	TEST REPOR	Т			
FCC ID :	2A8T7K10ELITE				
Test Report No:	TCT241107E023				
Date of issue:	Nov. 15, 2024				
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sher People's Republic of China				
Applicant's name: :	Shenzhen Kingbolen Electrics T	echnology Co., Ltd.			
Address:		B1020-1028, Yousong Technology Building, Donghuan 1st road, Longhua, Shenzhen, 518109 China			
Manufacturer's name :	Shenzhen Kingbolen Electrics T	echnology Co., Ltd.			
Address:	B1020-1028, Yousong Technology Building, Donghuan 1st road, Longhua, Shenzhen, 518109 China				
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	Automotive Diagnostic Tool				
Trade Mark :	KINGBOLEN				
Model/Type reference :	K10 Elite				
Rating(s):	Rechargeable Li-ion Battery DC	3.85V			
Date of receipt of test item	Nov. 07, 2024		J. C.		
Date (s) of performance of test:	Nov. 07, 2024 ~ Nov. 15, 2024	(C)			
Tested by (+signature) :	Ronaldo LUO	Ronaldz Swase			
Check by (+signature) :	Beryl ZHAO	BoyConTCT	STING		
Approved by (+signature):	Tomsin	Tomsit's 84			

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information	
	1.1. EUT description	
	1.2. Model(s) list	3
	1.3. Operation Frequency	3
2.	Test Result Summary	4
3.	General Information	
	3.1. Test environment and mode	5
	3.2. Description of Support Units	5
4.	Facilities and Accreditations	
	4.1. Facilities	6
	4.2. Location	6
	4.3. Measurement Uncertainty	6
5.	Test Results and Measurement Data	7
	5.1. Antenna requirement	7
	5.2. Conducted Emission	
	5.3. Conducted Output Power	12
	5.4. Emission Bandwidth	
	5.5. Power Spectral Density	14
	5.6. Conducted Band Edge and Spurious Emission Measurement	15
	5.7. Radiated Spurious Emission Measurement	17
Α	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
Α	ppendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Automotive Diagnostic Tool		
Model/Type reference:	K10 Elite	S	
Sample Number	TCT241107E022-0101		
Bluetooth Version:	V5.1 (This report is for BLE)		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz	(\mathcal{C})	(C ¹)
Data Rate:	LE 1M PHY, LE 2M PHY		
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	FPC Antenna		
Antenna Gain:	3.09dBi	$\left(\mathbf{C}^{\prime}\right)$	$\langle \mathcal{O} \rangle$
Rating(s):	Rechargeable Li-ion Battery DC 3	8.85V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	:		:		:		<u> </u>
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.	~		C

Report No.: TCT241107E023

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 56

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	23.5 °C	24.6 °C
Humidity:	50 % RH	53 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		·
Software Information:	Engineering mode	
Power Level:	Default	
Test Mode:		
Engineer mode:	Keep the EUT in continuou	s transmitting by select

Channel and modulations with Fully-charged battery. The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

Engineer mode:

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

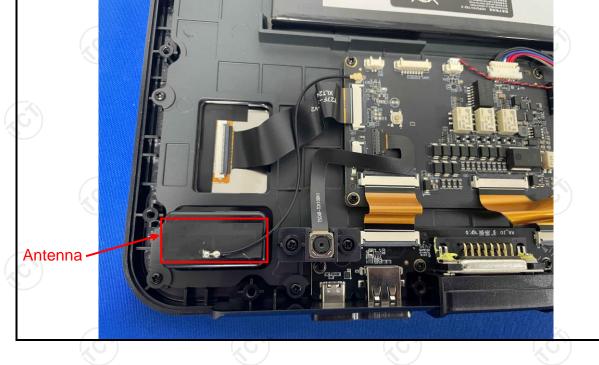
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

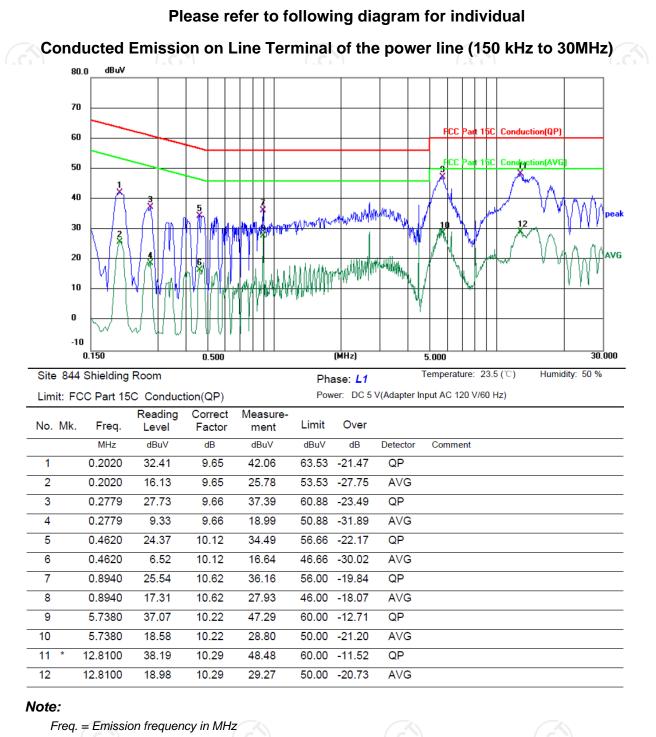
The Bluetooth antenna is FPC antenna which permanently attached, and the best case gain of the antenna is 3.09dBi.

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2020					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup:	40cm E.U.T AC powe Test table/Insulation plane	Filter	r AC power			
	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m					
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m Charging + Transmittir	Receiver etwork				
Test Mode: Test Procedure:	 E.U.T. Equipment Under Test LISN Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin The E.U.T is connel impedance stabiliz provides a 500hm/s measuring equipme The peripheral device power through a Line coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	Receiver ang Mode acted to an adapte acted	(L.I.S.N.). This apedance for the ected to the main a 500hm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all co jed according to			
	 E.U.T. Equipment Under Test LISN Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin The E.U.T is connel impedance stabiliz provides a 50ohm/s measuring equipme The peripheral device power through a Li coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative 	Receiver ang Mode acted to an adapte acted	(L.I.S.N.). Thi apedance for the ected to the mai a 500hm/50ul nination. (Pleas test setup an ed for maximur nd the maximur ipment and all o jed according t			

5.2.2. Test Instruments


Cond	Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	/	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1 📿				
				e				

Page 9 of 56

5.2.3. Test data

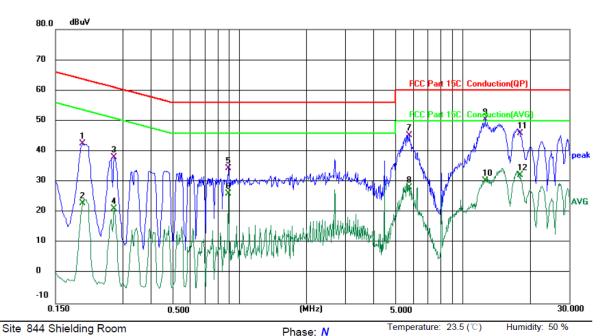
CENTRE TECHNOLOGY

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

Limit $(dB\mu V) = Limit$ stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 10 of 56

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

					FII				
Limit:	FCC Part 15	5C Conduct	tion(QP)		Pow	ver: DC 5	V(Adapter Ir	nput AC 120 V/60 Hz)	
No. N	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1980	32.80	9.63	42.43	63.69	-21.26	QP		
2	0.1980	13.26	9.63	22.89	53.69	-30.80	AVG		
3	0.2740	28.37	9.64	38.01	61.00	-22.99	QP		
4	0.2740	11.47	9.64	21.11	51.00	-29.89	AVG		
5	0.8940	23.90	10.58	34.48	56.00	-21.52	QP		
6	0.8940	15.61	10.58	26.19	46.00	-19.81	AVG		
7	5.7538	35.15	10.15	45.30	60.00	-14.70	QP		
8	5.7538	18.10	10.15	28.25	50.00	-21.75	AVG		
9 *	* 12.6340	40.22	10.28	50.50	60.00	-9.50	QP		
10	12.6340	20.10	10.28	30.38	50.00	-19.62	AVG		
11	18.1060	35.57	10.24	45.81	60.00	-14.19	QP		

50.00 -17.86

AVG

Note1:

