27.20 #### 4. Table for Antenna Configuration: | Operating Mode TX Mode | 2TX | | |------------------------|---------------------|--| | IEEE 802.11a | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ac (VHT20) | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ac (VHT40) | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ac (VHT80) | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ax (HEW20) | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ax (HEW40) | V (Ant. 1 + Ant. 2) | | | IEEE 802.11ax (HEW80) | V (Ant. 1 + Ant. 2) | | # 2.2 TEST MODES The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode. | Pretest Mode | Description | |--------------|---| | Mode 1 | TX A Mode / CH36, CH40, CH48 (UNII-1) | | Mode 2 | TX AC (VHT20) Mode / CH36, CH40, CH48 (UNII-1) | | Mode 3 | TX AC (VHT40) Mode / CH38, CH46 (UNII-1) | | Mode 4 | TX AC (VHT80) Mode / CH42 (UNII-1) | | Mode 5 | TX AX (HEW20) Mode / CH36, CH40, CH48 (UNII-1) | | Mode 6 | TX AX (HEW40) Mode / CH38, CH46 (UNII-1) | | Mode 7 | TX AX (HEW80) Mode / CH42 (UNII-1) | | Mode 8 | TX A Mode / CH149,CH157,CH165 (UNII-3) | | Mode 9 | TX AC (VHT20) Mode / CH149,CH157,CH165 (UNII-3) | | Mode 10 | TX AC (VHT40) Mode / CH151,CH159 (UNII-3) | | Mode 11 | TX AC (VHT80) Mode / CH155 (UNII-3) | | Mode 12 | TX AX (HEW20) Mode / CH149,CH157,CH165 (UNII-3) | | Mode 13 | TX AX (HEW40) Mode / CH151,CH159 (UNII-3) | | Mode 14 | TX AX (HEW80) Mode / CH155 (UNII-3) | | Mode 15 | TX A Mode / CH48 (UNII-1) | Following mode(s) was (were) found to be the worst case(s) and selected for the final test. | AC power line conducted emissions test | | | |--|---------------------------|--| | Final Test Mode Description | | | | Mode 15 | TX A Mode / CH48 (UNII-1) | | | Radiated emissions test – Below 1G | | | | |------------------------------------|---------------------------|--|--| | Final Test Mode | Description | | | | Mode 15 | TX A Mode / CH48 (UNII-1) | | | | Radiated emissions test _ Above 1G_ Non-Beamforming | | | | |---|---|--|--| | Final Test Mode | Description | | | | Mode 1 | TX A Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 2 | TX AC (VHT20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 3 | TX AC (VHT40) Mode / CH38, CH46 (UNII-1) | | | | Mode 4 | TX AC (VHT80) Mode / CH42 (UNII-1) | | | | Mode 5 | TX AX (HEW20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 6 | TX AX (HEW40) Mode / CH38, CH46 (UNII-1) | | | | Mode 7 | TX AX (HEW80) Mode / CH42 (UNII-1) | | | | Mode 8 | TX A Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 9 | TX AC (VHT20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 10 | TX AC (VHT40) Mode / CH151,CH159 (UNII-3) | | | | Mode 11 | TX AC (VHT80) Mode / CH155 (UNII-3) | | | | Mode 12 | TX AX (HEW20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 13 | TX AX (HEW40) Mode / CH151,CH159 (UNII-3) | | | | Mode 14 | TX AX (HEW80) Mode / CH155 (UNII-3) | | | | Radiated emissions test _ Above 1G_ Beamforming | | | | |---
---|--|--| | Final Test Mode | Description | | | | Mode 2 | TX AC (VHT20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 3 | TX AC (VHT40) Mode / CH38, CH46 (UNII-1) | | | | Mode 4 | TX AC (VHT80) Mode / CH42 (UNII-1) | | | | Mode 5 | TX AX (HEW20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 6 | TX AX (HEW40) Mode / CH38, CH46 (UNII-1) | | | | Mode 7 | TX AX (HEW80) Mode / CH42 (UNII-1) | | | | Mode 9 | TX AC (VHT20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 10 | TX AC (VHT40) Mode / CH151,CH159 (UNII-3) | | | | Mode 11 | TX AC (VHT80) Mode / CH155 (UNII-3) | | | | Mode 12 | TX AX (HEW20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 13 | TX AX (HEW40) Mode / CH151,CH159 (UNII-3) | | | | Mode 14 | TX AX (HEW80) Mode / CH155 (UNII-3) | | | | | Conducted test _ Non-Beamforming | | | | |-----------|---|--|--|--| | Test Mode | Description | | | | | Mode 1 | TX A Mode / CH36, CH40, CH48 (UNII-1) | | | | | Mode 2 | TX AC (VHT20) Mode / CH36, CH40, CH48 (UNII-1) | | | | | Mode 3 | TX AC (VHT40) Mode / CH38, CH46 (UNII-1) | | | | | Mode 4 | TX AC (VHT80) Mode / CH42 (UNII-1) | | | | | Mode 5 | TX AX (HEW20) Mode / CH36, CH40, CH48 (UNII-1) | | | | | Mode 6 | TX AX (HEW40) Mode / CH38, CH46 (UNII-1) | | | | | Mode 7 | TX AX (HEW80) Mode / CH42 (UNII-1) | | | | | Mode 8 | TX A Mode / CH149,CH157,CH165 (UNII-3) | | | | | Mode 9 | TX AC (VHT20) Mode / CH149,CH157,CH165 (UNII-3) | | | | | Mode 10 | TX AC (VHT40) Mode / CH151,CH159 (UNII-3) | | | | | Mode 11 | TX AC (VHT80) Mode / CH155 (UNII-3) | | | | | Mode 12 | TX AX (HEW20) Mode / CH149,CH157,CH165 (UNII-3) | | | | | Mode 13 | TX AX (HEW40) Mode / CH151,CH159 (UNII-3) | | | | | Mode 14 | TX AX (HEW80) Mode / CH155 (UNII-3) | | | | | Conducted test _ Beamforming | | | | |------------------------------|---|--|--| | Test Mode | Description | | | | Mode 2 | TX AC (VHT20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 3 | TX AC (VHT40) Mode / CH38, CH46 (UNII-1) | | | | Mode 4 | TX AC (VHT80) Mode / CH42 (UNII-1) | | | | Mode 5 | TX AX (HEW20) Mode / CH36, CH40, CH48 (UNII-1) | | | | Mode 6 | TX AX (HEW40) Mode / CH38, CH46 (UNII-1) | | | | Mode 7 | TX AX (HEW80) Mode / CH42 (UNII-1) | | | | Mode 9 | TX AC (VHT20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 10 | TX AC (VHT40) Mode / CH151,CH159 (UNII-3) | | | | Mode 11 | TX AC (VHT80) Mode / CH155 (UNII-3) | | | | Mode 12 | TX AX (HEW20) Mode / CH149,CH157,CH165 (UNII-3) | | | | Mode 13 | TX AX (HEW40) Mode / CH151,CH159 (UNII-3) | | | | Mode 14 | TX AX (HEW80) Mode / CH155 (UNII-3) | | | #### Note: - (1) For radiated emission below 1 GHz test, the IEEE 802.11a is found to be the worst case and recorded. - (2) For radiated emission above 1 GHz test, 1GHz~26.5GHz and 26.5GHz~40GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB. - (3) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded. - (4) VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40. # 2.3 PARAMETERS OF TEST SOFTWARE Non-Beamforming | Test Software | accessMTool v3.1.0.3 | | | | |-----------------------|----------------------|------|------|--| | Test Frequency (MHz) | 5180 | 5200 | 5240 | | | IEEE 802.11a | 79 | 93 | 93 | | | IEEE 802.11ac (VHT20) | 81 | 83 | 88 | | | IEEE 802.11ax (HEW20) | 82 | 91 | 91 | | | Test Frequency (MHz) | 5190 | 5230 | | | | IEEE 802.11ac (VHT40) | 74 | 90 | | | | IEEE 802.11ax (HEW40) | 73 | 87 | | | | Test Frequency (MHz) | 5210 | | | | | IEEE 802.11ac (VHT80) | 71 | | | | | IEEE 802.11ax (HEW80) | 74 | | | | | Test Software | accessMTool v3.1.0.3 | | | |-----------------------|----------------------|------|------| | Test Frequency (MHz) | 5745 | 5785 | 5825 | | IEEE 802.11a | 95 | 94 | 89 | | IEEE 802.11ac (VHT20) | 93 | 93 | 94 | | IEEE 802.11ax (HEW20) | 93 | 96 | 96 | | Test Frequency (MHz) | 5755 | 5795 | | | IEEE 802.11ac (VHT40) | 97 | 97 | | | IEEE 802.11ax (HEW40) | 94 | 97 | | | Test Frequency (MHz) | 5775 | | | | IEEE 802.11ac (VHT80) | 83 | | | | IEEE 802.11ax (HEW80) | 85 | | | Beamforming | Test Software | accessMTool v3.1.0.3 | | | |-----------------------|----------------------|------|------| | Test Frequency (MHz) | 5180 | 5200 | 5240 | | IEEE 802.11ac (VHT20) | 77 | 84 | 94 | | IEEE 802.11ax (HEW20) | 75 | 84 | 93 | | Test Frequency (MHz) | 5190 | 5230 | | | IEEE 802.11ac (VHT40) | 64 | 84 | | | IEEE 802.11ax (HEW40) | 64 | 82 | | | Test Frequency (MHz) | 5210 | | | | IEEE 802.11ac (VHT80) | 68 | | | | IEEE 802.11ax (HEW80) | 67 | | | | Test Software | accessMTool v3.1.0.3 | | | |-----------------------|----------------------|------|------| | Test Frequency (MHz) | 5745 | 5785 | 5825 | | IEEE 802.11ac (VHT20) | 95 | 96 | 98 | | IEEE 802.11ax (HEW20) | 95 | 94 | 97 | | Test Frequency (MHz) | 5755 | 5795 | | | IEEE 802.11ac (VHT40) | 93 | 97 | | | IEEE 802.11ax (HEW40) | 91 | 97 | | | Test Frequency (MHz) | 5775 | | | | IEEE 802.11ac (VHT80) | 75 | | | | IEEE 802.11ax (HEW80) | 74 | | | #### 2.4 DUTY CYCLE If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor. Date: 15.JAN.2020 15:55:26 Duty cycle = 2.068 ms / 2.178 ms = 94.95%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.23$ Date: 15.JAN.2020 15:59:02 Duty cycle = 0.500 ms / 0.530 ms = 94.34% Duty Factor = 10 log(1 / Duty cycle) = 0.25 Date: 15.JAN.2020 15:57:27 Duty cycle = 0.995 ms / 1.025 ms = 97.07%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.13$ Date: 15.JAN.2020 15:59:34 Duty cycle = 0.260 ms / 0.290 ms = 89.66%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.47$ Date: 15.JAN.2020 16:01:10 Duty cycle = 0.795 ms / 0.825 ms = 96.36%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.16$ **IEEE 802.11ax (HEW80)** # Date: 15.JAN.2020 16:02:02 Duty cycle = 0.240 ms / 0.275 ms = 87.27%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.59$ #### NOTE: For IEEE 802.11a, IEEE 802.11n (HT20), IEEE 802.11ac (VHT20) and IEEE 802.11ax (HEW20): For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz (Duty cycle < 98%). For IEEE 802.11n (HT40), IEEE 802.11ac (VHT40) and IEEE 802.11ax (HEW40): For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz (Duty cycle < 98%). For IEEE 802.11ac (VHT80) and IEEE 802.11ax (HEW80): For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 kHz (Duty cycle < 98%). Date: 15.JAN.2020 16:01:37 Duty cycle = 0.435 ms / 0.470 ms = 92.55%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.34$ # 2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED # 2.6 SUPPORT UNITS | Item | Equipment | Brand | Model No. | Series No. | |------|-----------|-------|------------------|------------| | Α | Notebook | Dell | Inspiron 15-7559 | N/A | | Item | Cable Type | Shielded Type | Ferrite Core | Length | |------|------------|---------------|--------------|--------| | 1 | DC Cable | NO | NO | 1.5m | | 2 | RJ45 Cable | NO | NO | 10m | #### 3. AC POWER LINE CONDUCTED EMISSIONS TEST #### **3.1 LIMIT** | Frequency | Limit (dBµV) | | |-------------|--------------|-----------| | (MHz) | Quasi-peak | Average | | 0.15 - 0.50 | 66 to 56* | 56 to 46* | | 0.50 - 5.0 | 56 | 46 | | 5.0 - 30.0 | 60 | 50 | #### NOTE: - (1) The tighter limit applies at the band edges. - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. The following table is the setting of the receiver | Receiver Parameter | Setting | |--------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 KHz | #### 3.2 TEST PROCEDURE - a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN at least 80 cm from nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item -EUT Test Photos. #### 3.3 DEVIATION FROM TEST STANDARD No deviation #### 3.4 TEST SETUP #### 3.5 EUT OPERATION CONDITIONS The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. The EUT was programmed to be in continuously transmitting/TX mode. #### 3.6 TEST RESULTS Please refer to the APPENDIX A. #### 4. RADIATED EMISSIONS TEST #### **4.1 LIMIT** In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz) | ENVITO OF TO ABILATED ENVIOURNE | MERCOREMENT (ORIGINAL TO TOOCH | 12) | |---------------------------------|--------------------------------|----------------------| | Frequency | Field Strength | Measurement Distance | | (MHz) |
(microvolts/meter) | (meters) | | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | #### LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS | Frequency | EIRP Limit | Equivalent Field Strength at 3m | |-----------|---------------|---------------------------------| | (MHz) | (dBm/MHz) | (dBµV/m) | | | -27 NOTE (2) | 68.3 | | 5725-5850 | 10 NOTE (2) | 105.3 | | 3725-5650 | 15.6 NOTE (2) | 110.9 | | | 27 NOTE (2) | 122.3 | #### NOTE: (1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $$E = \frac{1000000\sqrt{30P}}{2}$$ µV/m, where P is the eirp (Watts) (2) According to 15.407(b)(4)(i), all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. #### 4.2 TEST PROCEDURE - a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz) - b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz) - c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function). - e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. - f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. - g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz) - h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz) - i. For the actual test configuration, please refer to the related Item –EUT Test Photos. #### 4.3 DEVIATION FROM TEST STANDARD No deviation # 4.4 TEST SETUP #### 9 kHz to 30 MHz #### 30 MHz to 1 GHz Amp. #### 4.5 EUT OPERATION CONDITIONS The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing. Receiver #### 4.6 TEST