

FCC Part 15.247 TEST REPORT

For

ATEN Technology, Inc., dba IOGEAR

15365 Barranca Parkway Irvine, CA 92618, USA

FCC ID: QLEGBU621

Report Type:

Report Type:

Original Report

Micro USB Bluetooth 5.1

Transmitter

Report Producer : Eva Kao

Report Number: RXZ211207001RF02

Report Date: 2022-04-19

Reviewed By: David Hsu David Hsu

Prepared By: Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,

New Taipei City 22183, Taiwan, R.O.C.

Tel: +886 (2) 2647 6898

Fax: +886 (2) 2647 6895

www.bacl.com.tw

Revision History

No.: RXZ211207001RF02

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ211207001	RXZ211207001RF02	2022-04-19	Original Report	Eva Kao

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 2 of 75

TABLE OF CONTENTS

1. G	eneral Information	5
1.1.	Product Description for Equipment under Test (EUT)	5
1.2.	Objective	
1.3.	Related Submittal(s)/Grant(s)	6
1.4.	Test Methodology	
1.5.	Statement of Compliance	
1.6.	Measurement Uncertainty	
1.7.	Environmental Conditions	
1.8.	Test Facility	7
2. Sy	ystem Test Configuration	8
2.1.	Description of Test Configuration	8
2.2.	Equipment Modifications	
2.3.	EUT Exercise Software	8
2.4.	EUT Exercise Software	
2.5.	Support Equipment List and Details	8
2.6.	External Cable List and Details	
2.7.	Block Diagram of Test Setup	9
3. Su	ummary of Test Results	11
4. To	est Equipment List and Details	12
7. 1	est Equipment Dist and Details	
5. FO	CC §15.247(i), §1.1310, §2.1093 – RF Exposure	14
5.1.	Applicable Standard	14
5.2.	RF Exposure Evaluation Result	
6. F0	CC §15.203 – Antenna Requirements	15
6.1.	Applicable Standard	15
6.2.	Antenna Information	
	CC §15.207(a) – AC Line Conducted Emissions	
7.1.	Applicable Standard	
7.2.	EUT Setup	
7.3.	EMI Test Receiver Setup	
7.4.	Test Procedure	
7.5.	Corrected Factor & Margin Calculation	
7.6.	Test Results	
8. F	CC $\S15.209$, $\S15.205$, $\S15.247(d)$ – Spurious Emissions	20
8.1.	Applicable Standard	20
8.2.	EUT Setup	
8.3.	EMI Test Receiver & Spectrum Analyzer Setup	22
8.4.	Test Procedure	
8.5.	Corrected Factor & Margin Calculation	
8.6.	Test Results	23
9. F	CC §15.247(a)(1) – 20 dB Emission Bandwidth	37
9.1.	Applicable Standard	37
9.2.	Test Procedure	
9.3.	Test Results	
	CC §15.247(a)(1) – Channel Separation Test	
	0 - · (··)(-) - · · · · · · · · · · · · · · · · · ·	

Bay Area	Compliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ211207001RF02
-	Applicable Standard	
10.1.		
10.2.		
11. FC	C§15.247(a)(1)(iii) –Time of Occupancy (Dwell Time)	
11.1.	Applicable Standard	49
11.2.	Test Procedure	
11.3.	Test Results	50
12. FC	C §15.247(a)(1)(iii) –Quantity of hopping channel Test	65
12.1.	Applicable Standard	65
12.2.	Test Procedure	65
12.3.	Test Results	65
13. FC	C §15.247(b)(1) – Maximum Output Power	68
13.1.	Applicable Standard	68
13.2.	Test Procedure	68
13.3.	Test Results	68
14. FC	C §15.247(d) – 100 kHz Bandwidth of Frequency Band E	dge69
14.1.	Applicable Standard	69
14.2.	Test Procedure	
14.3.	Test Results	69

