

TEST REPORT

- **PRODUCT NAME** : Android Virtual Reality Headset
- MODEL NAME : AVR1-WT
- **BRAND NAME** : Variety Products,LLC.
- FCC ID : 2ANTOR551-A-AVR1-WT
- **STANDARD(S)** : 47 CFR Part 15 Subpart C
- **TEST DATE** : 2017-09-19 to 2017-11-06
- **ISSUE DATE** : 2017-11-06

Tested by:

Li Jung Zoug

Li Jingzong (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. 1	echnical Information4
1.1.	Manufacturer and Factory Information4
1.2.	Equipment Under Test (EUT) Description4
1.3.	Test Standards and Results5
1.4.	Environmental Conditions5
2. 4	7 CFR Part 15C Requirements6
2.1.	Antenna requirement6
2.2.	Peak Output Power6
2.3.	Bandwidth9
2.4.	Conducted Spurious Emissions and Band Edge 18
2.5.	Power spectral density (PSD)
2.6.	Restricted Frequency Bands40
2.7.	Conducted Emission52
2.8.	Radiated Emission 55
Ann	ex A Test Uncertainty71
Ann	ex B Testing Laboratory Information72

Change History					
Issue	Date	Reason for change			
1.0	2017-11-06	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	EmdoorVR Technology Co.,Ltd	
Applicant Address:	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,	
	Shenzhen	
Manufacturer:	EmdoorVR Technology Co.,Ltd	
Manufacturer Address:	811/F JinFuLai Building,49-1 Dabao Road, Bao An District,	
	Shenzhen	

1.2. Equipment Under Test (EUT) Description

Product Name:	Android Virtual Reality Headset
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	EM_R551_MB_V1.1A
Software Version:	VR0277/3.20.001
Modulation Type:	DSSS, OFDM
Operating Fraguency Banger	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Operating Frequency Range:	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Antenna Type:	FPCB Antenna
Antenna Gain:	1.84 dBi

Note 1: The EUT is a Android Virtual Reality Headset. It's operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.247(b)	Peak Output Power	Sep 19, 2017	Li Jingzong	PASS
3	15.247(a)	Bandwidth	Sep 19, 2017	Li Jingzong	PASS
4	15.247(d)	Conducted Spurious Emission and Band Edge	Sep 19, 2017	Li Jingzong	PASS
5	15.247(d)	Restricted Frequency Bands	Nov 03&05, 2017	Zheng Fengjian	PASS
6	15.207	Conducted Emission	Nov 06, 2017	Zheng Fengjian	PASS
7	15.209, 15.247(d)	Radiated Emission	Nov 06, 2017	Zheng Fengjian	PASS
8	15.247(e)	Power spectral density (PSD)	Sep 19, 2017	Li Jingzong	PASS

Note: The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013 and KDB558074 D01 v04 (04/05/2017).

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power

2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

2.2.3.1 802.11b Test Mode

Channel		Measured Output Peak Power		Limit		Vardiat
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	17.78	0.05998			PASS
6	2437	17.91	0.06180	30	1	PASS
11	2462	17.63	0.05794			PASS

Channel	Frequency (MHz)	Measured Output Average Power				Verdict
		dBm	W	dBm	W	
1	2412	15.87	0.03864			PASS
6	2437	16.01	0.03990	30	1	PASS
11	2462	15.45	0.03508			PASS

2.2.3.2 802.11g Test mode

Channel		Measured Output Peak Power		Limit		Vordiat
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	19.87	0.09705			PASS
6	2437	20.06	0.10139	30	1	PASS
11	2462	19.76	0.09462			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict	
		dBm	W	dBm	W		
1	2412	11.24	0.01330			PASS	
6	2437	11.47	0.01403	30	1	PASS	
11	2462	11.07	0.01279			PASS	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Measured Output Peak Power Limit Frequency (MHz) Channel Verdict W dBm W dBm 1 2412 18.82 0.07621 PASS PASS 6 2437 18.94 0.07834 30 1 11 2462 18.84 0.07656 PASS

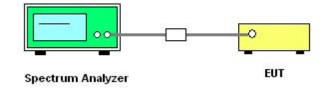
2.2.3.3 802.11n-20MHz Test mode

Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	10.48	0.01117			PASS
6	2437	10.50	0.01122	30	1	PASS
11	2462	10.31	0.01074			PASS

2.2.3.4 802.11n-40MHz Test mode

Channel Frequency (MHz)		Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	verdict
3	2422	18.47	0.07031			PASS
6	2437	18.97	0.07889	30	1	PASS
9	2452	18.89	0.07745			PASS

Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict	
		dBm	W	dBm	W		
3	2422	10.31	0.01074			PASS	
6	2437	10.77	0.01194	30	1	PASS	
9	2452	10.61	0.01151			PASS	



2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

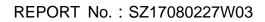
2.3.3. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

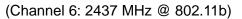
2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	10.10	≥500	PASS
6	2437	10.08	≥500	PASS
11	2462	10.09	≥500	PASS


B. Test Plots

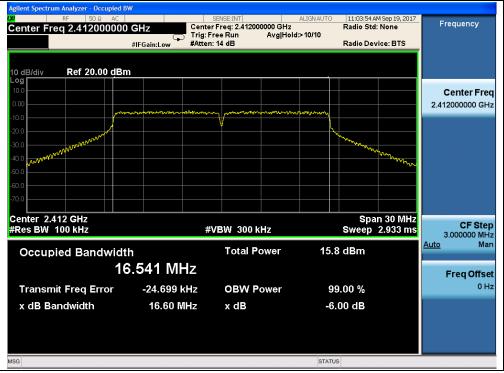
(Channel 1: 2412MHz @ 802.11b)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 11: 2462MHz @ 802.11b)

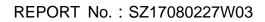
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	16.60	≥500	PASS
6	2437	16.60	≥500	PASS
11	2462	16.60	≥500	PASS


B. Test Plots:

(Channel 1: 2412MHz @ 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6: 2437MHz @ 802.11g)

(Channel 11: 2462MHz @ 802.11g)

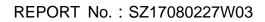
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

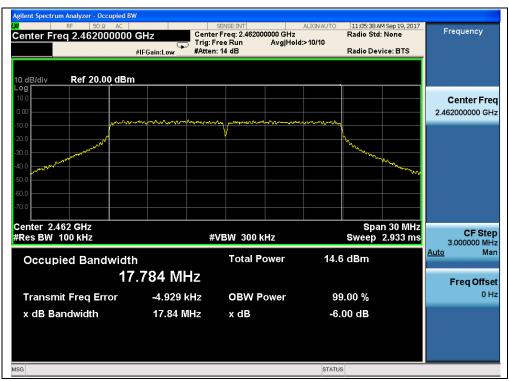
2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	17.83	≥500	PASS
6	2437	17.84	≥500	PASS
11	2462	17.84	≥500	PASS


B. Test Plots:


(Channel 1: 2412MHz @ 802.11n-20)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6: 2437MHz @ 802.11n-20)

(Channel 11: 2462MHz @ 802.11n-20)

MORLAB

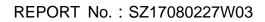
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

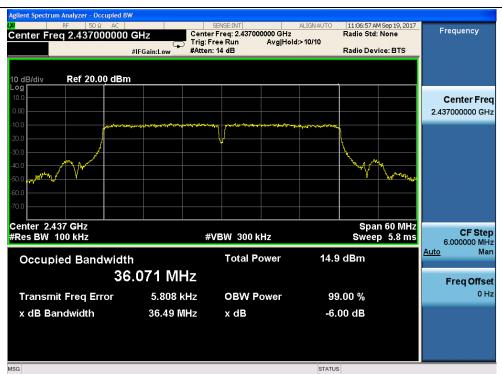


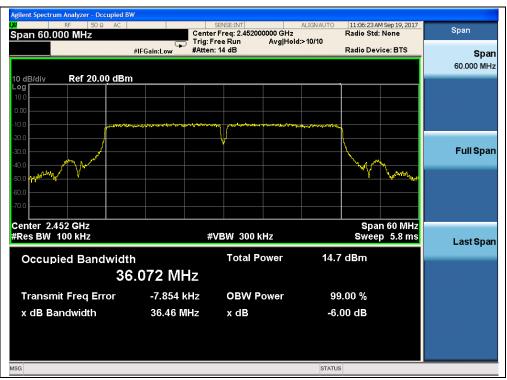
2.3.3.4 802.11n-40 Test mode

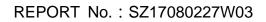
A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
3	2422	36.49	≥500	PASS
6	2437	36.49	≥500	PASS
9	2452	36.46	≥500	PASS