RESULTS - 9 KHZ to 30 MHZ Please refer to the APPENDIX B #### Remark: - (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported. - (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB). - (3) Limit line = specific limits (dBuV) + distance extrapolation factor. #### 4.7 TEST RESULTS - 30 MHz TO 1000 MHz Please refer to the APPENDIX C. # 4.8 TEST RESULTS - ABOVE 1000 MHz Please refer to the APPENDIX D. #### Remark: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test. #### **5. BANDWIDTH TEST** #### **5.1 LIMIT** | FCC Part15, Subpart E (15.407) | | | | |---|-----------------|-----------------|-----------| | Section Test Item Limit Frequency Range (MHz) | | | | | 15.407(a) | 26 dB Bandwidth | - | 5150-5250 | | 15.407(e) | 6 dB Bandwidth | Minimum 500 kHz | 5725-5850 | #### **5.2 TEST PROCEDURE** - a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below - b. Spectrum Setting: #### For UNII-1: | Spectrum Parameter | Setting | |--------------------|-------------------------------------| | Attenuation | Auto | | Span Frequency | > 26 dB Bandwidth | | RBW | 300 kHz (Bandwidth 20 MHz) | | INDVV | 1 MHz (Bandwidth 40 MHz and 80 MHz) | | VBW | 1 MHz (Bandwidth 20 MHz) | | VDVV | 3 MHz (Bandwidth 40 MHz and 80 MHz) | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### For UNII-3: | Spectrum Parameter | Setting | |--------------------|----------------| | Attenuation | Auto | | Span Frequency | 6 dB Bandwidth | | RBW | 100 kHz | | VBW | 300 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | c. Measured the spectrum width with power higher than 26 dB / 6dB below carrier #### **5.3 TEST PROCEDURE** No deviation. #### **5.4 TEST SETUP** #### 5.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. #### **5.6 TEST RESULTS** Please refer to the APPENDIX E. #### 6. MAXIMUM OUTPUT POWER TEST #### **6.1 LIMIT** | FCC Part15, Subpart E (15.407) | | | | | | |--------------------------------|----------------------|--|--------------------------|--|--| | Section | Test Item | Limit | Frequency Range
(MHz) | | | | 15.407(a) | Maximum Output Power | AP device: 1 Watt (30 dBm)
Client device: 250 mW (24 dBm) | 5150-5250 | | | | , , | • | 1 Watt (30dBm) | 5725-5850 | | | #### Note: a. For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). #### **6.2 TEST PROCEDURE** - a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below. - b. Test test was performed in accordance with method of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. #### **6.3 DEVIATION FROM STANDARD** No deviation. #### **6.4 TEST SETUP** | EUT | Power Meter | |-----|----------------| | | , s,, s, motor | #### 6.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. #### **6.6 TEST RESULTS** Please refer to the APPENDIX F. #### 7. POWER SPECTRAL DENSITY TEST #### **7.1 LIMIT** | FCC Part15, Subpart E (15.407) | | | | | | |--------------------------------|------------------------|--|--------------------------|--|--| | Section | Test Item | Limit | Frequency Range
(MHz) | | | | 15.407(a) | Power Spectral Density | AP device: 17 dBm/MHz
Client device: 11 dBm/MHz | 5150-5250 | | | | | | 30 dBm/500 kHz | 5725-5850 | | | #### 7.2 TEST PROCEDURE a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. b. Spectrum Setting | Spectrum Parameter | Setting | |--------------------|--| | Attenuation | Auto | | Span Frequency | Encompass the entire emissions bandwidth (EBW) of the signal | | RBW | = 1 MHz. | | VBW | ≥ 3 MHz. | | Detector | RMS | | Trace average | 100 trace | | Sweep Time | Auto | #### Note: - For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v02r01, section II.F.5., it is acceptable to set RBW at 1 MHz and VBW at 3 MHz if the spectrum analyzer does not have 500 kHz RBW. - 2. The value measured with RBW=1 MHz is to be added with 10log(500 kHz/1 MHz) which is -3 dB. For example, if the measured value is +10dBm using RBW=1 MHz (that is +10 dBm/MHz), then the converted value will be +7dBm/500kHz. #### 7.3 DEVIATION FROM STANDARD No deviation. #### 7.4 TEST SETUP #### 7.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. #### 7.6 TEST RESULTS Please refer to the APPENDIX G. #### **8. FREQUENCY STABILITY MEASUREMENT** #### **8.1 LIMIT** | | FCC Part15, Subpart E (15.407) | | | | | | |-----------|--------------------------------|--|-----------|--|--|--| | Section | Section Test Item Limit | | | | | | | | | An emission is maintained within | 5150-5250 | | | | | 15.407(g) | Frequency Stability | the band of operation under all conditions of normal operation as specified in the users manual. | 5725-5850 | | | | #### **8.2 TEST PROCEDURE** a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below. b. Spectrum Setting: | Spectrum Parameter | Setting | |--------------------|--| | Attenuation | Auto | | Span Frequency | Entire absence of modulation emissions bandwidth | | RBW | 10 kHz | | VBW | 10 kHz | | Sweep Time | Auto | - c. The test extreme voltage is
to change the primary supply voltage from 85 to 115 percent of the nominal value. - d. User manual temperature is 0°C~40°C. #### 8.3 DEVIATION FROM STANDARD No deviation. # 8.4 TEST SETUP #### 8.5 EUT OPERATION CONDITIONS The EUT was programmed to be in continuously transmitting mode. #### **8.6 TEST RESULTS** Please refer to the APPENDIX H. # 9. MEASUREMENT INSTRUMENTS LIST | | AC Power Line Conducted Emissions | | | | | | | |------|-----------------------------------|--------------|--------------------------|------------|------------------|--|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | | 1 | EMI Test Receiver | R&S | ESCI | 100382 | Feb. 28, 2021 | | | | 2 | LISN | EMCO | 3816/2 | 52765 | Mar. 01, 2021 | | | | 3 | TWO-LINE
