TABLE OF CONTENTS

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

TEST REPORT CONTAINING:

PAGE	1-5TEST EQUIPMENT LIST
PAGE	6TEST PROCEDURE
PAGE	7RADIATION INTERFERENCE TEST DATA
PAGE	8OCCUPIED BANDWIDTH
PAGE	9-10 OCCUPIED BANDWIDTH PLOTS
PAGE	11POWERLINE CONDUCTED
PAGE	12-13POWERLINE CONDUCTED PLOTS
PAGE	14 MODULAR REQUIREMENTS

EXHIBIT ATTACHMENTS:

EXHIBIT 1FCC ID LABEL SAMPLE
EXHIBIT 2SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 3BLOCK DIAGRAM
EXHIBIT 4SCHEMATIC
EXHIBIT 5INSTRUCTION MANUAL
EXHIBIT 6CIRCUIT DESCRIPTION
EXHIBIT 7A-7BCOMPONENT SIDE INTERNAL PHOTOS
EXHIBIT 8A-8BCOPPER SIDE INTERNAL PHOTOS
EXHIBIT 9TEST SET UP PHOTO
EXHIBIT 10CONFIDENTIALITY LETTER
EXHIBIT 11MODULAR APPROVAL LETTER

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

TABLE OF CONTENTS

Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
X X	Receiver, Beige Tower Spectrum Analyzer (Tan)	НР	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/02
X X	RF Preselector (Tan) Quasi-Peak Adapter (Tan)	HP HP	85685A 85650A	3221A01400 3303A01690	CAL 8/31/01 CAL 8/31/01	8/31/02 8/31/02
	Receiver, Blue Tower Spectrum Analyzer (Blue)	НР	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/02
	RF Preselector (Blue) Quasi-Peak Adapter (Blue)	HP HP	85685A 85650A	2926A00983 2811A01279	CHAR 10/22/01 CHAR 10/22/01	10/22/02 10/22/02
	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
X	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/02
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/01
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/02
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/02
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/02

APPLICANT: RECOTON CORPORATION
FCC ID: CLV-AW9T
REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 1

Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/02
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/01
Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 12/19/01	12/19/02
Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/02
Horn Antenna	ATM	19-443-6R	None	No Cal Required	
Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/02
Line Impedance Stabilization	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/02
Line Impedance Stabilization	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/02
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	(5/25/00)
Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/02
Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/02
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/03
AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/02
AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/02
AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/02
Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/03
Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/03
Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/03

FCC ID: CLV-AW9T
REPORT NO.: R\REC\585UT2\585UT2TestReport.doc
PAGE NO.: 2

Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/02
Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/02
Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/03
Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/03
Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/03
Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/02
Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/02
Injection Probe	Fischer Custom Communications	F-120-9A	270	CAL 6/1/01	6/1/02
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/01
Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 11/12/99	11/12/00
Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/02
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/02
Power Line Coupling/ Decoupling Network	Fischer Custom Communications	FCC-801-M2- 16A	01048	CAL 8/29/01	8/29/02
Power Line Coupling/ Decoupling Network	Fischer Custom Communications	FCC-801-M3- 16A	01060	CAL 8/29/01	8/29/02
VHF/UHF Current Probe	Fischer Custom Communications	F-52	130	CAL 8/30/01	8/30/02
Passive Impedance Adapter	Fischer Custom Communications	FCC-801-150- 50-CDN	01117 & 01118	CAL 8/29/01	8/29/02
Radiating Field Coil	Fischer Custom Communications	F-1000-4- 8/9/10-L-1M	9859	CAL 10/15/98	10/15/99

APPLICANT: RECOTON CORPORATION
FCC ID: CLV-AW9T
REPORT NO.: R\REC\585UT2\585UT2TestReport.doc
PAGE NO.: 3

Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/02
BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/02
BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/02
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/02
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/02
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/02
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/02
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/02
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/02
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/02
Egg Timer	Unk			CHAR 2/28/01	2/28/02
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/28/01	2/28/02
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		CHAR 2/28/01	2/28/02
EMC Immunity Test System	Keytek	CEMASTER	9810210		
AC Power Source	California Instruments	1251RP	L05865		
AC Power Source	California Instruments	PACS-1	X71484		
Isotropic Field Probe	Amplifier Research	FP5000	22839		
Isotropic Field Probe	Amplifier Research	FP5000	300103		

FCC ID: CLV-AW9T
REPORT NO.: R\REC\585UT2\585UT2TestReport.doc
PAGE NO.: 4

Capacitor Clamp	Keytek	CM-CCL	9811359	No Cal Required	
Amplifier	Amplifier Research	10W1000B	23117	No Cal Required	
Field Monitor	Amplifier Research	FM5004	22288	No Cal Required	
ELF Meter	F. W. Bell	4060	Not serialized		
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251- 2880	Timco #51	CHAR 1/23/02	1/23/03
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/03
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/03
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/03

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc
PAGE NO.: 5

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. The UUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz up to 1.0 GHz and 1.0MHz with a video BW of 3.0 MHz above 1.0 GHz. The ambient temperature of the UUT was 74° F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STAN-DARD C63.4-1992 using a 50uH LISN. Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed. The ambient temperature of the UUT was 74°F with a humidity of 69%.