1. General Information

1.1. Product Description for Equipment under Test (EUT)

Manufacturar	ATEN Technology, Inc., dba IOGEAR		
Manufacturer	15365 Barranca Parkway Irvine, CA 92618, USA		
Brand(Trade) Name	IOGEAR		
Product (Equipment)	Micro USB Bluetooth 5.1 Transmitter		
Main Model Name	GBU621		
Series model	GBU621W6, GBU621X, GBU621B, GBU621W3		
Model differents	The major electrical and mechanical constructions of series models are identical to the basic model, the difference is Market Segmentation. The model, GBU621 is the testing sample, and the final test data are shown on this test report.		
Frequency Range	2402 ~ 2480 MHz		
Transmit Power	9.21 dBm		
Modulation Technique	BR Mode: GFSK EDR Mode: π/4-DQPSK, 8DPSK		
Transmit Data Rate	BR(GFSK) Mode: 1 Mbps EDR(π/4-DQPSK) Mode: 2 Mbps EDR(8DPSK) Mode: 3 Mbps		
Power Operation (Voltage Range)	DC 5V from USB Port		
Received Date	Jan. 28, 2022		
Date of Test	Feb. 10, 2022 ~ Feb. 25, 2022		

No.: RXZ211207001RF02

^{*}All measurement and test data in this report was gathered from production sample serial number: RXZ211207001-01 (Assigned by BACL, New Taipei Laboratory).

1.2. Objective

This report is prepared on behalf of *ATEN Technology, Inc., dba IOGEAR* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

No.: RXZ211207001RF02

The tests were performed in order to determine the Bluetooth BR and EDR mode of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

1.3. Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS Submittal with FCC ID: QLEGBU621

1.4. Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

558074 D01 15.247 Meas Guidance v05r02

1.5. Statement of Compliance

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.6. Measurement Uncertainty

Parame	eter	Uncertainty	
AC Ma	ins	+/- 2.36 dB	
RF output powe	r, conducted	+/- 0.93 dB	
Power Spectral Der	sity, conducted	+/- 0.93 dBm	
Occupied Ba	ndwidth	+/- 0.35 MHz	
Unwanted Emission	ons, conducted	+/- 1.69 dBm	
	30 MHz~1GHz	+/- 5.22 dB	
Emissions, radiated	1 GHz~18 GHz	+/- 6.12 dB	
	18 GHz~40 GHz	+/- 4.99 dB	
Tempera	iture	+/- 1.27 °C	
Humid	ity	+/- 3 %	

No.: RXZ211207001RF02

1.7. Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2022/2/25	18.7	69	1010	Aaron
Radiation Spurious Emissions	2022/2/16~2022/2/21	19.8-21.1	77-67	1010	David.Lee
Conducted Spurious Emissions	2022/2/10	21	56	1010	Aaron
6 dB Emission Bandwidth	2022/2/10	21	56	1010	Aaron
Maximum Output Power	2022/2/10	21	56	1010	Aaron
100 kHz Bandwidth of Frequency Band Edge	2022/2/10	21	56	1010	Aaron
Power Spectral Density	2022/2/10	21	56	1010	Aaron

1.8. Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

⊠70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2. System Test Configuration

2.1. Description of Test Configuration

For BT mode, 79 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403		
2	2404	76	2478
3	2405	77	2479
		78	2480
39	2441	/	/

No.: RXZ211207001RF02

For BT Modes were tested with channel 0, 39 and 78.

The system was configured for testing in engineering mode, which was provided by manufacturer.

2.2. Equipment Modifications

No modification was made to the EUT.

2.3. EUT Exercise Software

The test software was used "RTLBATAPP V5.2.2.54"

Test Frequency		2402MHz	2441MHz	2480MHz
	GFSK	Default	Default	Default
Power Level Setting	π/4-DQPSK	Default	Default	Default
	8DPSK	Default	Default	Default

2.4. EUT Exercise Software

Full System (model: GBU621) for all test item.