V-NETWORK | R&S | ENV216 | 101447 | Feb. 28, 2021 | | | | 4 | 50Ω Terminator | SHX | TF5-3 | 15041305 | Mar. 01, 2021 | | | | 5 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | | 6 | Cable | N/A | RG223 | 12m | Mar. 10, 2021 | | | | 7 | 643 Shield Room | ETS | 6*4*3m | N/A | N/A | | | | | Radiated Emissions - 9 kHz to 30 MHz | | | | | | | |------|--------------------------------------|--------------|--------------------------|------------|------------------|--|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | | 1 | Antenna | EM | EM-6876-1 | 230 | Apr. 16, 2021 | | | | 2 | Cable | N/A | RG 213/U | N/A | May 29, 2021 | | | | 3 | EMI Test Receiver | R&S | ESCI | 100895 | Feb. 28, 2021 | | | | 4 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | | 5 | 966 Chambe Room | RM | 9*6*6m | N/A | Jul. 25, 2021 | | | | | Radiated Emissions - 30 MHz to 1 GHz | | | | | | |------|--------------------------------------|--------------|--------------------------------|-------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | Antenna | Schwarzbeck | VULB9160 | 9160-3232 | Mar. 09, 2021 | | | 2* | Amplifier | HP | 8447D | 2944A09673 | Aug. 11, 2021 | | | 3 | Receiver | Agilent | N9038A | MY52130039 | Jul. 25, 2021 | | | 4 | Cable | emci | LMR-400(30MHz-1
GHz)(8m+5m) | N/A | May 22, 2021 | | | 5 | Controller | CT | SC100 | N/A | N/A | | | 6 | Controller | MF | MF-7802 | MF780208416 | N/A | | | 7 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | 8 | 966 Chambe Room | RM | 9*6*6m | N/A | Jul. 25, 2021 | | | | Radiated Emissions - Above 1 GHz | | | | | | |------|---|-------------------|--------------------------|---------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | Double Ridged Guide
Antenna | ETS | 3115 | 75789 | Mar. 09, 2020 | | | 2 | Broad-Band Horn
Antenna | Schwarzbeck | BBHA 9170 | 9170319 | Jun. 23, 2020 | | | 3 | Amplifier | Agilent | 8449B | 3008A02333 | Mar. 10, 2020 | | | 4 | Microwave
Preamplifier With
Adaptor | EMC
INSTRUMENT | EMC2654045 | 980039 & HA01 | Mar. 10, 2020 | | | 5 | Receiver | Agilent | N9038A | MY52130039 | Aug. 03, 2020 | | | 6 | Controller | CT | SC100 | N/A | N/A | | | 7 | Controller | MF | MF-7802 | MF780208416 | N/A | | | 8 | Cable | mitron | B10-01-01-12M | 18072744 | Jun. 29, 2020 | | | 9 | Measurement
Software | Farad | EZ-EMC
Ver.NB-03A1-01 | N/A | N/A | | | 10 | Band Reject Filter | Micro-Tronics | BRC50705-01 | 10 | Feb. 28, 2021 | | | 11 | Band Reject Filter | Micro-Tronics | BRC50704-01 | 8 | Feb. 28, 2021 | | | 12 | 966 Chambe Room | RM | 9*6*6m | N/A | Jul. 25, 2021 | | | Bandwidth & Power Spectral Density | | | | | | | |------------------------------------|--------------------------|--------------|----------|------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | EXA Spectrum
Analyzer | Agilent | N9010A | MY50520044 | Mar. 01, 2021 | | | 2 | Spectrum Analyzer | R&S | FSP40 | 100185 | Aug. 03, 2020 | | | 3 | RF Cable | Tongkaichuan | N/A | N/A | N/A | | | 4 | DC Block | Mini | N/A | N/A | N/A | | | | Maximum Output Power | | | | | | |------|-----------------------|--------------|----------|------------|------------------|--| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | | 1 | Peak Power Analyzer | Keysight | 8990B | MY51000506 | Aug. 07, 2021 | | | 2 | Wideband power sensor | Keysight | N1923A | MY58310004 | Jul. 25, 2021 | | | 3 | Attenuator | WOKEN | 6SM3502 | VAS1214NL | Feb. 11, 2021 | | | 4 | RF Cable | Tongkaichuan | N/A | N/A | N/A | | | Frequency Stability | | | | | | |---------------------|--------------------------|--------------|----------|-------------|------------------| | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | 1 | Spectrum Analyzer | R&S | FSP40 | 100185 | Aug. 03, 2020 | | 2 | Precision Oven
Tester | Bell | BTH-50C | 20170306001 | Mar. 10, 2020 | | 3 | RF Cable | Tongkaichuan | N/A | N/A | N/A | | 4 | DC Block | Mini | N/A | N/A | N/A | Remark: "N/A" denotes no model name, serial no. or calibration specified. [&]quot;*" calibration period of equipment list is three year. Except * item, all calibration period of equipment list is one year. # **10. EUT TEST PHOTOS** # **AC Power Line Conducted Emissions Test Photos** # **Radiated Emissions Test Photos** 9 kHz to 30 MHz # **Radiated Emissions Test Photos** 30 MHz to 1 GHz # Radiated Emissions Test Photos | APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | |--| No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|--------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0.1590 | 38.15 | 9.73 | 47.88 | 65.52 | -17.64 | peak | | | 2 | 0.1950 | 36.74 | 9.90 | 46.64 | 63.82 | -17.18 | peak | | | 3 | 0.5235 | 27.81 | 9.95 | 37.76 | 56.00 | -18.24 | peak | | | 4 | 4.8660 | 32.98 | 10.31 | 43.29 | 56.00 | -12.71 | peak | | | 5 * | 5.5095 | 43.64 | 10.37 | 54.01 | 60.00 | -5.99 | peak | | | 6 | 5.5095 | 21.30 | 10.37 | 31.67 | 50.00 | -18.33 | AVG | | | 7 | 9.3570 | 29.08 | 10.65 | 39.73 | 60.00 | -20.27 | peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. - (3) The test result has included the cable loss. Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|---------|------------------|-------------------|------------------|-------|--------|----------|---------| | | MHz | dBuV | dB | dBuV | dBuV | dB | Detector | Comment | | 1 | 0.1770 | 38.74 | 9.92 | 48.66 | 64.63 | -15.97 | peak | | | 2 | 0.5370 | 34.50 | 10.15 | 44.65 | 56.00 | -11.35 | peak | | | 3 | 0.5370 | 24.90 | 10.15 | 35.05 | 46.00 | -10.95 | AVG | | | 4 | 1.0050 | 28.32 | 10.30 | 38.62 | 56.00 | -17.38 | peak | | | 5 | 4.7760 | 37.05 | 10.65 | 47.70 | 56.00 | -8.30 | peak | | | 6 | 4.7760 | 20.70 | 10.65 | 31.35 | 46.00 | -14.65 | AVG | | | 7 * | 5.5275 | 42.00 | 10.71 | 52.71 | 60.00 | -7.29 | QP | | | 8 | 5.5275 | 27.50 | 10.71 | 38.21 | 50.00 | -11.79 | AVG | | | 9 | 22.8525 | 31.39 | 11.30 | 42.69 | 60.00 | -17.31 | peak | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. - (3) The test result has included the cable loss. | APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ | |--| Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | | | Measure-
ment | | Margin | | | |---------|--------|-------|-------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 0.0185 | 49.24 | 13.68 | 62.92 | 122.26 | -59.34 | AVG | | | 2 | 0.0360 | 33.96 | 12.79 | 46.75 | 116.48 | -69.73 | AVG | | | 3 | 0.0810 | 30.51 | 12.61 | 43.12 | 109.44 | -66.32 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|--------|------------------|-------------------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 1.7716 | 40.82 | 11.42 | 52.24 | 69.54 | -17.30 | QP | | | 2 | 2.2367 | 41.13 | 11.19 | 52.32 | 69.54 | -17.22 | QP | | | 3 * | 5.9925 | 41.17 | 11.18 | 52.35 | 69.54 | -17.19 | QP | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|--------|------------------|-------------------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 0.0186 | 47.87 | 13.65 | 61.52 | 122.21 | -60.69 | AVG | | | 2 | 0.0518 | 30.02 | 12.43 | 42.45 | 113.32 | -70.87 | AVG | | | 3 | 0.0781 | 26.65 | 12.59 | 39.24 | 109.75 | -70.51 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | | | Measure-