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5 m. The UUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSIC63.4-1992 with the EUT 40 cm from the vertical ground wall.

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 6

FCC ID: CLV-AW9T

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NUMBER: 15.249, 15.209

REQUIREMENTS:

FIELD STRENGTH FIELD STRENGTH S15.209

of Fundamental: of Harmonics 30 - 88 MHz 40 dBuV/m @3M

902-928 MHZ 88 -216 MHz 43.5 2.4-2.4835 GHz 216 -960 MHz 46

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

TEST RESULTS: This unit DOES meet the FCC requirements.

TEST DATA:

Emission	Meter	Ant.	Coax	Correction	Field	
Frequency	Reading	Polarity	Loss	Factor	Strength	Margin
MHz	dBuV		đВ	dВ	dBuV/m	đВ
913.0	56.3	H	3.91	23.40	83.61	10.39
913.0	62.9	V	3.91	23.40	90.21	3.79
1826.0	10.0	V	2.82	28.43	41.25	12.75
2738.0	10.6	V	3.59	29.84	44.03	9.97
3652.0	-0.9	v	4.45	31.69	35.24	18.76
4565.0	3.9	v	5.59	33.58	43.07	10.93
5477.0	1.9	v	6.37	34.31	42.58	11.42
911.5	56.0	H	3.94	24.76	84.70	9.30
911.5	63.0	v	3.94	24.76	91.70	2.30
1823.0	11.0	v	2.81	28.43	42.24	11.76
2734.5	11.5	V	3.59	29.82	44.91	9.09
3646.0	0	V	4.45	31.66	36.11	17.89
4557.5	4.3	v	5.58	33.57	43.45	10.55
5469.0	2.2	v	6.34	34.31	42.87	11.13

TEST PROCEDURE: ANSI STANDARD C63.4-1992 using a Hewlett Packard Model 8566B spectrum analyzer, a Hewlett Packard Model 85685A Preselector, a Hewlett Packard Model 85650A Quasi-Peak adapter, and an appropriate antenna. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The spectrum was searched to at least the tenth(10) harmonic of the fundamental.

PERFORMED BY: JOSEPH SCOGLIO DATE: JUNE 13, 2002

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 7

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.249

REQUIREMENTS: The field strength of any emissions appearing

outside the band edges and up to $10~\mathrm{kHz}$ above and below the band edges shall be attenuated at least $50~\mathrm{dB}$ below the level of the carrier

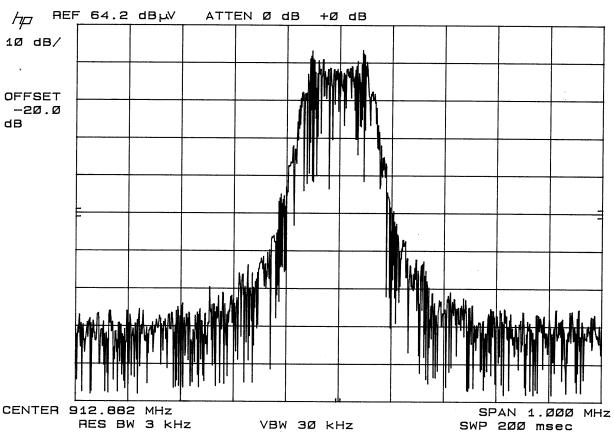
or to the general limits of 15.249.

THE PLOTS ON THE NEXT TWO PAGES REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was printed. The vertical scale is set to $-10~\mathrm{dBm}$ per division. The horizontal scale is set to $100~\mathrm{kHz}$ per division.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO DATE: JUNE 13, 2002

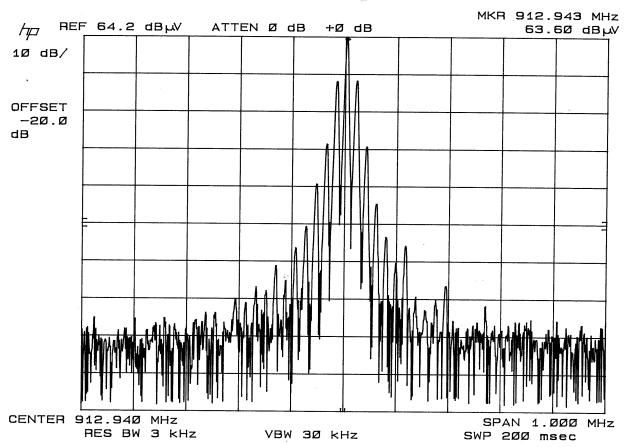

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 8

OCCUPIED BANDWIDTH PLOT :