12

18,1060

21.90

TCT通测检测 TCT通测检测

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

10.24

32.14

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 1M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer			MY49100619	Jun. 26, 2025 /	
Combiner Box			1		

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	
Test Meder	Spectrum Analyzer
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

	Name	Manufacturer	Model No.	Serial Number	Calibration Due	
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
	Combiner Box	Ascentest	AT890-RFB	9 1		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)						
Test Method:	KDB 558074 D01 v05r02						
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.						
Test Setup:							
Test Mode:	Spectrum Analyzer EUT						
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 						
Test Result:	PASS						

5.5.2. Test Instruments

Name	Name Manufacturer		Serial Number	Calibration Due	
Spectrum Analyzer			MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	/	1	

5.6. Conducted Band Edge and Spurious Emission Measurement

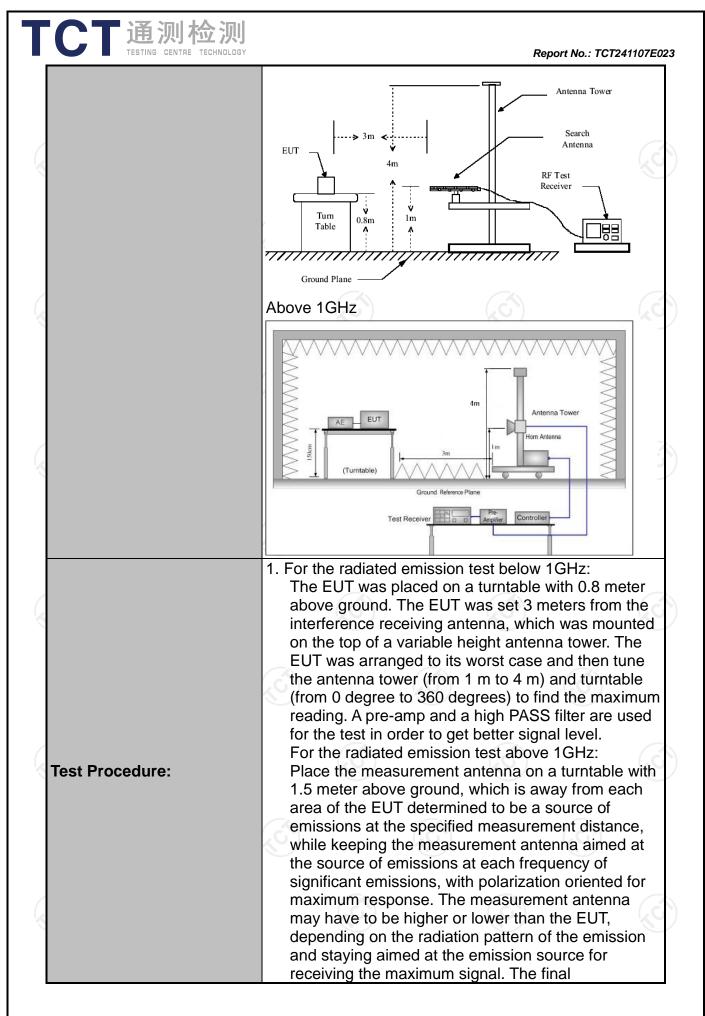
5.6.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section	15.247 (d)	, ć			
Test Method:	KDB 558074 D01 v05r0)2	e			
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).					
Test Setup:		EUT				
Test Mode:	Spectrum Analyzer Refer to item 3.1		(ĉ			
Test Procedure:	analyzer by RF cabl compensated to the 2. Set to the maximum EUT transmit contin 3. Set RBW = 100 kHz, Unwanted Emission bandwidth outside of shall be attenuated	VBW=300 kHz, Peak D s measured in any 100 of the authorized frequer by at least 20 dB relative eak PSD level in 100 kH	rement. le the Detector. kHz ncy band e to the			
	used. If the transmit power limits based of a time interval, the a paragraph shall be 3 15.247(d). 4. Measure and record 5. The RF fundamental	ter complies with the co on the use of RMS avera attenuation required und 30 dB instead of 20 dB p the results in the test re frequency should be ex in the operating frequen	pocedure is nducted aging over er this per port. cluded			

5.6.2. Test Instruments

	Name	Manufacturer	Model No.	Serial Number	r Calibration Due		
Spectrum Analyzer Combiner Box		Agilent	N9020A	MY49100619	Jun. 26, 2025		
		Ascentest	AT890-RFB	1	1		


5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

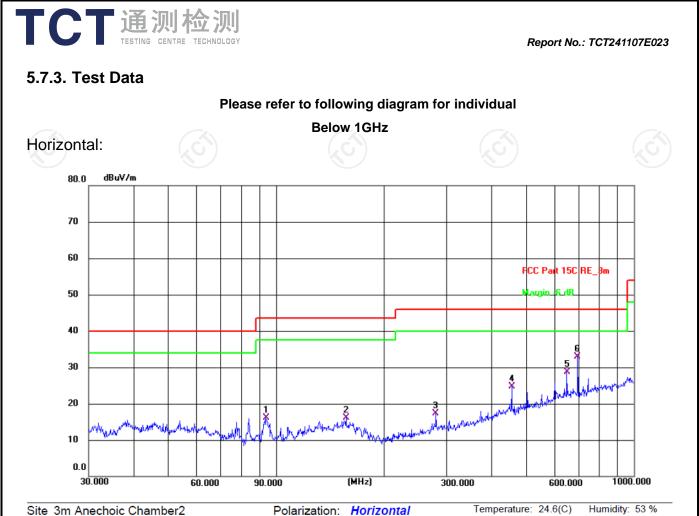
FCC Part15 C Section 15.209						
ANSI C63.10	0:2020					
9 kHz to 25	GHz					
3 m	K	9		R.)	
Horizontal &	Vertical					
Refer to item	n 3.1	((
Frequency	Detector	RBW	VBW		Remark	
150kHz-			1kHz 30kHz		-peak Value -peak Value	
30MHz-1GHz			300KHz 3MHz		-peak Value ak Value	
Above 1GHz	Peak	1MHz	10Hz		age Value	
Frequer	ісу		•	Measurement		
		· · · ·	,			
				30		
				3		
					3	
216-96	60	200		3		
Above 9	60	500			3	
Frequency		-	Distan	се	Detector	
Above 1GH	z	500			Average	
		5000	3		Peak	
For radiated emissions below 30MHz						
Pre - Amplifier						
EUT 0.8m Turn table						
	Group	d Plane		accurci		
30MHz to 1GHz						
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz-150kHz 150kHz- 30MHz-16Hz Above 1GHz Frequer 0.009-0. 0.490-1. 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10:2020 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector 9kHz-150kHz Quasi-peal 150kHz- Quasi-peal 30MHz Quasi-peal 300Hz Quasi-peal 300Hz Quasi-peal 300Hz Quasi-peal 300Hz Quasi-peal 300Hz Quasi-peal 300Hz Quasi-peal Above 1GHz So-88 88-216 Peak 216-960 Above 960 Above 1GHz For radiated emission Distance = 3m Image: Peak Quasi-peal Image: Peak Quasi-peal Image: Peak Sore radi	ANSI C63.10:2020 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Peak 1MHz Peak 1MHz Peak 1MHz Frequency Field Str (microvolts) 0.009-0.490 2400/F(0.490-1.705 24000/F(1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 For radiated emissions below 30 Distance - 3m	ANSI C63.10:2020 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1	ANSI C63.10:2020 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1	

Page 17 of 56

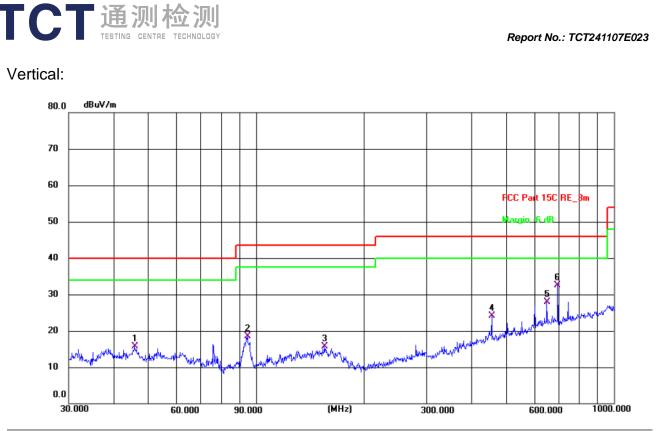
CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT241107E0
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY


Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025					
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025					
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025					
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025					
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 202					
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025					
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025 Jun. 28, 2025					
Horn Antenna	Schwarzbeck	BBHA 9120D	631						
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 202 Jun. 26, 202					
Coaxial cable	SKET	RE-03-D	1						
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025					
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-D	10	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025					
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025					
Antenna Mast	Keleto	RE-AM	1						
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1					
<u>(</u>)	(C)	(₍ C))	(xC)						

Page 20 of 56

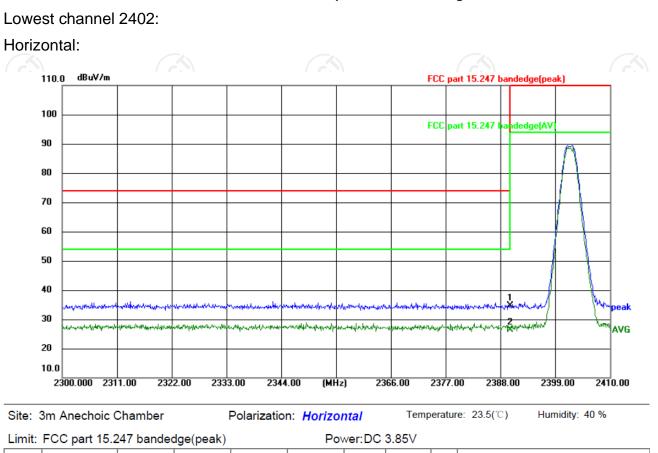


Limit: FCC Part 15C RE 3m

Power: DC 3.95V

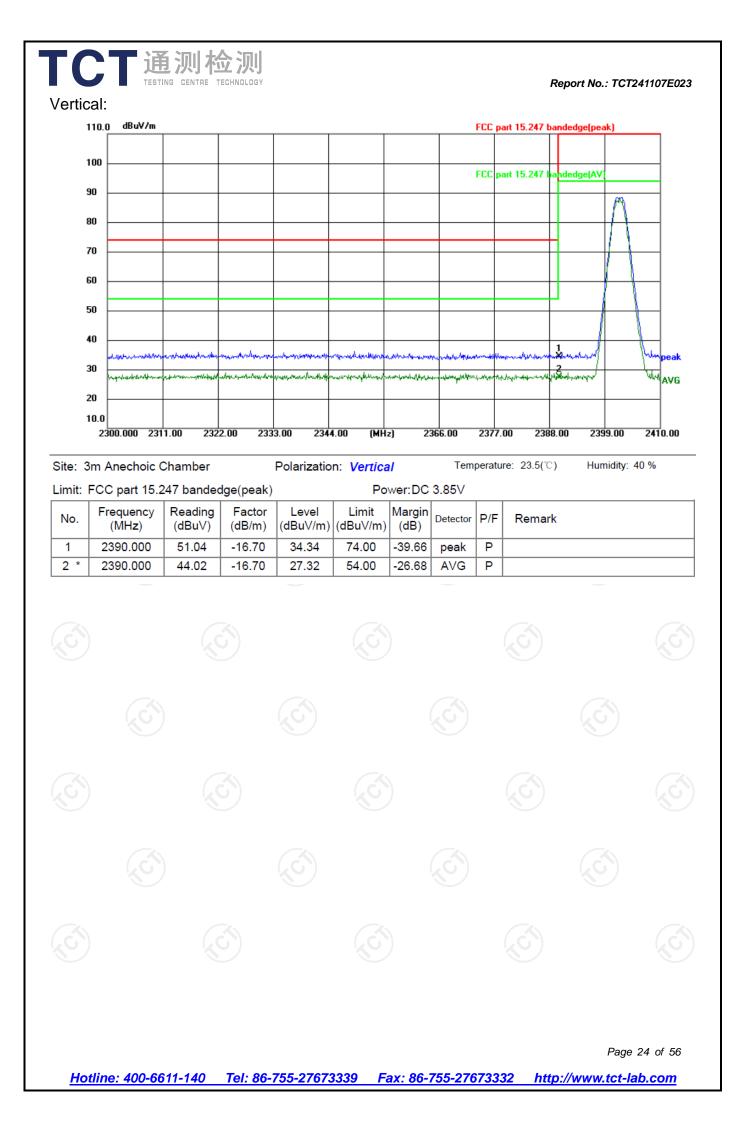
Limit: I	-CC Part 15C R	RE_3m	3m Power: DC 3.85V						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	93.7685	38.18	-22.10	16.08	43.50	-27.42	QP	Ρ	
2	157.0074	33.17	-17.08	16.09	43.50	-27.41	QP	Ρ	
3	280.0237	35.18	-17.83	17.35	46.00	-28.65	QP	Ρ	
4	455.9058	38.12	-13.41	24.71	46.00	-21.29	QP	Ρ	
5	649.6597	37.51	-8.73	28.78	46.00	-17.22	QP	Ρ	
6 *	696.8567	41.48	-8.62	32.86	46.00	-13.14	QP	Ρ	

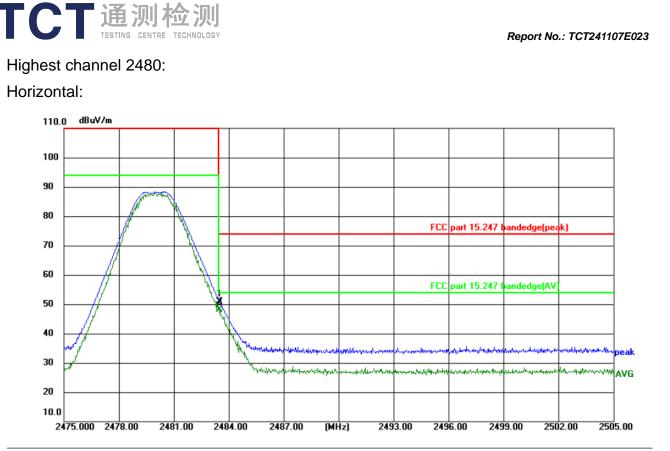
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Site 3m Anechoic Chamber2 Polarization: Vertical Temperature: 24.6(C) Humidity: 53 %

Li	imit: F	CC Part 15C R	E_3m		Power: DC 3.85V					
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	45.8553	34.36	-18.66	15.70	40.00	-24.30	QP	Ρ	
Γ	2	94.7601	40.51	-21.96	18.55	43.50	-24.95	QP	Ρ	
	3	155.3644	32.64	-16.94	15.70	43.50	-27.80	QP	Ρ	
	4	455.9058	37.56	-13.41	24.15	46.00	-21.85	QP	Р	
	5	649.6597	36.73	-8.73	28.00	46.00	-18.00	QP	Ρ	
Γ	6 *	696.8567	41.22	-8.62	32.60	46.00	-13.40	QP	Р	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 1M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.
 - 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit $(dB\mu V/m) = Limit$ stated in standard Margin $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$
 - * is meaning the worst frequency has been tested in the test frequency range

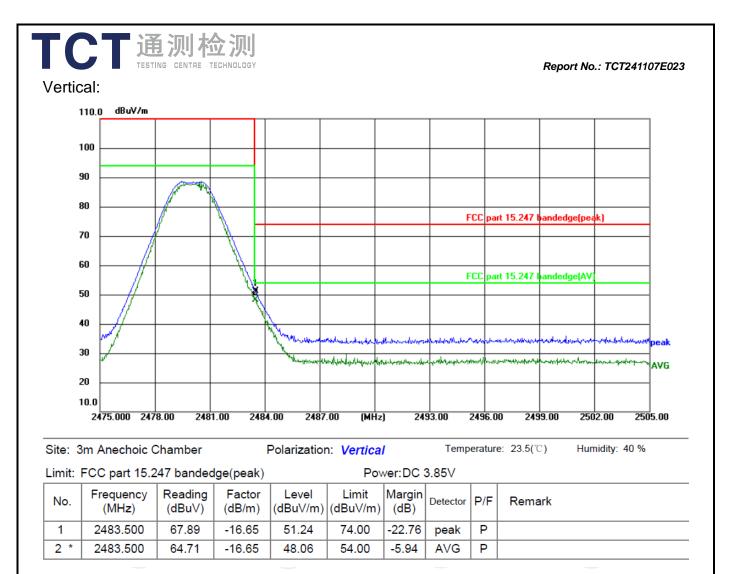

Test Result of Radiated Spurious at Band edges


TCT 通测检测 TESTING CENTRE TECHNOLOGY

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	51.27	-16.70	34.57	74.00	-39.43	peak	Ρ	
2 *	2390.000	43.11	-16.70	26.41	54.00	-27.59	AVG	Р	