B. Test Plots:


(Channel 3: 2422Mz @ 802.11n-40)

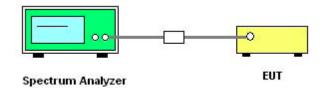

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Channel 9: 2452MHz @ 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

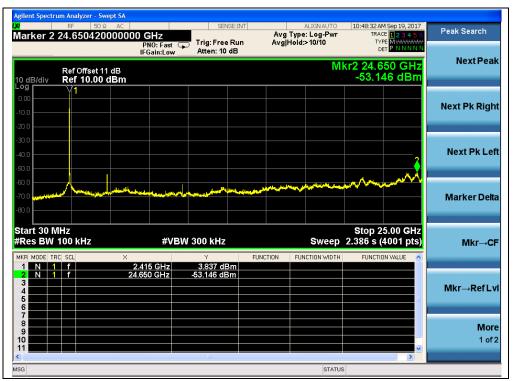
KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3. Test Result

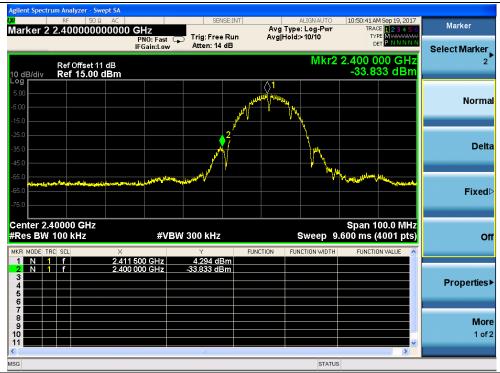
The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.


2.4.3.1 802.11b Test mode

A. Test Verdict:

	Fraguanay	Measured Max.	Limit		
Channel		Frequency (MHz) Out of Band		Calculated	Verdict
(MHz)	Emission (dBm)	Level	-20dBc Limit		
1	2412	-53.15	3.84	-16.16	PASS
6	2437	-53.66	4.15	-15.85	PASS
11	2462	-53.31	2.09	-17.91	PASS

B. Test Plots:


Note: the power of the Module transmitting frequency should be ignored.


(Channel = 1, 30MHz to 25GHz)

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Marker 2 24.694117500000 GHz SENSE:INT ALIGNAUTO 10:49:31.4M Sep 19, 2017 Peak Search PN0: Fast IFGain:Low Trig: Free Run Atten: 10 dB Avg Type: Log-Pwr Avg Hold>10/10 TrACE 12 3456 TYPE 2 3456 TYPE Peak Search Ref Offset 11 dB Mkr2 24.694 GHz NextPeat 10 dB/div Ref 10.00 dBm -53.308 dBm
Ref Offset 11 dB Mkr2 24.694 GHz
Ref Offset 11 dB WIKF2 24.694 GHZ
Log 1 Next Pk Rig 0.00 -10.0 -20.0
-30.0 -40.0 -50.0
160.0 7.70.0 180.0
Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (4001 pts) Mkr→C
MKR MODE TRC ScI X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE 1 N 1 f 2.458 GHz 2.086 dBm
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSG STATUS

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

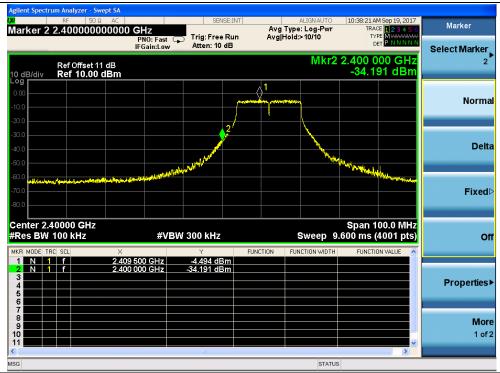
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4.3.2 802.11g Test mode

A. Test Verdict:

	Fraguanay	Measured Max.	Limi			
Channel	Frequency	Out of Band	Carrier	Calculated	Verdict	
	(MHz)	Emission (dBm)	Level -20dBc Limit			
1	2412	-53.07	-4.90	-24.90	PASS	
6	2437	-53.62	-5.28	-25.28	PASS	
11	2462	-52.66	-5.63	-25.63	PASS	

B. Test Plots:

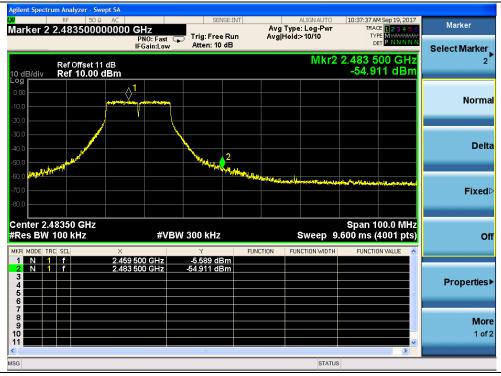

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

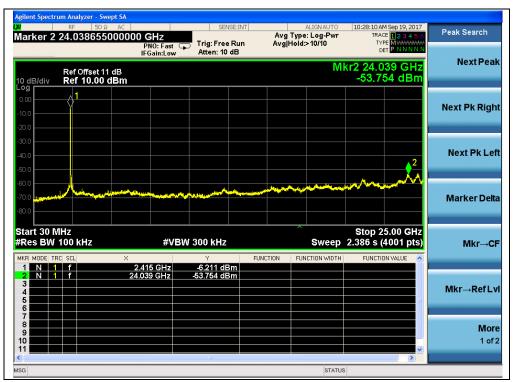
	RF 50Ω.	AC	SENS	EINT	ALIGN AUTO	10:40:43 AM Sep 19,		Peak Search
Marker 2 24	.00120000	PNO: Fast		Run Avg	g Type: Log-Pwr Hold:>10/10	TRACE 1 2 3 TYPE M	WWW -	Peak Search
		IFGain:Low	Atten: 10 c	18	M	kr2 24.001 G		Next Peak
10 dB/div	ef Offset 11 di ef 10.00 dB					-52.662 dE	Bm	
Log 0.00	<u>1</u>							
-10.0	<u> </u>							Next Pk Right
-20.0								
-30.0								Next Pk Left
-50.0						L (2	
-60.0				يد الله من ا	والمشار والعاري	wow when the second	M	
-70.0	Contraction of the local division of the loc	an a	and the second s					Marker Delta
-80.0								
Start 30 MHz #Res BW 10		#V	BW 300 kHz		Sweep	Stop 25.00 G 2.386 s (4001 p	Hz (ts)	Mkr→CF
MKR MODE TRC S	CL	Х	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	~	
1 N 1 2 N 1 1	f f	2.458 GHz 24.001 GHz	-5.633 dBi -52.662 dBi					
3 4 5								Mkr→RefLvl
6 7								
8								More
10								1 of 2
<							2	
MSG					STATU	S		

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

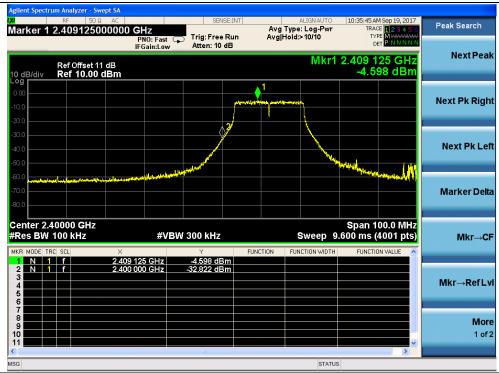
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