OCCUPIED BANDWIDTH


FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 9

OCCUPIED BANDWIDTH PLOT - CW :

OCCUPIED BANDWIDTH - CW

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 10

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NUMBER: 15.107

MINIMUM REQUIREMENTS: FREQUENCY LEVEL

__MHz____ uV_

0.450-30 250

TEST PROCEDURE: ANSI STANDARD C63.4-1992

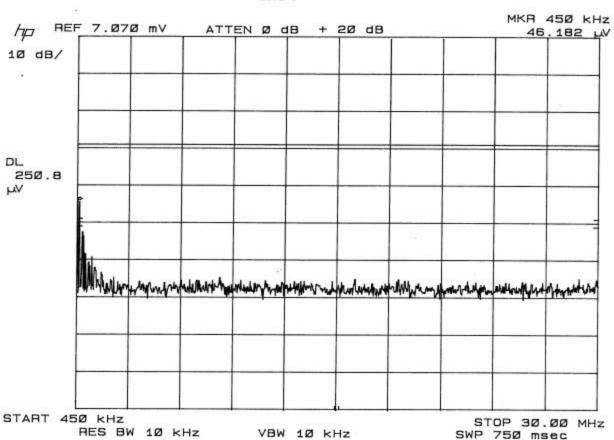
THE HIGHEST EMISSION READ FOR LINE 1 WAS 46.182 uV @ 450 kHz.

THE HIGHEST EMISSION READ FOR LINE 2 WAS 69.899 uV @ 510 kHz.

THE PLOTS ON THE NEXT TWO PAGES REPRESENT THE EMISSIONS READ FOR POWERLINE CONDUCTED FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.

PERFORMED BY: JOSEPH SCOGLIO DATE: JUNE 13, 2002

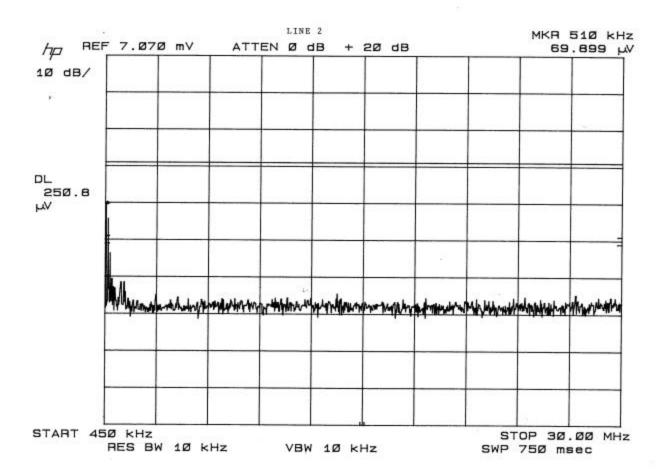

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 11

POWERLINE CONDUCTED LINE 1:

LINE 1



FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 12

POWERLINE CONDUCTED LINE 2:

FCC ID: CLV-AW9T
REPORT NO.: R\REC\585UT2\585UT2TestReport.doc

PAGE NO.: 13

MODULAR REQUIREMENTS

- 1. The modular transmitter must have its own RF shielding. The unit has a shield on top of the boards, over the RF section of the module and the bottom layer of the PCB board is a ground plane.
- 2. The modular transmitter must have buffered modulation data

The schematic for this unit shows buffered inputs. See the schematic in exhibit 4.

3. The modular transmitter must have its own power supply regulation.

The unit is supplied power by a plug in the wall transformer (wall wart). The unit has an on board 5 volt and 8 volt regulators.

- 4. The modular transmitter must comply with the antenna requirements of Section 15.203 and 15.204(c). The unit has a permanently attached ¼ wave wire antenna.
- 5. The modular transmitter must be tested in a stand-alone configuration.

The unit was tested stand alone. See the test setup photograph in exhibit 9.

6. The modular transmitter must be labeled with its own FCC ID

See the FCC ID Label Sample and Label Location in exhibits 1 and 2.

- 7. The modular transmitter must comply with any specific rule or operating requirements applicable to the transmitter. See the Users Manual in exhibit 5.
- 8. The modular transmitter must comply with any applicable RF exposure requirements.

The unit is of such low power it meets all RF Exposure requirements.

APPLICANT: RECOTON CORPORATION

FCC ID: CLV-AW9T

REPORT NO.: R\REC\585UT2\585UT2TestReport.doc
PAGE NO.: 14