Page 23 of 56

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.5(°C) Humidity: 40 %


Limit: FCC part 15.247 bandedge(peak)

Power:DC 3.85V

			3-(1)						
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	67.56	-16.65	50.91	74.00	-23.09	peak	Ρ	
2 *	2483.500	64.82	-16.65	48.17	54.00	-5.83	AVG	Ρ	

Page 25 of 56

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

Page 26 of 56

AV limit

(dBµV/m)

54

54

54

54

Margin

(dB)

-7.36

-9.50

-7.09

-9.16

Peak limit

Low char	nel: 2402	MHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4804	Н	55.23		-9.51	45.72		74	54	-8.28
7206	Η	47.04		-1.41	45.63		74	54	-8.37
	Н								
4804	V	55.91		-9.51	46.40	·	74	54	-7.60
7206	V	45.29	-420	-1.41	43.88	<u> </u>	74	54	-10.12
	V								

Above 1GHz

Middle channel: 2440 MHz

High channel: 2480 MHz

V

Frequency Ant. Pol.

CT通测检测 TESTING CENTRE TECHNOLOGY

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	54.75		-9.36	45.39		74	54	-8.61
7320	Н	46.62		-1.15	45.47		74	54	-8.53
	Н			·	(
ļ			Ň)					
4880	V	56.87		-9.36	47.51		74	54	-6.49
7320	V	45.18		-1.15	44.03		74	54	-9.97
	V								

Emission Level

Correction

Fraguianev							IPO3K IIMIT	40
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBuV/m)	AV (dBµV/m)	(dBµV/m)	
4960	Н	55.84		-9.20	46.64		74	ľ
7440	Н	45.46	-	-0.96	44.50		74	Γ
	Н							Γ
4960	V	56.11		-9.20	46.91		74	Γ
7440	V	45.80		-0.96	44.84		74	Γ

AV

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

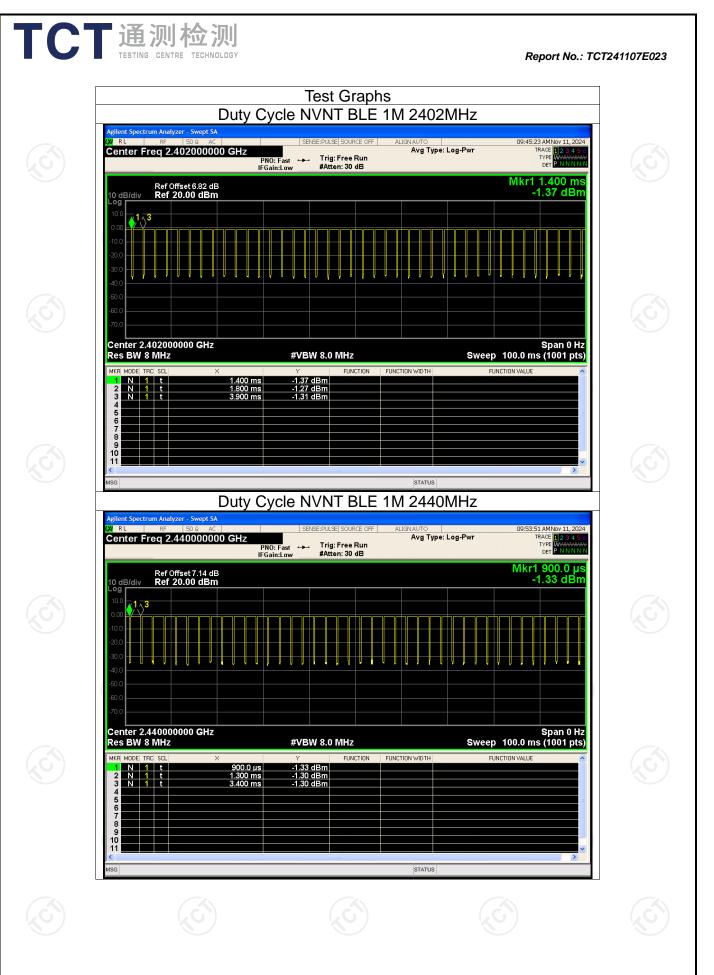
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

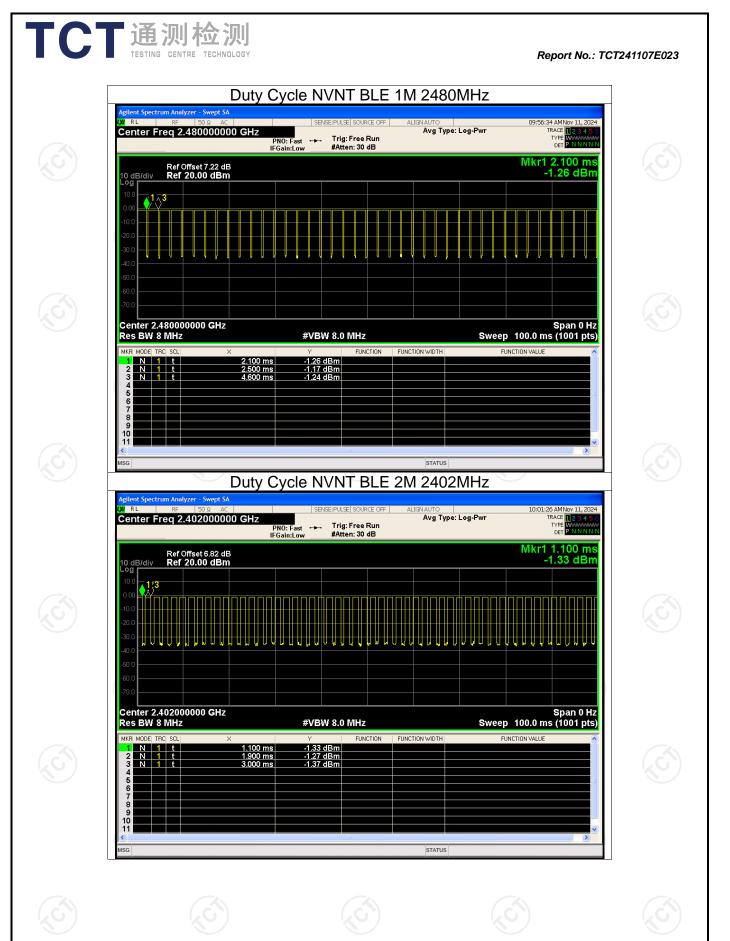
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

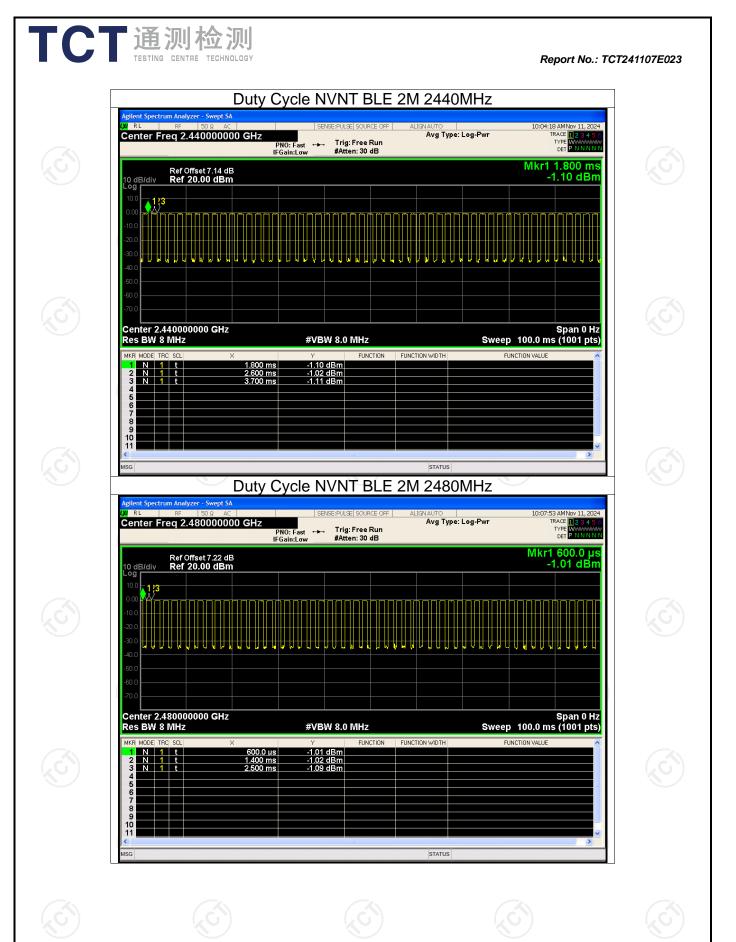
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.