	Fraguanay	Measured Max.	Limi		
Channel	Frequency	Out of Band	Carrier	Calculated	Verdict
(MHz)		Emission (dBm)	Level -20dBc Limit		
1	2412	-53.75	-6.21	-26.21	PASS
6	2437	-53.49	-5.76	-25.76	PASS
11	2462	-56.58	-6.29	-26.29	PASS

B. Test Plots:

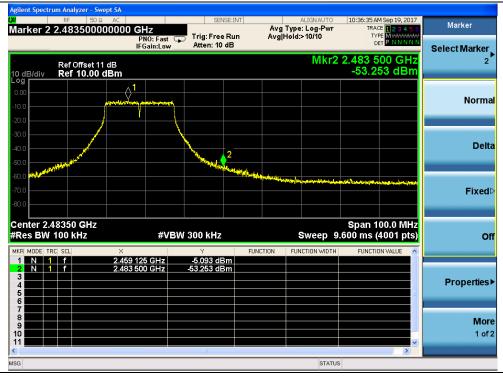

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Swept SA				
₩ RF 50 Ω AC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	10:30:28 AM Sep 19, 2017 TRACE 1 2 3 4 5 6	Peak Search
PNO: Fast IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold:>10/10	TYPE MWWWWW DET PNNNNN	
		N	1kr2 2.539 GHz	Next Peak
Ref Offset 11 dB 10 dB/div Ref 10.00 dBm			-56.584 dBm	
-10.0				Next Pk Right
-20.0				
-30.0				
-40.0				Next Pk Left
-50.0				
-60.0	and the second	والمالي المعجبين المساحر المساحر المسالي	m	
-70.0	And the second descent of the second descent			Marker Delta
-80.0				
Start 30 MHz	^		Stop 25.00 GHz	
#Res BW 100 kHz #VBW	300 kHz	Sweep	2.386 s (4001 pts)	Mkr→CF
MKR MODE TRC SCL X	Y FUNC	TION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.539 GHz	-56.584 dBm			
				Mkr→RefLvl
5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			=	
7				
9				More 1 of 2
			×	1012
MSG		STATUS		

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.4 802.11n -40MHz Test mode

A. Test Verdict:

Fraguanay		Measured Max.	Limit (dBm)		
Channel	Frequency	Out of Band	Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)	Level	-20dBc Limit	
3	2422	-52.90	-8.29	-28.29	PASS
6	2437	-53.98	-8.51	-28.51	PASS
9	2452	-53.29	-8.74	-28.74	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 3, 30MHz to 25GHz)

(Band Edge @ Channel = 3)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Swe					
Marker 2 24.6254500	000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	10:34:24 AM Sep 19, 2017 TRACE 1 2 3 4 5 6	Peak Search
	PNO: Fast C IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold: 10/10		
Ref Offset 11 10 dB/div Ref 10.00 c			М	kr2 24.625 GHz -53.286 dBm	Next Peak
0.00 1 -10.0					Next Pk Right
-30.0					Next Pk Left
-60.0 -70.0 -80.0	الريدان والاردية فتواديه الجارة المتحم	Langer and the second sec	and the second		Marker Delta
Start 30 MHz #Res BW 100 kHz	#VB	W 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (4001 pts)	Mkr→CF
MRR MUDe FIC SUL 1 N 1 f 2 N 1 f 3	2.446 GHz 24.625 GHz	-8.743 dBm -53.286 dBm	INCTION FORCTION WIDTH	FUNCTION VALUE	Mkr→RefLvl
7 8 9 10 11				~	More 1 of 2
MSG			STATU	s	

(Channel = 9, 30MHz to 25GHz)

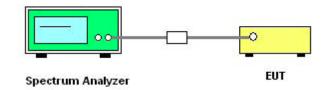
(Band Edge @ Channel = 9)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 30MHz
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10KHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please reference ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)					
Channel	Frequency	Measured PSD	Limit	Vardiat	
Channel	(MHz)	(dBm/3kHz)	(dBm/3kHz)	Verdict	
1	2412	-15.40	8	PASS	
6	2437	-15.36	8	PASS	
11	2462	-14.88	8	PASS	
Measurement uncertainty: ±1.3dB					

B. Test Plots:

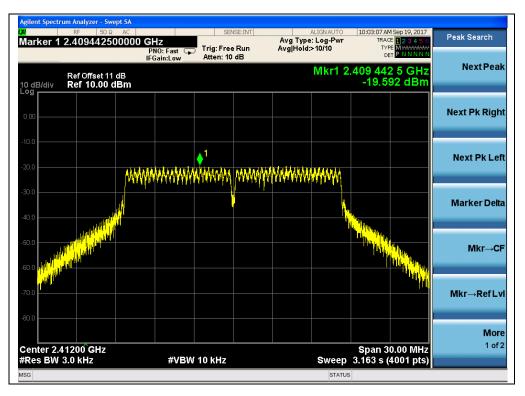
(Channel = 1 @ 802.11b)

(Channel = 6 @ 802.11b)

(Channel = 11 @ 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

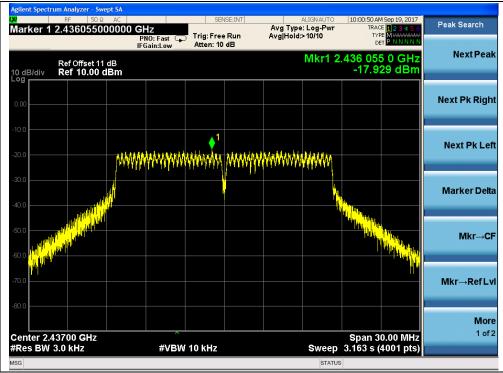


2.5.3.2 802.11g Test mode

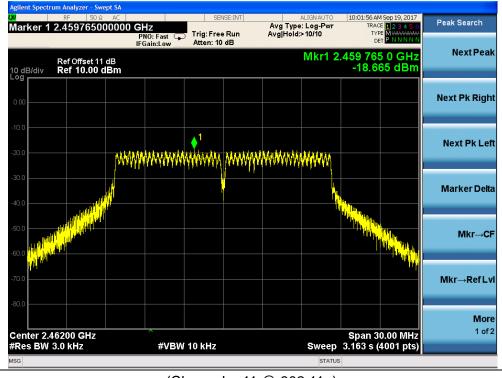
A. Test Verdict:

Spectral power density (dBm/3kHz)				
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
1	2412	-19.59	8	PASS
6	2437	-17.93	8	PASS
11	2462	-18.67	8	PASS
Measurement uncertainty: ±1.3dB				

B. Test Plots:



(Channel = 1 @ 802.11g)



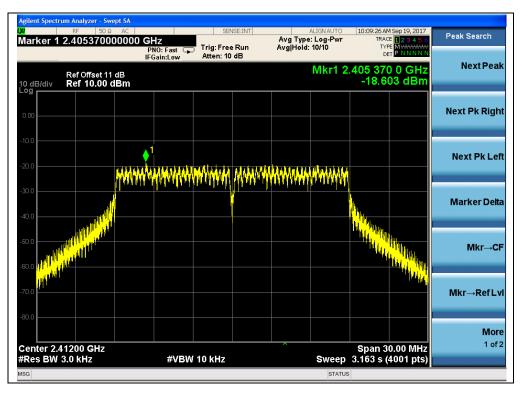
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6 @ 802.11g)

(Channel = 11 @ 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

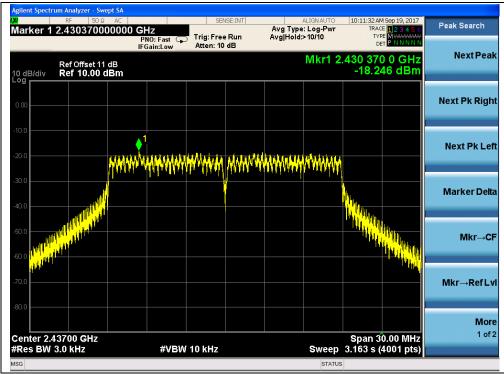


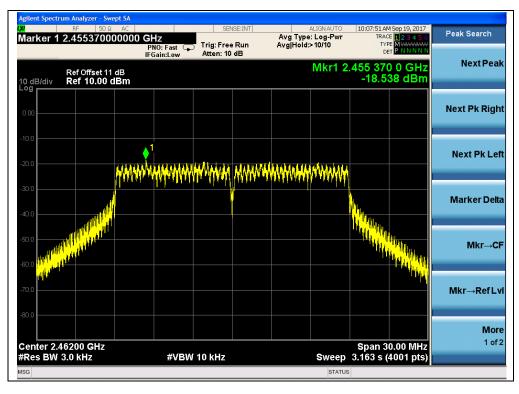
2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)				
Channel	Frequency	Measured PSD	Limit	Verdict
	(MHz)	(dBm/3kHz)	(dBm/3kHz)	verdici
1	2412	-18.60	8	PASS
6	2437	-18.25	8	PASS
11	2462	-18.54	8	PASS
Measurement uncertainty: ±1.3dB				