ment | | Margin | | | |---------|--------|-------|-------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 0.3303 | 32.15 | 12.44 | 44.59 | 97.23 | -52.64 | QP | | | 2 | 0.8131 | 33.35 | 11.87 | 45.22 | 69.40 | -24.18 | QP | | | 3 * |
3.3281 | 34.69 | 10.85 | 45.54 | 69.54 | -24.00 | QP | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1 GHZ | |--| | | | | | | | | | | | | | | | | Test Mode: TX A Mode Channel 48 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|---------|------------------|-------------------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 31.940 | 42.63 | -14.44 | 28.19 | 40.00 | -11.81 | peak | | | 2 | 119.240 | 47.82 | -12.85 | 34.97 | 43.50 | -8.53 | peak | | | 3 | 203.630 | 41.79 | -14.95 | 26.84 | 43.50 | -16.66 | peak | | | 4 | 484.930 | 36.51 | -7.37 | 29.14 | 46.00 | -16.86 | peak | | | 5 | 559.620 | 38.13 | -6.53 | 31.60 | 46.00 | -14.40 | peak | | | 6 * | 651.770 | 42.16 | -4.23 | 37.93 | 46.00 | -8.07 | peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. Test Mode: TX A Mode Channel 48 #### Horizontal 80.0 dBuV/m 70 60 50 40 30 20 10 0.0 1000.00 MHz 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---------|---------|------------------|-------------------|------------------|--------|--------|----------|---------| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 31.940 | 33.28 | -14.44 | 18.84 | 40.00 | -21.16 | peak | | | 2 | 116.330 | 47.79 | -13.28 | 34.51 | 43.50 | -8.99 | peak | | | 3 | 240.490 | 37.81 | -13.57 | 24.24 | 46.00 | -21.76 | peak | | | 4 | 320.030 | 36.06 | -10.68 | 25.38 | 46.00 | -20.62 | peak | | | 5 | 484.930 | 36.45 | -7.37 | 29.08 | 46.00 | -16.92 | peak | | | 6 * | 651.770 | 46.03 | -4.23 | 41.80 | 46.00 | -4.20 | peak | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. | APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ | |---| | | | | | | | | | | | | | | | | | | ## **Non-Beamforming** | П | | l | |---|-----------------|---------------------------| | П | Orthogonal Axis | X | | П | 3 | | | l | Test Mode | UNII-1_TX A Mode 5180 MHz | #### **Vertical** | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 57. 93 | 14. 32 | 72. 25 | 74.00 | -1.75 | Peak | | | 2 | 5150. 0000 | 39. 38 | 14. 32 | 53. 70 | 54.00 | -0. 30 | AVG | | | 3 * | 5184.9000 | 101. 30 | 14.40 | 115. 70 | 68.30 | 47.40 | Peak | No Limit | | 4 | 5185. 4000 | 87. 25 | 14.40 | 101.65 | 999.00 | -897.35 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5180 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------|--| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 * | 10361, 257 | 0 38, 45 | 11. 30 | 49. 75 | 68, 30 | -18, 55 | Peak | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5180 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 43.93 | 14. 32 | 58. 25 | 74.00 | -15. 75 | Peak | | | 2 | 5150.0000 | 31. 83 | 14. 32 | 46. 15 | 54.00 | -7.85 | AVG | | | 3 * | 5174.8000 | 89. 18 | 14. 37 | 103. 55 | 68.30 | 35. 25 | Peak | No Limit | | 4 | 5179. 2000 | 80. 12 | 14. 38 | 94. 50 | 999.00 | -904.50 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5180 MHz | | N | lo. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |---|-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | * | 10353, 8810 | 37. 08 | 11, 29 | 48. 37 | 68, 30 | -19, 93 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Ш | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX A Mode 5200 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 52. 20 | 14. 32 | 66. 52 | 74.00 | -7.48 | Peak | | | 2 | 5150.0000 | 39. 46 | 14. 32 | 53. 78 | 54.00 | -0. 22 | AVG | | | 3 | 5195. 2000 | 94.88 | 14.42 | 109.30 | 999.00 | -889.70 | AVG | No Limit | | 4 * | 5205. 2000 | 105.68 | 14. 45 | 120. 13 | 68. 30 | 51.83 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | i | | |-----------------|---------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX A Mode 5200 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10397, 3120 | 40. 79 | 11. 36 | 52. 15 | 68. 30 | -16. 15 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5200 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5199. 0000 | 83. 21 | 14.43 | 97.64 | 999.00 | -901. 36 | AVG | No Limit | | 2 * | 5204. 2000 | 91. 99 | 14. 44 | 106. 43 | 68. 30 | 38. 13 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5200 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10402, 5470 | 38, 13 | 11. 37 | 49. 50 | 68. 30 | -18, 80 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | ш | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX A Mode 5240 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5235. 3000 | 94.44 | 14. 52 | 108.96 | 999.00 | -890. 04 | AVG | No Limit | | 2 * | 5236. 2000 | 106. 26 | 14. 52 | 120.78 | 68.30 | 52.48 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-1_TX A Mode 5240 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10480. 2230 | 41.21 | 11. 50 | 52.71 | 68.30 | -15. 59 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | l | | |-----------------|---------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX A Mode 5240 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5239. 3000 | 91.96 | 14. 53 | 106. 49 | 68.30 | 38. 19 | Peak | No Limit | | 2 | 5244. 1000 | 80. 16 | 14. 54 | 94.70 | 999.00 | -904.30 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | l | Test Mode | UNII-1_TX A Mode 5240 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------