7. All the restriction bands are compliance with the limit of 15.209.


Peak


Appendix A: Test Result of Conducted Test

			Duty	Cycle		
	Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	r (S)
	NVNT	BLE 1M	2402	88.01	0.55	
_		BLE 1M	2440	88.01	0.55	
	NVNT NVNT	BLE 1M BLE 2M	2480 2402	88.01 62.94	0.55	
	NVNT	BLE 2M	2440	62.24	2.06	
S	NVNT	BLE 2M	2480	62.94	2.01	-
					Page :	28 of 56
<u>Hot</u>	line: 400-6611	-140 Tel: 86	-755-27673339	Fax: 86-755-27673	3332 http://www.tct-la	<u>b.com</u>

Page 30 of 56

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT 🐇	BLE 1M	2402	-1.37	30	Pass
NVNT	BLE 1M	2440	-1.14	30	Pass
NVNT	BLE 1M	2480	-1.32	30	Pass
NVNT	BLE 2M	2402	-1.48	30	Pass
NVNT	BLE 2M	2440	-1.24	30	Pass
NVNT	BLE 2M	2480	-1.19	30	Pass

Maximum Conducted Output Power

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 32 of 56

10 dB/div Log 1 STATUS Power NVNT BLE 1M 2440MHz

Test Graphs Power NVNT BLE 1M 2402MHz

Avg Type: Log-Pwr Avg|Hold: 500/500

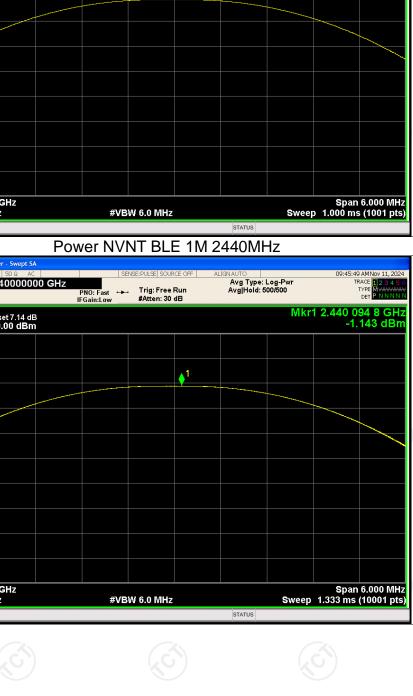
SENSE:PULSE SOURCE OFF

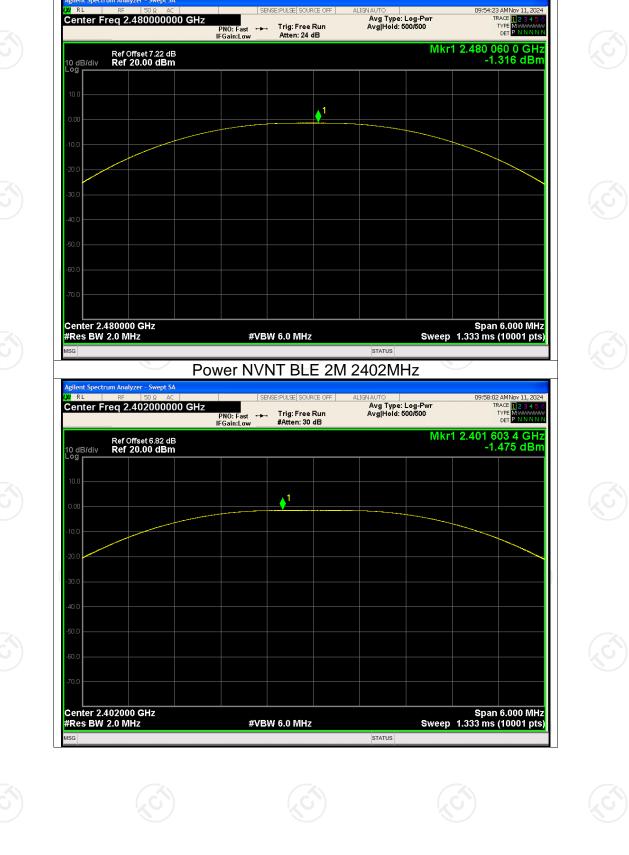
PNO: Fast --- Trig: Free Run IFGain:Low #Atten: 30 dB

Mkr1 2.440 094 8 GHz -1.143 dBm **≜**1 Center 2.440000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.333 ms (10001 pts) #VBW 6.0 MHz STATUS