B. Test Plots:


(Channel = 1 @ 802.11n-20MHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

REPORT No. : SZ17080227W03

(Channel = 6 @ 802.11n-20MHz)

(Channel = 11 @ 802.11n-20MHz)

MORLAB

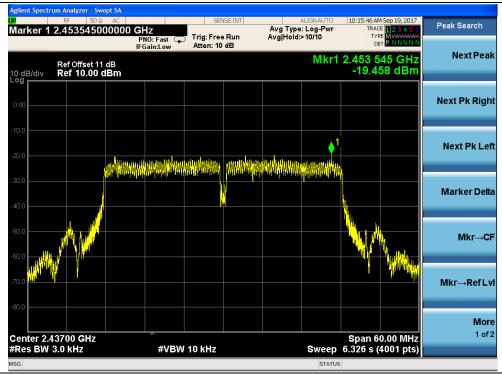
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

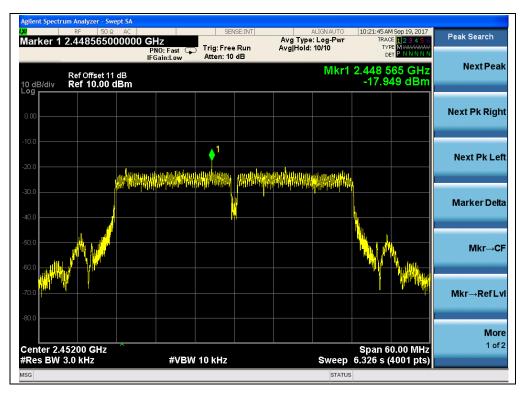
2.5.3.4 802.11n-40MHz Test mode

A. Test Verdict:

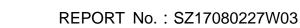
	Spectral power density (dBm/3kHz)									
Channel	Frequency	Measured PSD	Limit	Vardiat						
Channel	(MHz)	(dBm/3kHz)	(dBm/3kHz)	Verdict						
3	2422	-17.86	8	PASS						
6	2437	-19.46	8	PASS						
9	2452	-17.95	8	PASS						
Measurem	ent uncertainty:	±1.3dB								

B. Test Plots:


(Channel = 3 @ 802.11n-40MHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

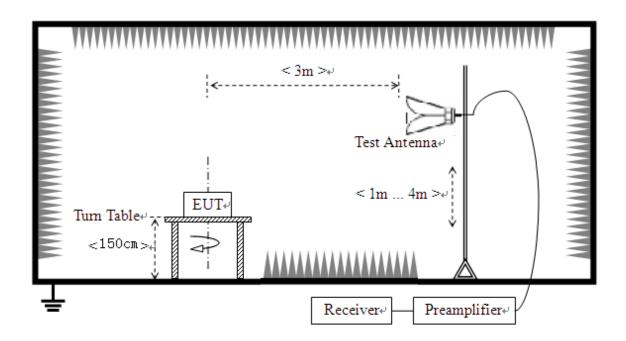
REPORT No. : SZ17080227W03


(Channel = 6 @ 802.11n-40MHz)

(Channel = 9 @ 802.11n-40MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

REPORT No. : SZ17080227W03

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

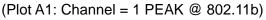
Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamiler	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	voraiot
1	2386.24	PK	46.52	-47.23	32.6	31.89	74	Pass
1	2386.24	AV	31.94	-47.23	32.6	17.31	54	Pass
11	2488.22	PK	48.75	-47.31	32.6	34.04	74	Pass
11	2487.88	AV	36.79	-47.31	32.6	22.08	54	Pass



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

03:35:21 PM Nov 03, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P S N N N Trace/Detector Marker 2 2.386240000000 GHz Avg Type: Log-Pwi Avg|Hold:>100/100 Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Select Trace Mkr2 2.386 24 GHz 46.519 dBµV Ref 100.00 dBµV 10 dB/div Log Detector Peak Auto Man **A1** Preset <mark>♦</mark>2 Detectors **Clear Trace** Start 2.30000 GHz #Res BW 1.0 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** 2.390 00 GHz 2.386 24 GHz 45.256 dBµV 46.519 dBµV f f Preset All Traces More 2 of 3

(Plot A2: Channel = 1 AVG @ 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept S							
RL RF 50 Ω A arker 2 2.488220000	000 GHz	SENS	Av	g Type: Log-Pwr Hold:>100/100	03:48:58 PM Nov TRACE 1 2 TYPE M	3456	Marker
	PNO: Fast (IFGain:Low	Atten: 10 c		Hold.>100/100		NNNN	Select Marker
dB/div Ref 100.00 dl	3μV			Mkr2	2.488 220 48.752 d	GHz BµV	2
							Norm
0.0	Martine Standing						
0.0		and a station and the many and	$\sim 0^{1}$	2 2			Del
0.0						4 000000000000000000000000000000000000	
0.0							Fixe
0.0							
tart 2.46200 GHz Res BW 1.0 MHz	#VB	W 3.0 MHz		Sweep 1	Stop 2.50000 .000 ms (100		ć
KR MODE TRC SCL	× 2.483 500 GHz	۲ 46.914 dBµ	FUNCTION	FUNCTION WIDTH	FUNCTION VAL	UE 🔺	
	2.485 500 GHZ 2.488 220 GHZ	48.752 dBµ	v 				Propertie
6 7 8							
9 0							M o 1 o
1							

(Plot B1: Channel = 11 PEAK @ 802.11b)

(Plot B2: Channel = 11 AVG @ 802.11b)

MORLAB

2.6.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2382.21	PK	46.97	-47.23	32.6	32.34	74	Pass
1	2382.21	AV	30.47	-47.23	32.6	15.84	54	Pass
11	2485.07	PK	52.15	-33.18	32.5	51.47	74	Pass
11	2484.00	AV	36.73	-33.18	32.5	36.05	54	Pass

B. Test Plots:

(Plot C1: Channel = 1 PEAK @ 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

Keysight Spectrum Analyzer - Swept SA κ RF 50 Ω AC Video BW 10 Hz			/g Type: Log-Pwr /g Hold:>100/100	03:59:15 PM Nov 03, 2017 TRACE 1 2 3 4 5 0 TYPE M		BW
		: 10 dB		DET P S NNNI 1 2.382 21 GHz		Res BV 1.0 MH
10 dB/div Ref 100.00 dBµV				30.473 dBµV	Auto	Ma
90.0						Video B\ 10 ⊢
80.0					Auto	Ma
60.0					VBV	10.
40.0			1_	²	<u>Auto</u>	Ma
30.0			~·		Spai	n:3dB RBN 10
10.0					<u>Auto</u>	Ma
Start 2.30000 GHz #Res BW 1.0 MHz	#VBW 10 Hz		Sween	Stop 2.41200 GHz 8.733 s (1001 pts)	RB	N Control
MKR MODE TRC SCL X	**US4* 10112	FUNCTION	FUNCTION WIDTH		[Gaus	ssian,-3 dB]
	32 21 GHz 30.473 90 00 GHz 32.480					
4 5				=		
6 7 8						
9 10 10 10 10 10 10 10 10 10 10 10 10 10						
11 <						

(Plot C2: Channel = 1 AVG @ 802.11g)

(Plot D1: Channel = 11 PEAK @ 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