---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10481, 2580 | 37. 64 | 11. 50 | 49. 14 | 68. 30 | -19, 16 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5745 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 56. 47 | 15. 65 | 72. 12 | 109.40 | -37. 28 | Peak | | | 2 | 5725. 0000 | 74.73 | 15. 68 | 90.41 | 122. 20 | -31. 79 | Peak | | | 3 * | 5750. 6000 | 101. 09 | 15. 74 | 116.83 | 122. 20 | -5. 37 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | x | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5745 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11490. 2539 | 38. 84 | 12. 07 | 50. 91 | 74.00 | -23.09 | Peak | | | 2 * | 11490.6620 | 27.81 | 12. 07 | 39.88 | 54.00 | -14. 12 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5745 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 38. 65 | 15. 65 | 54. 30 | 109.40 | -55. 10 | Peak | | | 2 | 5725. 0000 | 43.97 | 15. 68 | 59.65 | 122. 20 | -62. 55 | Peak | | | 3 * | 5748. 4000 | 87. 29 | 15. 73 | 103. 02 | 122. 20 | -19. 18 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5745 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11490. 2650 | 34.90 | 12. 07 | 46. 97 | 74.00 | -27.03 | Peak | | | 2 * | 11491. 4380 | 23. 75 | 12. 07 | 35. 82 | 54.00 | -18. 18 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5785 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5786, 0000 | 100.39 | 15, 82 | 116, 21 | 122, 20 | -5. 99 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | 1 | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11571. 2699 | 24.43 | 12. 15 | 36. 58 | 54.00 | -17.42 | AVG | | | 2 | 11572. 2220 | 36. 54 | 12. 15 | 48. 69 | 74.00 | -25. 31 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | 1 | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5792.6000 | 85. 86 | 15.84 | 101.70 | 122. 20 | -20. 50 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | ١. | | | |----|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11565. 1700 | 21. 21 | 12. 14 | 33. 35 | 54.00 | -20.65 | AVG | | | 2 | 11573. 0199 | 33. 61 | 12. 15 | 45. 76 | 74.00 | -28. 24 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | 1 | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5825 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5830.6000 | 100.30 | 15. 93 | 116. 23 | 122. 20 | -5. 97 | Peak | No Limit | | 2 | 5850.0000 | 57.09 | 15. 97 | 73.06 | 122. 20 | -49. 14 | Peak | | | 3 | 5860. 0000 | 50. 01 | 16. 00 | 66. 01 | 109.40 | -43. 39 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5825 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11649.8620 | 38. 97 | 12. 23 | 51. 20 | 74.00 | -22.80 | Peak | | | 2 * | 11651. 5210 | 27. 21 | 12. 23 | 39. 44 | 54.00 | -14. 56 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | 1 | | | |---|-----------------|---------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX A Mode 5825 MHz | | No. | Freq. | Level | Factor | ment | Limit | Margin | | | |-----|-----------|--------|--------|--------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5831.4250 | 82.80 | 15. 93 | 98. 73 | 122. 20 | -23.47 | Peak | No Limit | | 2 | 5850.0000 | 44. 50 | 15. 97 | 60. 47 | 122. 20 | -61.73 | Peak | | | 3 | 5860.0000 | 40.09 | 16. 00 | 56. 09 | 109.40 | -53. 31 | Peak | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|---------------------------| | Test Mode | UNII-3_TX A Mode 5825 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11650. 1200 | 21.41 | 12. 23 | 33.64 | 54.00 | -20. 36 | AVG | | | 2 | 11652.7560 | 34.06 | 12. 23 | 46. 29 | 74.00 | -27.71 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5180 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 54.72 | 14. 32 | 69.04 | 74.00 | -4.96 | Peak | | | 2 | 5150.0000 | 38. 44 | 14. 32 | 52. 76 | 54.00 | -1.24 | AVG | | | 3 * | 5175. 2000 | 89.82 | 14. 38 | 104. 20 | 68.30 | 35. 90 | Peak | No Limit | | 4 | 5185. 0000 | 100. 90 | 14. 40 | 115. 30 | 999.00 | -883. 70 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5180 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10361.4980 | 37.70 | 11. 30 | 49.00 | 68.30 | -19. 30 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | | I | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX AC (VHT20) Mode 5180 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment |
Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 43.60 | 14. 32 | 57. 92 | 74.00 | -16. 08 | Peak | | | 2 | 5150.0000 | 32. 21 | 14. 32 | 46. 53 | 54.00 | -7.47 | AVG | | | 3 | 5177. 2000 | 79. 70 | 14. 38 | 94.08 | 999.00 | -904.92 | AVG | No Limit | | 4 * | 5182. 2000 | 89. 92 | 14. 39 | 104. 31 | 68.30 | 36. 01 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor. (2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT20) Mode 5180 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10364.8800 | 33. 66 | 11. 31 | 44. 97 | 68.30 | -23. 33 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5200 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 52. 29 | 14. 32 | 66. 61 | 74.00 | -7. 39 | Peak | | | 2 | 5150.0000 | 38. 56 | 14. 32 | 52. 88 | 54.00 | -1. 12 | AVG | | | 3 * | 5193. 4000 | 101. 07 | 14.42 | 115. 49 | 68.30 | 47. 19 | Peak | No Limit | | 4 | 5198. 2000 | 92.88 | 14. 43 | 107.31 | 999.00 | -891.69 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5200 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10400, 2450 | 38, 58 | 11. 37 | 49, 95 | 68. 30 | -18, 35 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5200 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5199.6000 | 91.74 | 14.43 | 106. 17 | 68.30 | 37.87 | Peak | No Limit | | 2 | 5202. 2000 | 82.40 | 14.44 | 96. 84 | 999.00 | -902. 16 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor. (2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5200 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10402, 1900 | 37. 33 | 11. 37 | 48. 70 | 68. 30 | -19. 60 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT20) Mode 5240 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|--------|--------|---------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5238. 2000 | 105.67 | 14. 52 | 120. 19 | 68.30 | 51.89 | Peak | No Limit | | 2 | 5243. 4000 | 93. 53 | 14. 54 | 108. 07 | 999.00 | -890. 93 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT20) Mode 5240 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|---------|----------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 10481, 2460 | 39, 17 | 11. 50 | 50, 67 | 999, 00 | -948, 33 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT20) Mode 5240 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5242. 2000 | 91. 76 | 14. 53 | 106. 29 | 68.30 | 37. 99 | Peak | No Limit | | 2 | 5244.6000 | 82. 78 | 14. 54 | 97. 32 | 999.00 | -901.68 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT20) Mode 5240 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10481, 2539 | 38. 