Report No.: TCT241107E023

09:41:19 AMNov 11, 2024 TRACE 123456 TYPE MWWWWW DET PNNNNN

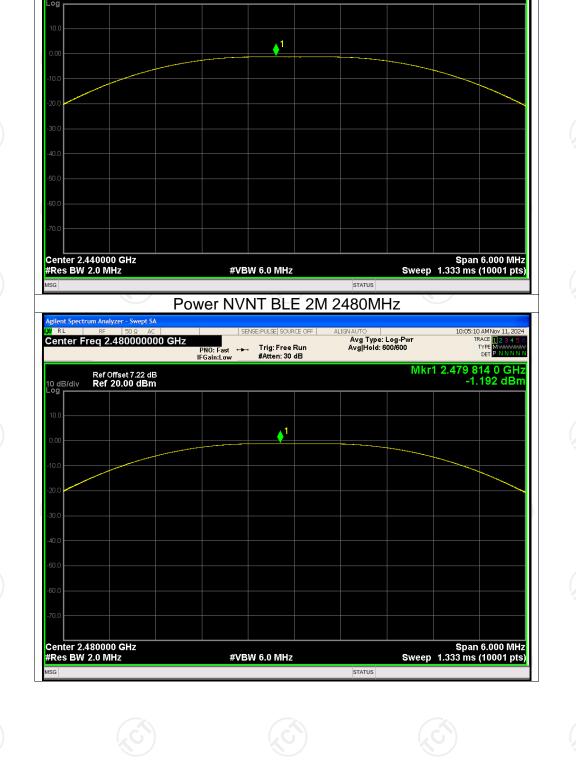

Mkr1 2.401 976 GHz -1.372 dBm


gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

RL


Power NVNT BLE 1M 2480MHz

Report No.: TCT241107E023

RL

Page 34 of 56

TCT通测检测 TESTING CENTRE TECHNOLOGY

RL

10 dB/div

gilent Spectrum Analyzer - Swept SA

Center Freq 2.440000000 GHz

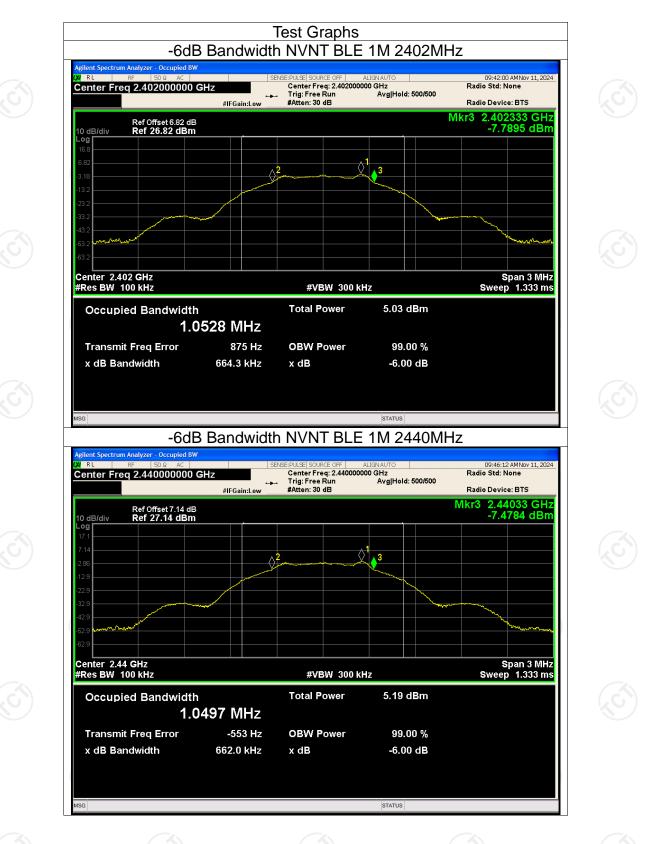
Ref Offset 7.14 dB Ref 20.00 dBm

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 500/500

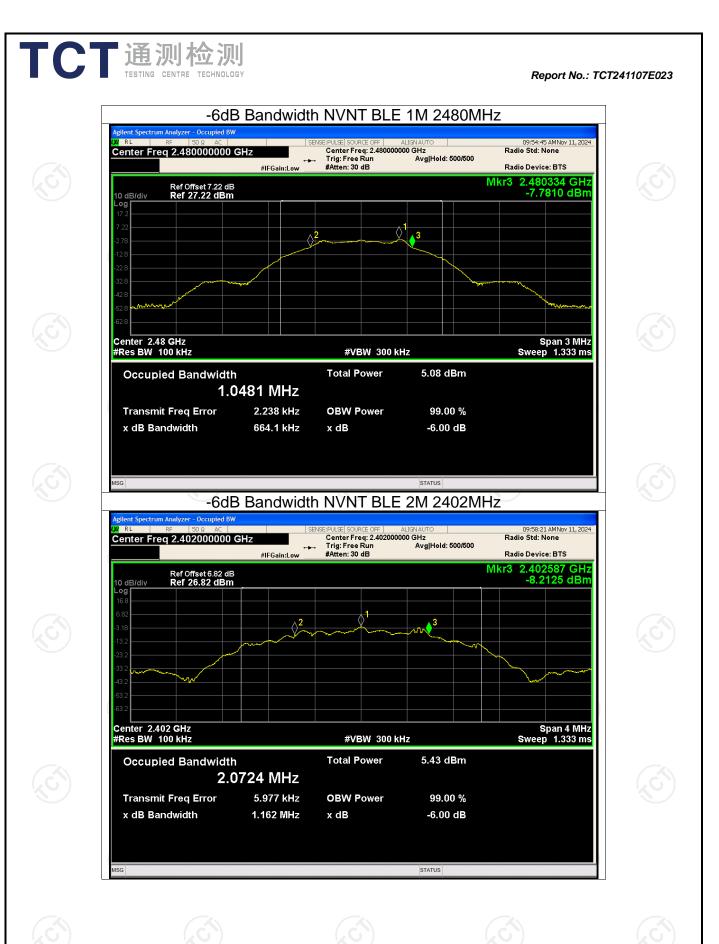
Power NVNT BLE 2M 2440MHz

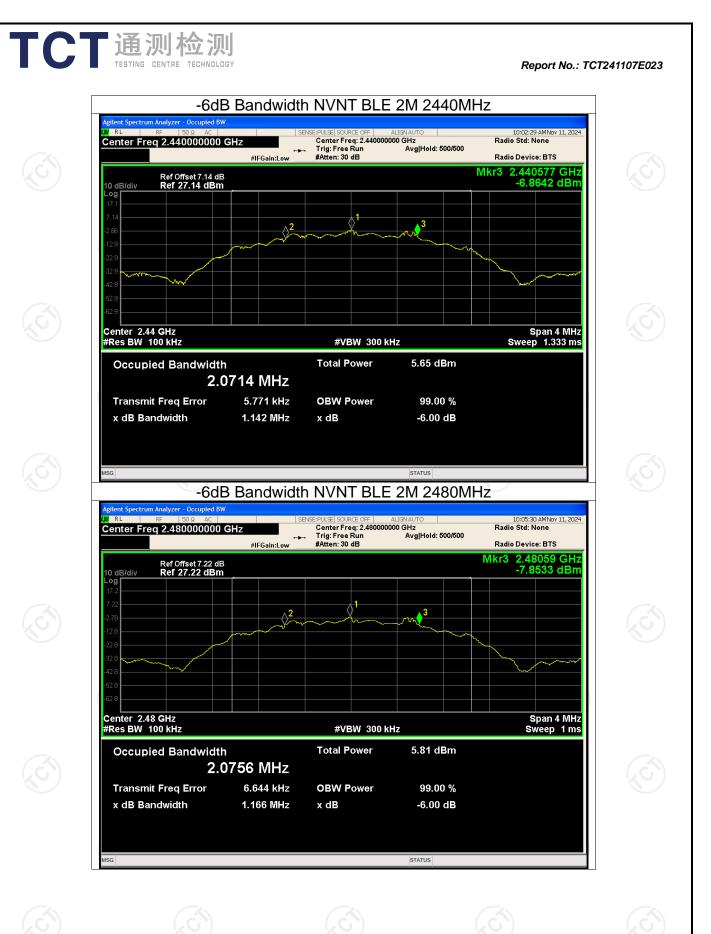
PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

10:02:07 AMNov 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N


Mkr1 2.439 760 6 GHz -1.238 dBm

Page 35 of 56

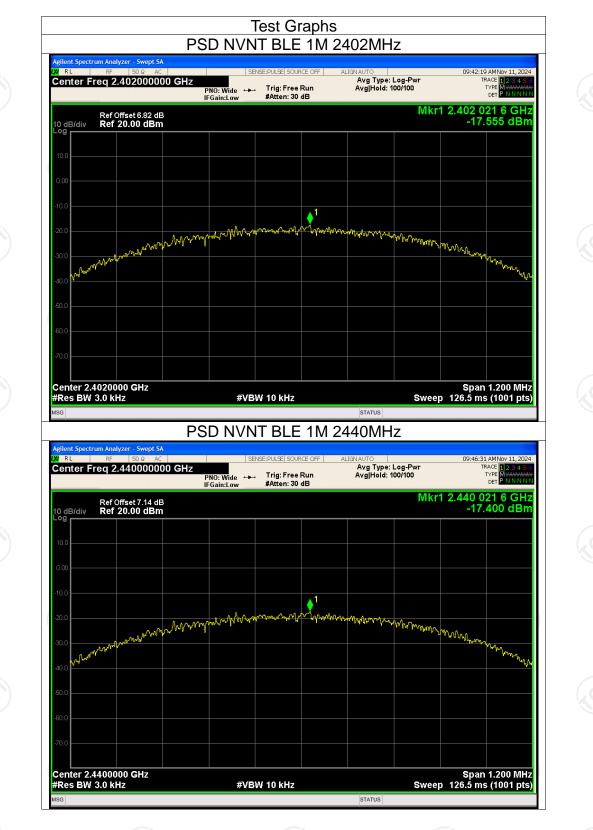

	-6dB Bandwidth										
Condition	Mode	Mode Frequency (MHz) B		Limit -6 dB Bandwidth (MHz)	Verdict						
NVNT	BLE 1M	2402	0.664	0.5	Pass						
NVNT	BLE 1M	2440	0.662	0.5	Pass						
NVNT	BLE 1M	2480	0.664	0.5	Pass						
NVNT	BLE 2M	2402	1.162	0.5	Pass						
NVNT 🐇	BLE 2M	2440	1.142	0.5	Pass						
NVNT	BLE 2M	2480	1.166	0.5	Pass						


Page 36 of 56

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 37 of 56

Page 39 of 56


Condition	Mode	Frequency (MHz)	Conducted PSD(dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-17.56	8	Pass
NVNT	BLE 1M	2440	-17.40	8	Pass
NVNT	BLE 1M	2480	-17.48	8	Pass
NVNT	BLE 2M	2402	-20.18	8	Pass
NVNT	BLE 2M	2440	-20.41	8	Pass
NVNT	BLE 2M	2480	-19.92	8	Pass

Maximum Power Spectral Density Level

Page 40 of 56

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 41 of 56

♦¹ mannannannan Marmon mun Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.200 MHz Sweep 126.5 ms (1001 pts) #VBW 10 kHz STATUS PSD NVNT BLE 2M 2402MHz U RL SENSE:PULSE SOURCE OFF 48 AMNov 11, 2024 TRACE 1234 TYPE MWWW DET PNNN Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Wide $\leftrightarrow \rightarrow$ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 968 GHz -20.180 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log ١ aldur monterment ala wh . La Лы haven hara Center 2.402000 GHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 210.9 ms (1001 pts) #VBW 10 kHz STATUS