	4Nov 05, 2017	07-44-22.0	ALIGN OFF		ALT.	SENSE				nalyzer - Swe EL 50 Ω		
Marker	E 1 2 3 4 5 6 E M WWWW	TRA	e: Voltage			Free R	Tain		00000 G			
Select Marke	T P P N N N N	D	1:>100/100	Avgin	in	n: 6 dB		PNO: Fast (FGain:Low				
:	02 GHz 0 dBµV	2.484 0 36.73	Mkr2						dBµV	100.00	Ref	/div
Norm									~~~~			
									\rightarrow			
Del					2							
Fixed												
FIXE												
									<u> </u>			
c	0000 GHz 1001 pts)	4.357 s (Sweep			z	W 10 H	#VB	z	shz R) 1 MH		2.462 BW (C
	N VALUE	FUNCTI	NCTION WIDTH	rion	FUNC		Y		х		SCL	
						7 dBµV) dBµV		00 GHz 02 GHz	2.483 5		f	N 1 N 1
Properties												
	=											
Мо											\square	
1 0												
	-											

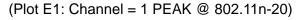
(Plot D2: Channel = 11 AVG @ 802.11g)

2.6.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission E	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	⊏ (dBµV/m)	(dBµV/m)	
1	2387.70	PK	50.95	-47.23	32.6	36.32	74	Pass
1	2389.38	AV	38.92	-47.23	32.6	24.29	54	Pass
11	2485.10	PK	51.84	-33.18	32.5	51.16	74	Pass
11	2483.89	AV	37.81	-33.18	32.5	37.13	54	Pass



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

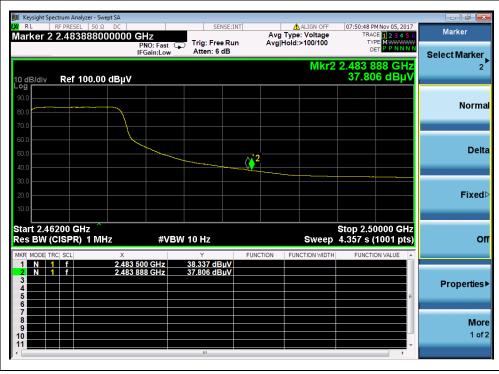
er - Swent SA :46 PM Nov 03, 2017 Marker 1 2.387696000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 TYPE Marker Trig: Free Run Atten: 10 dB TYPE PNO: Fast IFGain:Low DE Select Marker Mkr1 2.387 70 GHz 50.947 dBµ\ Ref 100.00 dBµV 10 dB/div Log Normal 02 Delta **Fixed** Start 2.30000 GHz #Res BW 1.0 MHz Stop 2.41200 GHz 1.000 ms (1001 pts) #VBW 3.0 MHz Sweep Off FUNCTION FUNCTION 50.947 dBµV 49.523 dBµV 2.387 70 GHz 2.390 00 GHz **Properties**► More 1 of 2

(Plot E2: Channel = 1 AVG @ 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755

 Http://www.morlab.cn
 E-mail: service


Fax: 86-755-36698525 E-mail: service@morlab.cn

📁 Keysight Spectrum Analyzer - Swept SA				
XX RL RF PRESEL 50 Ω DC Marker 2 2.485104000000	GHz PNO: Fast C Trig: Free Rur	Avg Type: Voltage	07:49:44 PM Nov 05, 2017 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Trace/Detector
	IFGain:Low Atten: 6 dB	-		Select Trace
10 dB/div Ref 100.00 dBµV		MKr	2 2.485 104 GHz 51.844 dBµV	1
90.0				Detector Peak
80.0				Auto Mar
50.0		have a second and a	A manual management	Preset Detectors
40.0				
20.0				Clear Trace
10.0				
Start 2.46200 GHz			Stop 2.50000 GHz	
Res BW (CISPR) 1 MHz	#VBW 3.0 MHz	-	1.000 ms (1001 pts)	Clear All Traces
MKR MODE TRC SCL X 1 N 1 f 2.483	۲ 500 GHz 52.372 dBµV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.485	5 104 GHz 51.844 dBµV			Prese
			Ξ	All Traces
7 8 9 9				More
9 10 10 10 10 10 10 10 10 10 10 10 10 10				2 of 3
	m			

(Plot F1: Channel = 11 PEAK @ 802.11n-20)

(Plot F2: Channel = 11 AVG @ 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.4 802.11n-40MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2388.37	PK	77.27	-47.23	32.6	62.64	74	Pass
3	2388.37	AV	59.12	-47.23	32.6	44.49	54	Pass
9	2486.24	PK	54.09	-33.18	32.5	53.41	74	Pass
9	2484.12	AV	40.53	-33.18	32.5	39.85	54	Pass

B. Test Plots:

(Plot E1: Channel = 3 PEAK @ 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE		05:12:12 PM Nov 03, 2017	BW
Video BW 10 Hz	PNO: Fast 😱 Trig: Free F		TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P S N N N N	
	IFGain:Low Atten: 30 d	-		Res E 1.0 M
10 dB/div Ref 120.00 dBµV	1		r1 2.388 37 GHz 59.118 dBµV	Auto <u>M</u>
110				Video E
100				10 Auto <u>M</u>
90.0				VBW:3dB RE
70.0			12	1
60.0			Y	<u>Auto</u> M
50.0				Span:3dB RE
30.0				1 <u>Auto</u> M
Start 2.30000 GHz			Stop 2.41200 GHz	
#Res BW 1.0 MHz	#VBW 10 Hz	Sweep	5.733 s (1001 pts)	RBW Contro [Gaussian,-3 dE
MKR MODE TRC SCL X	× 88 37 GHz 59.118 dBu	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	
	90 00 GHz 60.115 dBµ			
4				
5			E	
7 8 11 11 11 11 11 11 11 11 11 11 11 11 11				
9 10				

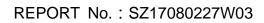
(Plot E2: Channel = 3 AVG @ 802.11n-40)

(Plot F1: Channel = 9 PEAK @ 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn



- 7									ectrum Analyzer	
	Nov 05, 2017 E 1 2 3 4 5 6		ALIGN OFF	Ava	E:INT	SEN	247	50 Ω DC 6000000 (RF PRESEL 5	RL arkor 2
W NN		TYP	d:>100/100			Trig: Free Atten: 6 c	PNO: Fast G		2.404110	
		2.484 1	Mkr2				Guilleow			
V	1 dBµV	40.53						.00 dBµV	Ref 100.	dB/div
										29 D.0
Nor										0.0
										0.0
										0.0
D							\sim			0.0
				<u>-</u>		~~~	\sim			
										0.0
										0.0
Fixe										0.0
										0.0
Z	000 GHz	Stop 2.50							6200 GHz	art 2.4
s)	1001 pts)	4.357 s (1	Sweep			10 Hz	#VBW	MHz	CISPR) 1	es BW (
·	N VALUE	FUNCTIO	JNCTION WIDTH	TION		Y		х	RC SCL	
						40.974 dB 40.531 dB	00 GHz 16 GHz	2.483	1 f 1 f	1 N ·
Propertie						10.001 40				3
E	E									5
										6 7
м										B
1										9
•	~									1

(Plot F2: Channel = 9 AVG @ 802.11n-40)

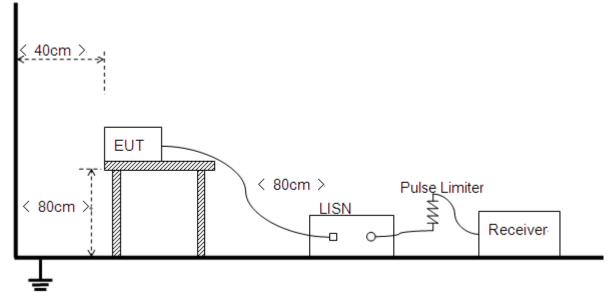
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)						
(MHz)	Quai-peak	Average					
0.15 - 0.50	66 to 56	56 to 46					
0.50 - 5	56	46					
5 - 30	60	50					