68 | 11. 50 | 50. 18 | 68. 30 | -18. 12 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | | I | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX AC (VHT40) Mode 5190 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 55. 69 | 14. 32 | 70.01 | 74.00 | -3.99 | Peak | | | 2 | 5150.0000 | 39. 32 | 14. 32 | 53.64 | 54.00 | -0.36 | AVG | | | 3 * | 5185. 2000 | 98. 67 | 14.40 | 113. 07 | 68. 30 | 44.77 | Peak | No Limit | | 4 | 5195. 2000 | 84. 43 | 14.42 | 98. 85 | 999.00 | -900. 15 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT40) Mode 5190 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10383.8850 | 34. 10 | 11. 34 | 45. 44 | 68.30 | -22.86 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT40) Mode 5190 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 43.69 | 14. 32 | 58. 01 | 74.00 | -15. 99 | Peak | | | 2 | 5150.0000 | 31. 07 | 14. 32 | 45. 39 | 54.00 | -8. 61 | AVG | | | 3 * | 5182. 2000 | 85. 59 | 14. 39 | 99. 98 | 68.30 | 31.68 | Peak | No Limit | | 4 | 5197. 2000 | 71. 40 | 14. 43 | 85. 83 | 999.00 | -913. 17 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT40) Mode 5190 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10395, 1520 | 32, 77 | 11. 36 | 44. 13 | 68. 30 | -24, 17 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | | T., | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX AC (VHT40) Mode 5230 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|--------|--------------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 54.99 | 14. 32 | 69. 31 | 74.00 | -4.69 | Peak | | | 2 | 5150.0000 | 39. 48 | 14. 32 | 53. 80 | 54.00 | -0. 20 | AVG | | | 3 * | 5227.6000 | 100. 56 | 14. 50 |
115.06 | 68.30 | 46.76 | Peak | No Limit | | 4 | 5234.8000 | 90. 10 | 14. 52 | 104.62 | 999.00 | -894.38 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-1_TX AC (VHT40) Mode 5230 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10465. 2530 | 35. 82 | 11.48 | 47. 30 | 68. 30 | -21.00 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | | I., | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX AC (VHT40) Mode 5230 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5224.8000 | 87. 12 | 14.49 | 101.61 | 68. 30 | 33. 31 | Peak | No Limit | | 2 | 5234. 6000 | 77. 11 | 14. 52 | 91. 63 | 999. 00 | -907. 37 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT40) Mode 5230 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10471, 2530 | 33, 25 | 11.49 | 44.74 | 68. 30 | -23, 56 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT80) Mode 5210 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|--------|----------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 53. 69 | 14. 32 | 68. 01 | 74.00 | -5. 99 | Peak | | | 2 | 5150.0000 | 39. 27 | 14. 32 | 53. 59 | 54.00 | -0.41 | AVG | | | 3 * | 5197.6000 | 90. 27 | 14.43 | 104.70 | 68.30 | 36. 40 | Peak | No Limit | | 4 | 5226. 8000 | 80. 34 | 14. 50 | 94.84 | 999.00 | -904. 16 | AVG | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | | T., | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-1_TX AC (VHT80) Mode 5210 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|--------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10425. 2570 | 33.82 | 11.41 | 45. 23 | 68.30 | -23.07 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-1_TX AC (VHT80) Mode 5210 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|--------|----------------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5150.0000 | 45.69 | 14. 32 | 60.01 | 74.00 | -13.99 | Peak | | | 2 | 5150.0000 | 31. 60 | 14. 32 | 45. 92 | 54.00 | -8. 0 8 | AVG | | | 3 | 5204.8000 | 67.85 | 14.45 | 82. 30 | 999.00 | -916.70 | AVG | No Limit | | 4 * | 5237.6000 | 78. 52 | 14. 52 | 93. 04 | 68.30 | 24.74 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | l | Test Mode | UNII-1_TX AC (VHT80) Mode 5210 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 10423, 5250 | 32, 06 | 11.41 | 43. 47 | 68, 30 | -24, 83 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | i | | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-3_TX AC (VHT20) Mode 5745 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|---------|--------|---------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 54.49 | 15. 65 | 70. 14 | 109.40 | -39. 26 | Peak | | | 2 | 5725. 0000 | 70. 51 | 15. 68 | 86. 19 | 122. 20 | -36. 01 | Peak | | | 3 * | 5740. 8000 | 105. 25 | 15. 72 | 120. 97 | 122. 20 | -1. 23 | Peak | No Limit | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT20) Mode 5745 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11489. 9960 | 40. 51 | 12. 07 | 52. 58 | 74.00 | -21.42 | Peak | | | 2 * | 11491. 2420 | 26. 87 | 12. 07 | 38. 94 | 54.00 | -15. 06 | AVG | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | 1 | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5745 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|--------|--------|---------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 42. 34 | 15. 65 | 57. 99 | 109.40 | -51.41 | Peak | | | 2 | 5725.0000 | 50. 67 | 15. 68 | 66. 35 | 122. 20 | -55. 85 | Peak | | | 3 * | 5746. 4000 | 88. 55 | 15. 73 | 104. 28 | 122. 20 | -17.92 | Peak | No Limit | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT20) Mode 5745 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11489. 7859 | 21. 52 | 12.07 | 33. 59 | 54.00 | -20.41 | AVG | | | 2 | 11494. 8960 | 35. 55 | 12.07 | 47.62 | 74.00 | -26. 38 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5786. 6000 | 100. 39 | 15.82 | 116. 21 | 122. 20 | -5. 99 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11570. 2500 | 39. 18 | 12. 15 | 51. 33 | 74.00 | -22.67 | Peak | | | 2 * | 11571. 3360 | 25. 95 | 12. 15 | 38. 10 | 54.00 | -15. 90 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5781. 4000 | 85. 78 | 15.81 | 101. 59 | 122. 20 | -20.61 | Peak | No Limit | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT20) Mode 5785 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----