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 100/100 Center Freq 2.480000000 GHz PNO: Wide \leftrightarrow Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 021 6 GHz -17.480 dBm

PSD NVNT BLE 1M 2480MHz

Report No.: TCT241107E023

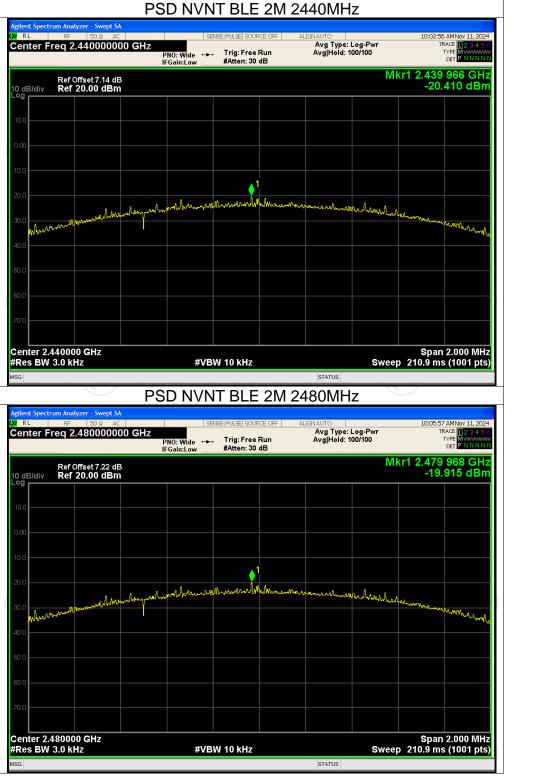
09:55:05 AMNov 11, 2024 TRACE 1 2 3 4 5 TYPE M DET P N N N N

gilent Spectrum Analyzer - Swept SA

Ref Offset 7.22 dB Ref 20.00 dBm

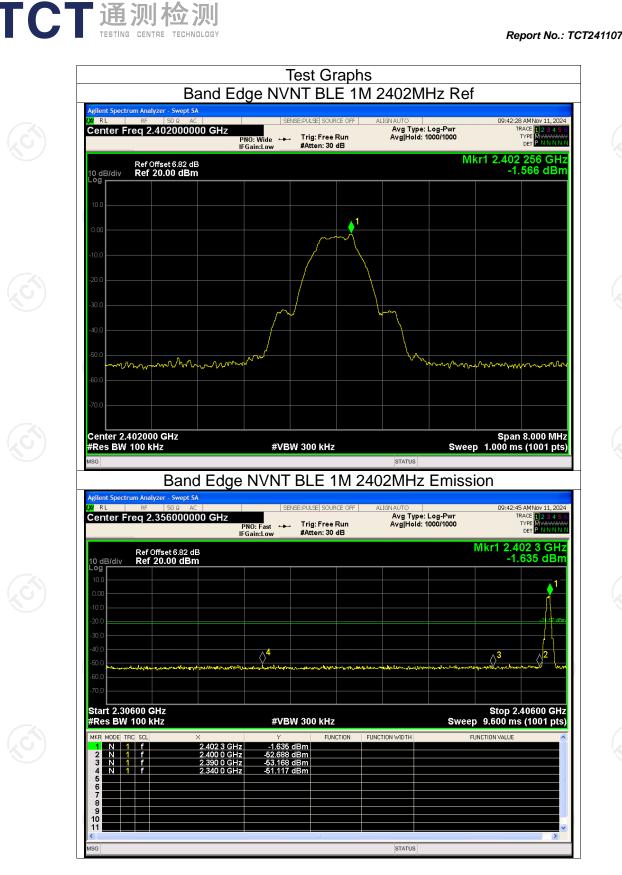
RL

10 dB/div

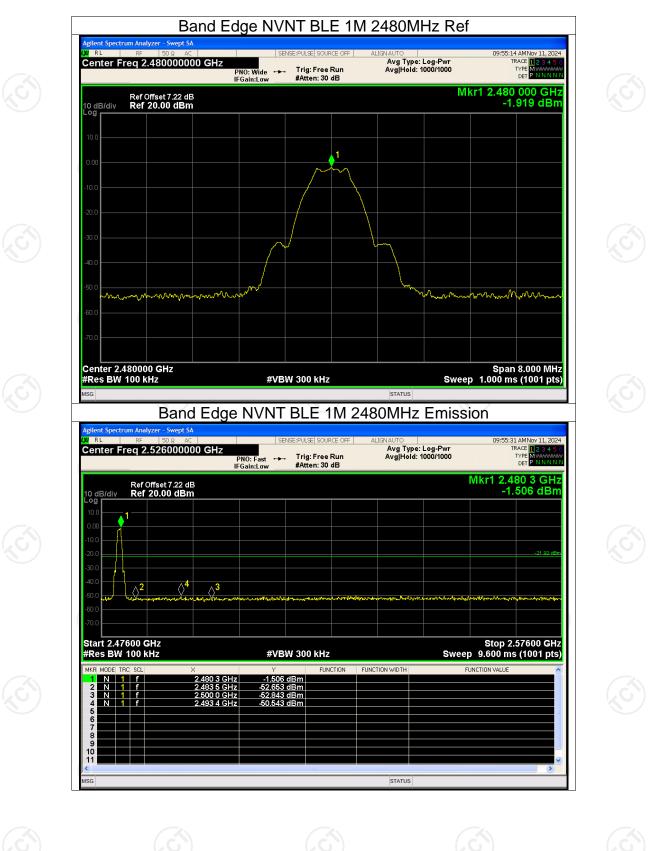


Page 42 of 56

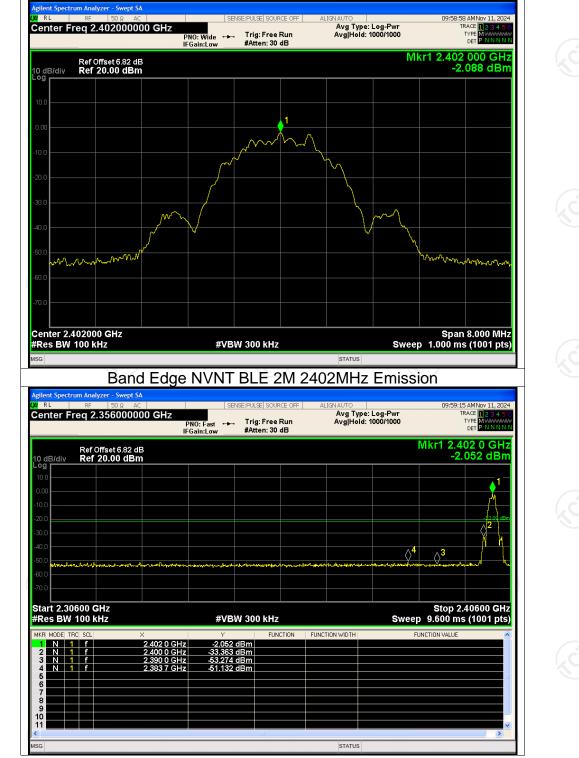
TCT通测检测 TECT通测检测



Page 43 of 56



Verdic	nit (dBc)	Lim	Bc)	Value (dl	Max	lHz)	quency (N	ode Fre	ition Mo	Conditio
Pass	-20			-49.54			2402	E 1M		NVNT
Pass	-20		(-48.62		6	2480	E 1M	NT BLE	NVNT
Pass	-20		N/	-49.04	ワ	8	2402	E 2M		NVNT
Pass	-20			-49.05			2480	E 2M	NT BLE	NVNT


TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 45 of 56

Page 47 of 56

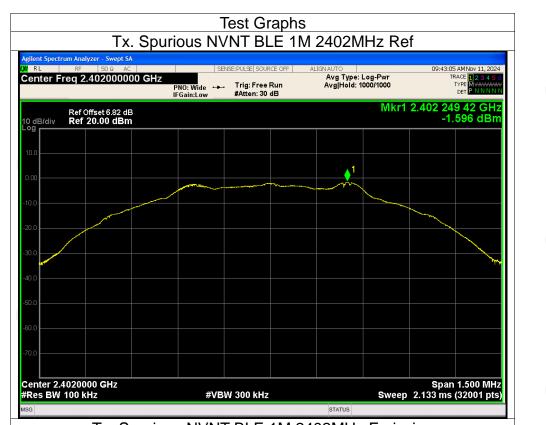
Band Edge NVNT BLE 2M 2402MHz Ref

Report No.: TCT241107E023

Conducted III Opunous Emission									
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict				
NVNT	BLE 1M	2402	-38.47	-20	Pass				
NVNT	BLE 1M	2440	-38.84	-20	Pass				
NVNT	BLE 1M	2480	-38.51	-20	Pass				
NVNT	BLE 2M	2402	-37.59	-20	Pass				
NVNT	BLE 2M	2440	-37.90	-20	Pass				
NVNT	BLE 2M	2480	-38.27	-20	Pass				
	5								

Conducted RF Spurious Emission

TCT 通测检测 TESTING CENTRE TECHNOLOGY



Page 49 of 56

RL

10 dB/div Log **r**

Center Freq 13.265000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

Tx. Spurious NVNT BLE 1M 2402MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast $\leftrightarrow \rightarrow$ Trig: Free Run IFGain:Low #Atten: 30 dB

Report No.: TCT241107E023

09:43:36 AMNov 11, 2024

Mkr1 2.401 5 GHz -4.353 dBm

TRACE 1 2 3 4 TYPE MWWW DET P N N N

Tx. Spurious NVNT BLE 1M 2440MHz Ref gilent Spect SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 09:46:51 AMNov 11, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N RL Center Freq 2.440000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 247 55 GHz -1.384 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div 1 Center 2.4400000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.133 ms (32001 pts) #VBW 300 kHz STATUS Tx. Spurious NVNT BLE 1M 2440MHz Emission

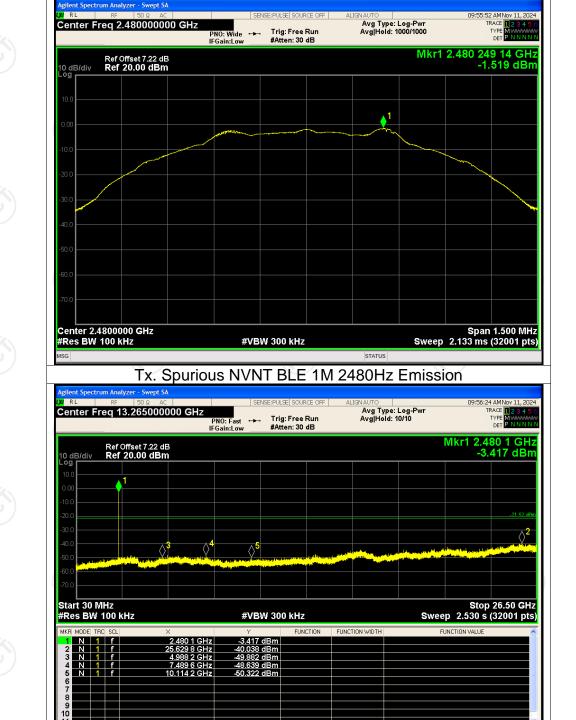
PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 10/10

Page 51 of 56

Report No.: TCT241107E023

22 AMNov 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N

Mkr1 2.440 4 GHz -1.371 dBm


RL

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

http://www.tct-lab.com Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332

Tx. Spurious NVNT BLE 1M 2480MHz Ref

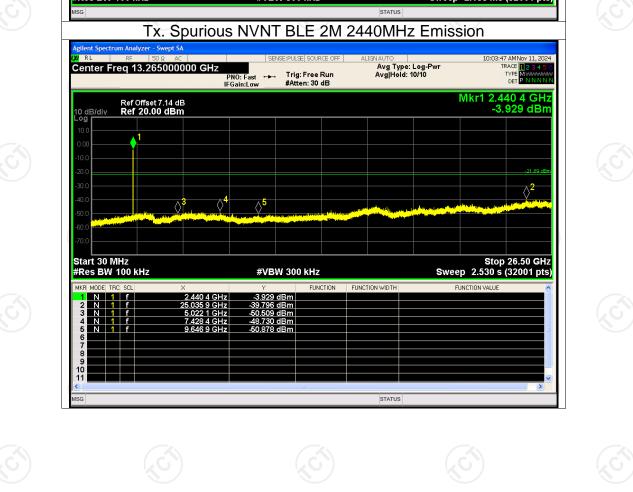
 Aglent Spectrum Andyzer - Swept SA
 09:59:59 of all Sectors
 00:59:59 of all Sectors
 00:59:59 of all Sectors
 00:59:59 of all

Tx. Spurious NVNT BLE 2M 2402MHz Ref

RL

Center Freq 13.265000000 GHz

Tx. Spurious NVNT BLE 2M 2402MHz Emission


Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Report No.: TCT241107E023

10:00:06 AMNov 11, 2024 TRACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.439 999 72 GHz -1.891 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div 1 ANN Center 2.440000 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 2.133 ms (32001 pts) #VBW 300 kHz

Tx. Spurious NVNT BLE 2M 2440MHz Ref

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

gilent Spect

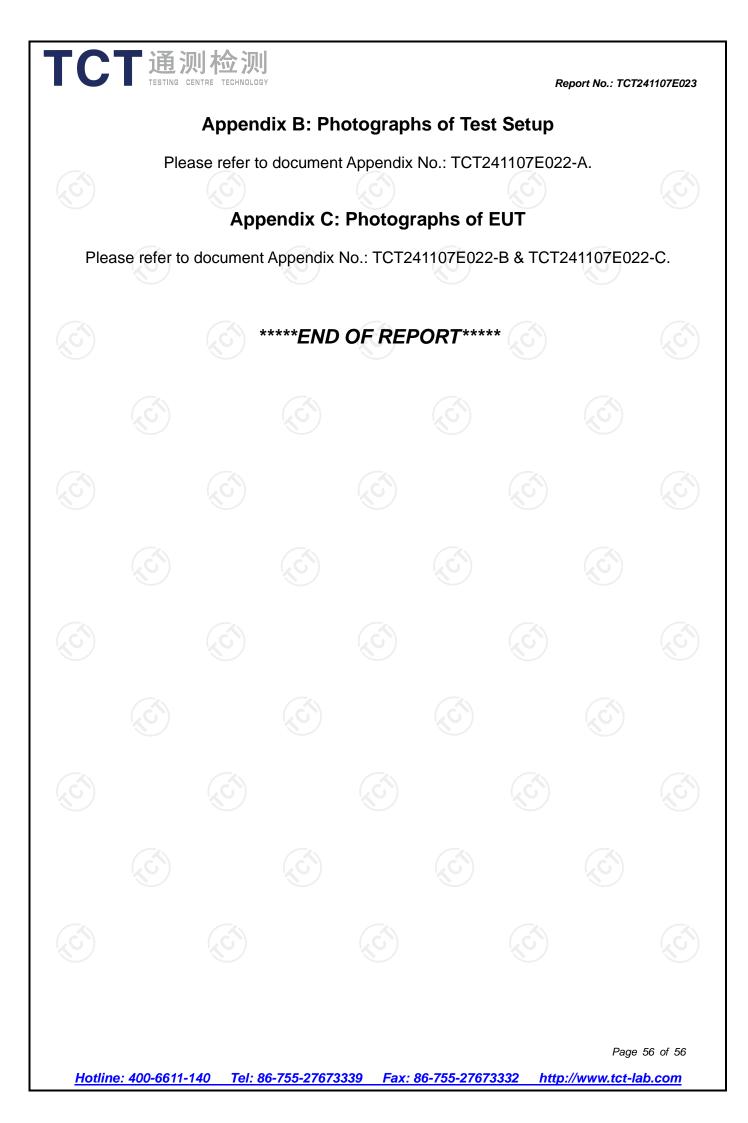
Center Freq 2.440000000 GHz

RL

Report No.: TCT241107E023

10:03:16 AMNov 11, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Page 54 of 56


SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1500/1500 10:06:53 AMNov 11, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N Center Freq 2.480000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 000 75 GHz -1.829 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div 1,1 Center 2.480000 GHz #Res BW 100 kHz Span 3.000 MHz Sweep 2.133 ms (32001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT BLE 2M 2480MHz Ref

gilent Spect

RL

Tx. Spurious NVNT BLE 2M 2480MHz Emission