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

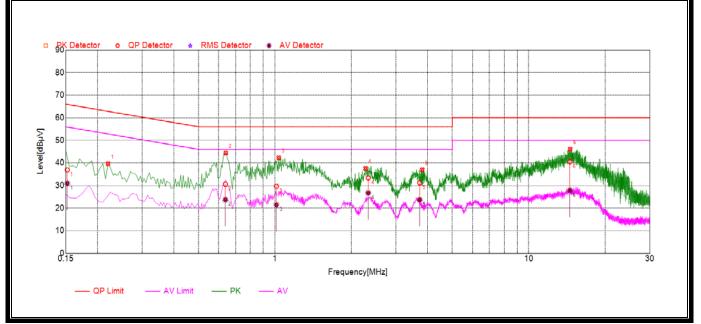
The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

MORLAB

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3. Test Result

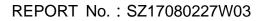

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Α. Test setup:

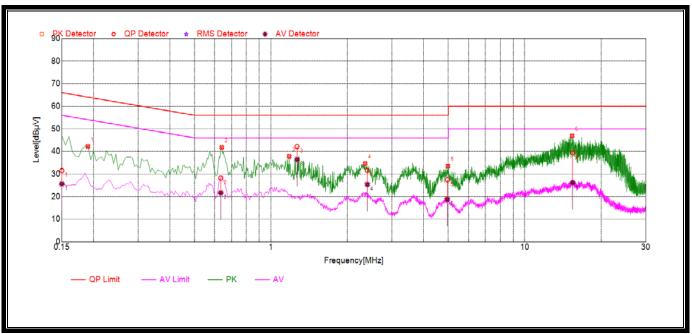
The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

B. Test Plots:


(Plot A: L Phase)

NO.	Fre.			Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.152	36.88	30.97	65.89	55.89		PASS
2	0.638	30.56	23.76	56.00	46.00]	PASS
3	1.0128	29.66	21.42	56.00	46.00	Line	PASS
4	2.331	33.33	26.68	56.00	46.00	LINE	PASS
5	3.7186	31.19	23.75	56.00	46.00		PASS
6	14.5352	40.52	27.87	60.00	50.00		PASS



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525

(Plot B: N Phase)

NO.	Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.15	31.49	25.60	66.00	56.00		PASS
2	0.6342	28.27	21.64	56.00	46.00		PASS
3	1.2668	42.15	36.40	56.00	46.00	Lino	PASS
4	2.398	31.56	25.38	56.00	46.00	Line	PASS
5	4.9538	27.44	18.87	56.00	46.00		PASS
6	15.443	39.44	26.21	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

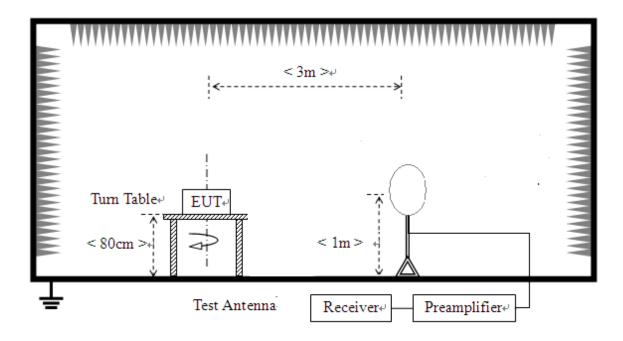
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

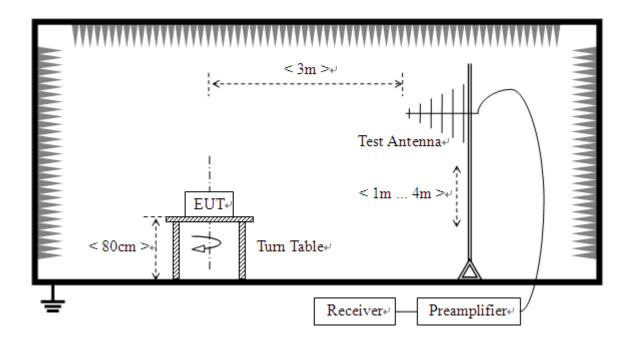
Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)



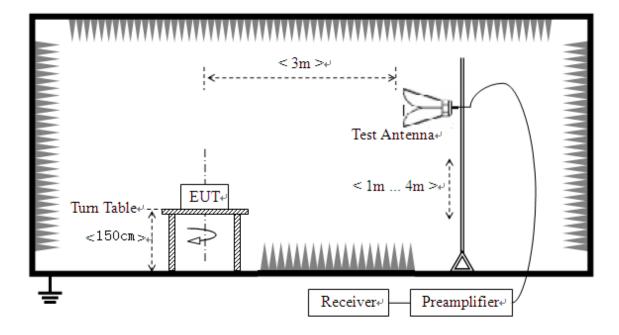
REPORT No. : SZ17080227W03


2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

the site as factors are calculated to correct the reading

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please reference ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

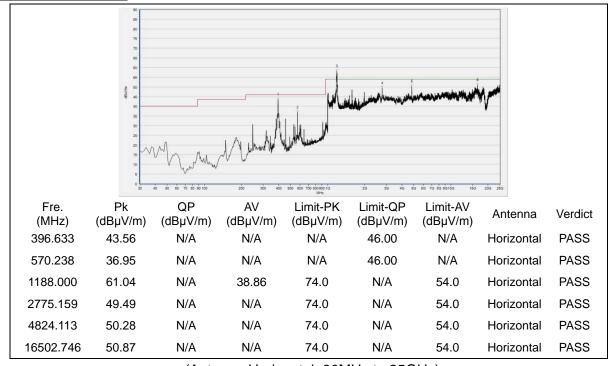
U_R: Receiver Reading

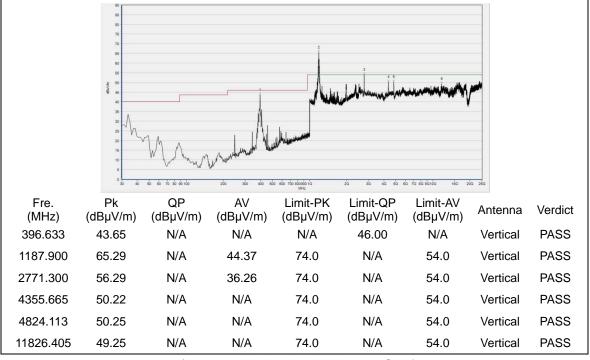
G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



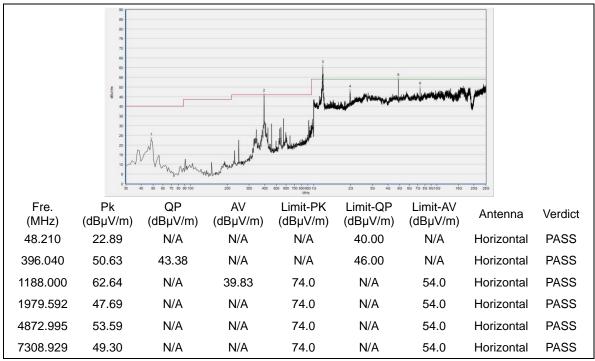

2.8.3.1 802.11b Test mode

A. Test Plots for the Whole Measurement Frequency Range:

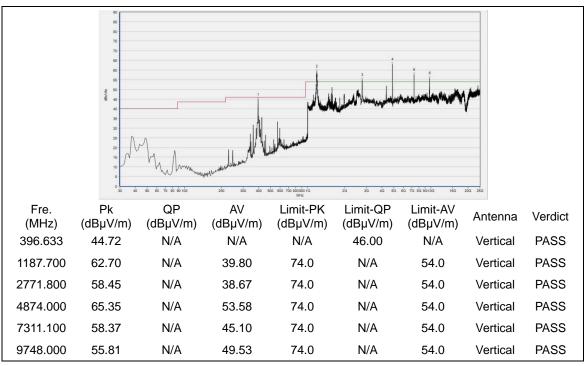
Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