-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11568. 3330 | 34.00 | 12. 14 | 46. 14 | 74.00 | -27.86 | Peak | | | 2 * | 11570. 4320 | 21.74 | 12. 15 | 33. 89 | 54.00 | -20. 11 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | i | | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-3_TX AC (VHT20) Mode 5825 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|------------|------------------|-------------------|-----------------|---------|--------------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5826. 6000 | 101. 36 | 15. 92 | 117. 28 | 122. 20 | -4.92 | Peak | No Limit | | 2 | 5850.0000 | 63. 34 | 15. 97 | 79. 31 | 122. 20 | -42.89 | Peak | | | 3 | 5860. 0000 | 55. 17 | 16. 00 | 71. 17 | 109.40 | -38. 23 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT20) Mode 5825 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11646. 5839 | 39. 38 | 12. 22 | 51.60 | 74.00 | -22.40 | Peak | | | 2 * | 11651. 2570 | 26. 10 | 12. 23 | 38. 33 | 54.00 | -15. 67 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5825 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|-----------|--------|--------|---------|---------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5823.8000 | 86.46 | 15. 91 | 102. 37 | 122. 20 | -19.83 | Peak | No Limit | | 2 | 5850.0000 | 45. 15 | 15. 97 | 61. 12 | 122. 20 | -61.08 | Peak | | | 3 | 5860.0000 | 41.95 | 16. 00 | 57. 95 | 109.40 | -51.45 | Peak | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT20) Mode 5825 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11651. 2850 | 22. 19 | 12. 23 | 34.42 | 54.00 | -19. 58 | AVG | | | 2 | 11657. 2750 | 34. 23 | 12. 23 | 46. 46 | 74.00 | -27. 54 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT40) Mode 5755 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|--------|--------|---------|---------|---------------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 66. 19 | 15. 65 | 81.84 | 109.40 | -27. 56 | Peak | | | 2 | 5725. 0000 | 74.80 | 15. 68 | 90.48 | 122. 20 | -31.72 | Peak | | | 3 * | 5750. 4000 | 99. 61 | 15. 74 | 115. 35 | 122. 20 | -6. 85 | Peak | No Limit | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT40) Mode 5755 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11515. 4200 | 36. 47 | 12. 09 | 48. 56 | 74.00 | -25.44 | Peak | | | 2 * | 11517. 1120 | 23. 60 | 12. 09 | 35. 69 | 54.00 | -18. 31 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT40) Mode 5755 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|--------|--------|---------|---------|---------------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 5715. 0000 | 46. 54 | 15. 65 | 62. 19 | 109.40 | -47.21 | Peak | | | 2 | 5725.0000 | 48. 48 | 15. 68 | 64. 16 | 122. 20 | -58.04 | Peak | | | 3 * | 5749. 0000 | 82. 81 | 15. 74 | 98. 55 | 122. 20 | -23.65 | Peak | No Limit | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | П | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT40) Mode 5755 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11511. 1580 | 20.86 | 12.09 | 32.95 | 54.00 | -21.05 | AVG | | | 2 | 11517. 7530 | 33. 15 | 12. 09 | 45. 24 | 74.00 | -28. 76 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | | Test Mode | UNII-3_TX AC (VHT40) Mode 5795 MHz | | No. | Freq. | Reading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-----------|------------------|-------------------|-----------------|---------|--------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5803.0000 | 100.06 | 15. 86 | 115. 92 | 122. 20 | -6. 28 | Peak | No Limit | | 2 | 5850.0000 | 56. 22 | 15. 97 | 72. 19 | 122. 20 | -50.01 | Peak | | | 3 | 5860.0000 | 50. 97 | 16. 00 | 66. 97 | 109.40 | -42.43 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor. - (2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------|------------------------------------| | Test Mode | UNII-3_TX AC (VHT40) Mode 5795 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11590. 2530 | 22. 57 | 12. 17 | 34.74 | 54.00 | -19. 26 | AVG | | | 2 | 11591. 2110 | 34.89 | 12. 17 | 47.06 | 74.00 | -26. 94 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | L | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | l | Test Mode | UNII-3_TX AC (VHT40) Mode 5795 MHz | | No. | Freq. | Level | Factor | measure | Limit | Margin | | | |-----|------------|--------|--------|---------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5796. 6000 | 83. 87 | 15. 85 | 99.72 | 122. 20 | -22.48 | Peak | No Limit | | 2 | 5850.0000 | 44.71 | 15. 97 | 60.68 | 122. 20 | -61. 52 | Peak | | | 3 | 5860.0000 | 41.80 | 16. 00 | 57.80 | 109.40 | -51. 60 | Peak | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Ш | | | |---|-----------------|------------------------------------| | | Orthogonal Axis | X | | 1 | Test Mode | UNII-3_TX AC (VHT40) Mode 5795 MHz | | No. | Freq. | Keading
Level | Correct
Factor | Measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | 11591. 5820 | 33.89 | 12. 17 | 46.06 | 74.00 | -27.94 | Peak | | | 2 * | 11592. 2450 | 21.63 | 12. 17 | 33. 80 | 54.00 | -20. 20 | AVG | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | l <u></u> | | |-----------------|------------------------------------| | Orthogonal Axis | X | | Test Mode | UNII-3_TX AC (VHT80) Mode 5775 MHz | | No. | Freq. | Level | Factor | ment | Limit | Margin | | | |-----|------------|--------|--------|--------|---------|---------|----------|----------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 5641. 3350 | 52. 13 | 15. 48 | 67.61 | 68. 20 | -0. 59 | Peak | | | 2 | 5715. 0000 | 58. 17 | 15. 65 | 73. 82 | 109.40 | -35. 58 | Peak | | | 3 | 5725. 0000 | 68. 23 | 15. 68 | 83. 91 | 122. 20 | -38. 29 | Peak | | | 4 | 5780. 8000 | 99. 04 | 15. 81 | 114.85 | 122. 20 | -7. 35 | Peak | No Limit | | 5 | 5850. 0000 | 57. 36 | 15. 97 | 73. 33 | 122. 20 | -48.87 | Peak | | | 6 | 5860. 0000 | 55. 31 | 16.00 | 71.31 | 109.40 | -38. 09 | Peak | | | | | | | | | | | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value. | Orthogonal Axis | X | |-----------------
------------------------------------| | Test Mode | UNII-3_TX AC (VHT80) Mode 5775 MHz | | No. | Freq. | Keading
Level | Correct
Factor | measure
ment | Limit | Margin | | | |-----|-------------|------------------|-------------------|-----------------|--------|---------|----------|---------| | | MHz | dBuV/m | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 * | 11561. 0070 | 22.68 | 12. 14 | 34.82 | 54.00 | -19. 18 | AVG | | | 2 | 11565. 1580 | 36. 24 | 12. 14 | 48. 38 | 74.00 | -25. 62 | Peak | | - (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.