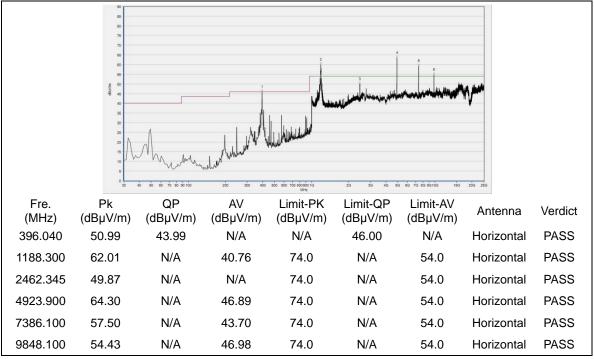

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

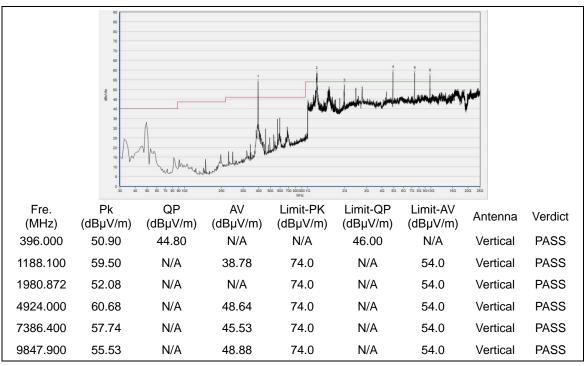
Fax: 86-755-36698525 E-mail: service@morlab.cn



Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)

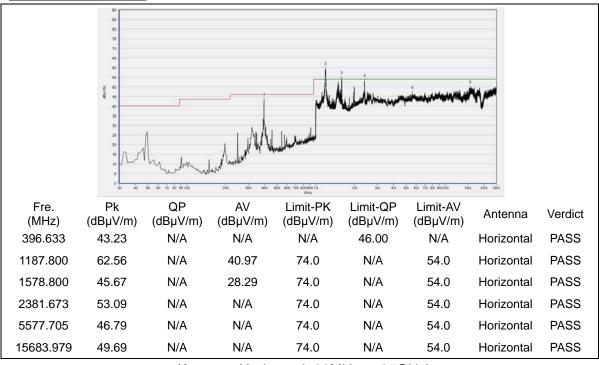


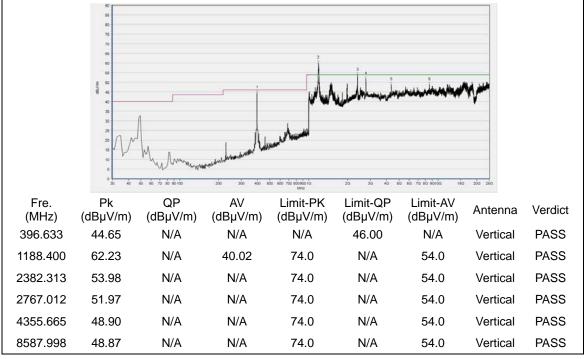
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

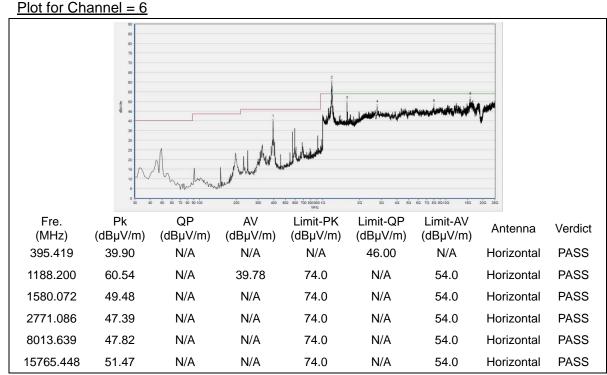

2.8.3.2 802.11g Test mode

B. Test Plots for the Whole Measurement Frequency Range:

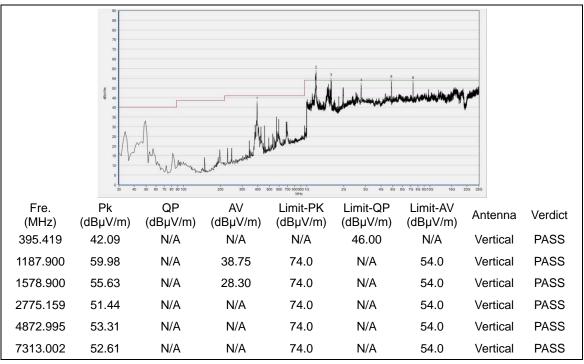
Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

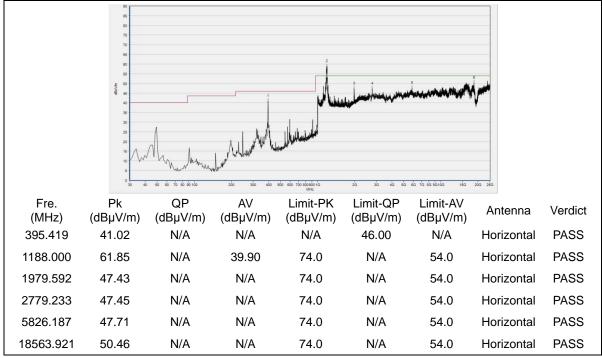


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-m

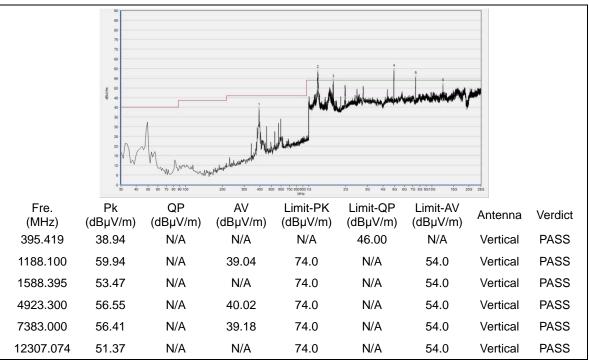

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



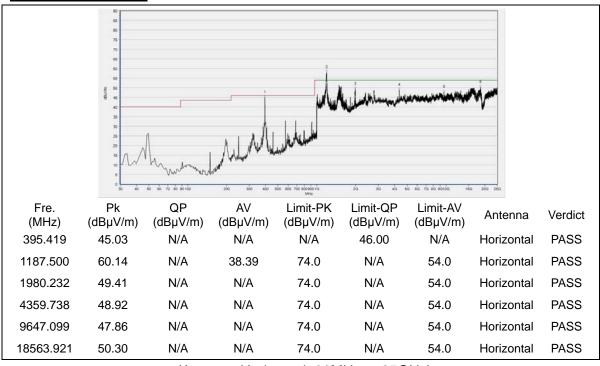
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

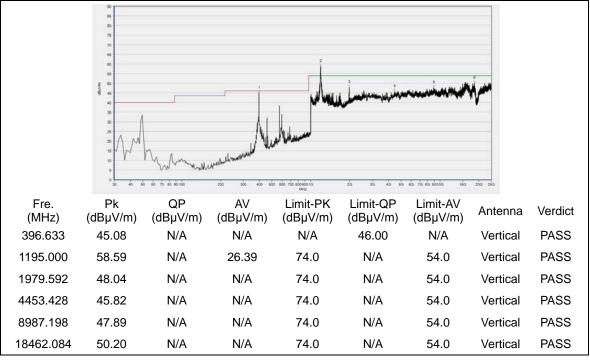


Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

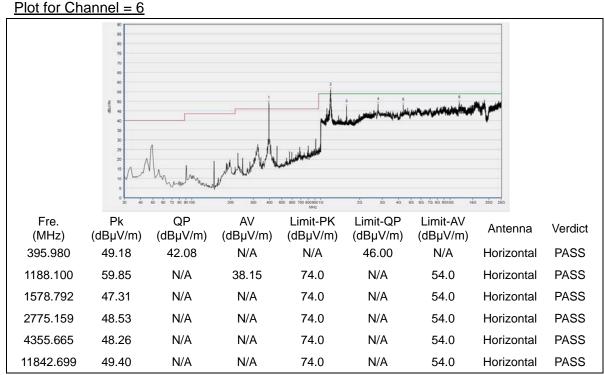

2.8.3.3 802.11n-20MHz Test mode

C. Test Plots for the Whole Measurement Frequency Range:

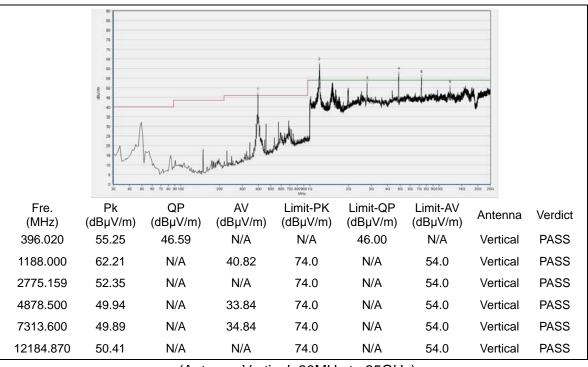
Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

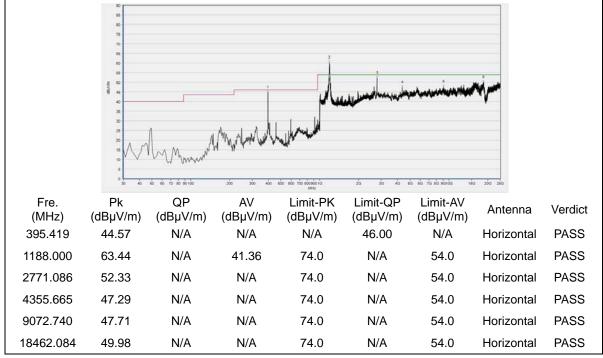


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

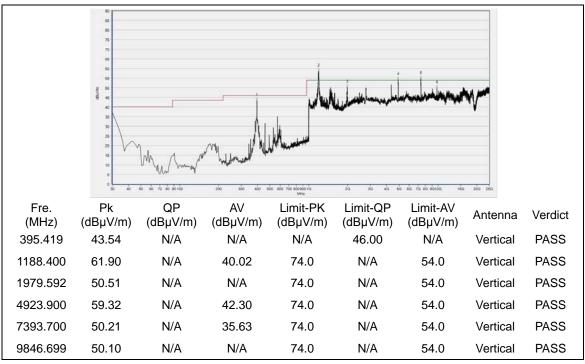

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



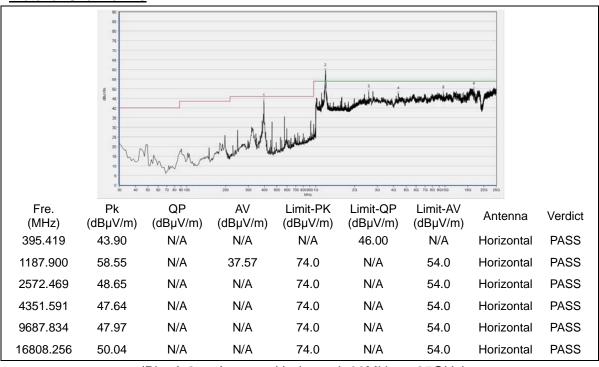
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

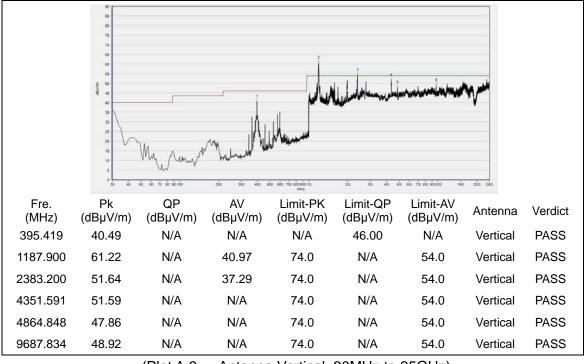


Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



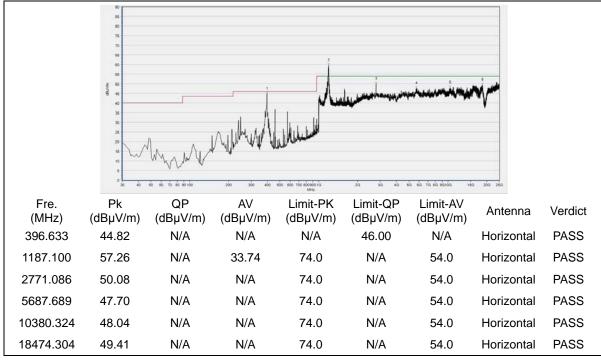

2.8.3.4 802.11n-40MHz Test mode

D. Test Plots for the Whole Measurement Frequency Range:

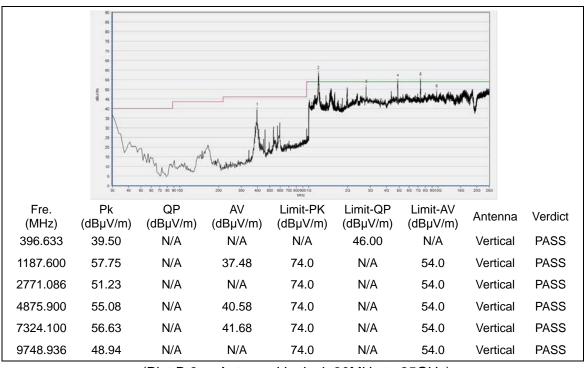
Plots for Channel = 3

(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot A.3: Antenna Vertical, 30MHz to 25GHz)



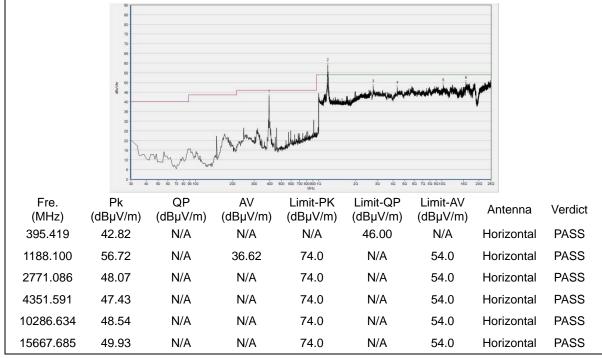
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn



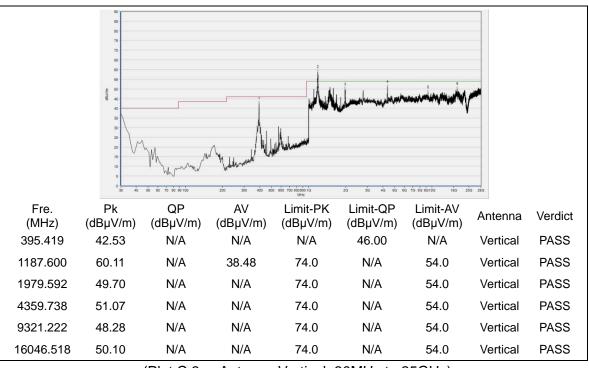
REPORT No. : SZ17080227W03

Plots for Channel = 6

(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)


(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

MORLAB



Plots for Channel = 9

(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab	Mr. Su Feng		
Manager:			
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Spectrum Analyzer	MY45101810	E4407B	Agilent	2017.05.24	2018.05.23
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2016.12.07	2017.12.06
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	US44210471	E7405A	Agilent	2017.05.24	2018.05.23
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.24	2018.05.23
Service Supplier	100448	CMU200	R&S	2017.05.24	2018.05.23
Pulse Limiter	9391	VTSD	Cobucershoold	2047.05.04	2010.05.22
(20dB)		9561-D	Schwarzbeck	2017.05.24	2018.05.23
Coaxial cable(BNC)	CB01	EMC01	Morlab	N/A	N/A
(30MHz-26GHz)			denoivi		

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
System Simulator	GB45360846	8960-E5515C	Agilent	2017.05.17	2018.05.16
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.12.09	2017.12.08
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.30	2018.03.29
Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2017.03.30	2018.03.29
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Climate Chamber	2004012	HL4003T	Yinhe	2017.01.11	2018.01.10
Vibration Table	N/A	ACT2000-S01 5L	CMI-COM	2017.01.11	2018.01.10
Anechoic Chamber	N/A	9m*6m*6m	Changning	2017.01.11	2018.01.10

_____ END OF REPORT __