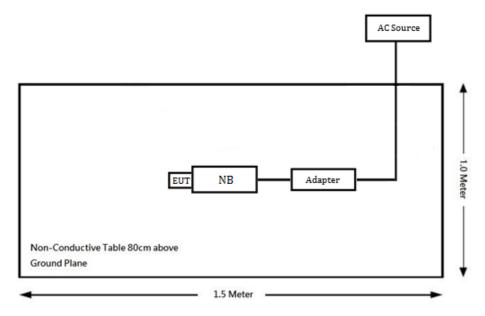
2.5. Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
NB	DELL	E6410	8N7PXN1

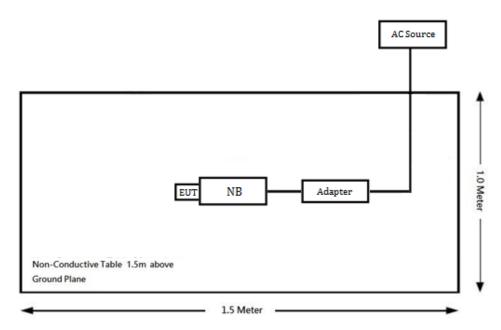
2.6. External Cable List and Details

Cable Description	Length (m)	From	То
N/A	N/A	N/A	N/A

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

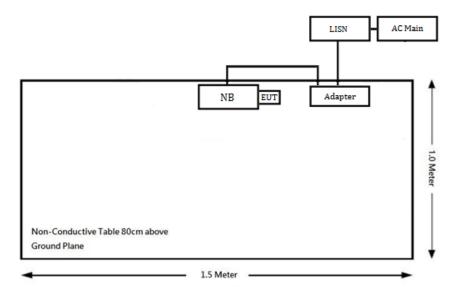

Page 8 of 75

2.7. Block Diagram of Test Setup


See test photographs attached in annex setup photos for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:


Above 1GHz:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 9 of 75

Conduction:

3. Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1310,§2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247 (a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance

No.: RXZ211207001RF02

4. Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration	Calibration			
Description	1vIanulactul Cl	Model	Serial I (uniber	Date	Due Date			
	AC Line Conduction Room (CON-A)							
LISN	Rohde & Schwarz	ENV216	101612	2022/1/10	2023/1/09			
EMI Test Receiver	Rohde & Schwarz	ESW8	100947	2021/7/23	2022/7/22			
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2021/7/29	2022/7/28			
RF Cable	EMEC	EM-CB5D	1	2021/6/11	2022/6/10			
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R			
		Radiated Roc	om (966-A)					
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & EMEC	JB3 &EM- ATT6000-6-NN	A090816-2&ATT- 09-003	2022/1/20	2023/1/19			
Horn Antenna	EMCO	SAS-571	1020	2021/4/23	2022/4/22			
Horn Antenna	ETS-Lindgren	3116	62638	2021/8/11	2022/8/10			
Preamplifier	Sonoma	310N	130602	2021/6/8	2022/6/7			
Preamplifier	A.H. system Inc.	PAM-0118P	470	2021/3/15	2022/3/14			
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2021/12/27	2022/12/26			
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2022/1/13	2023/1/12			
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2021/11/9	2022/11/8			
Micro flex Cable	UTIFLEX	UFB197C-1-2362- 70U-70U	225757-001	2022/1/24	2023/1/23			
Coaxial Cable	СОММАТЕ	PEWC	8Dr	2021/12/24	2022/12/23			
Coaxial Cable	UTIFLEX	UFB311A-Q-1440- 300300	220490-006	2022/1/24	2023/1/23			
Coaxial Cable	JUNFLON	J12J102248-00-B-5	AUG-07-15-044	2021/12/24	2022/12/23			
Cable	EMC	EMC105-SM-SM- 10000	201003	2022/1/24	2023/1/23			
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2022/1/24	2023/1/23			
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2022/1/18	2023/1/17			

No.: RXZ211207001RF02

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 12 of 75

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Software	Farad	EZ_EMC	BACL-03A1	N.C.R	N.C.R
		Conducte	d Room		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101204	2021/6/10	2022/6/9
Cable	UTIFLEX	UFA210A	9435	2021/10/5	2022/10/4
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2022/1/24	2023/1/23
Attenuator	MCL	BW-S20W5+	1430	2021/6/23	2022/6/22

No.: RXZ211207001RF02

^{*}Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements

5. FCC §15.247(i), §1.1310, §2.1093 – RF Exposure

5.1. Applicable Standard

According to §2.1093 and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

No.: RXZ211207001RF02

According to KDB 447498 D01 General RF Exposure Guidance v06

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

5.2. RF Exposure Evaluation Result

RF Exposure evaluation:

Mode	Frequency	Tunp-up Power		Evaluation Distrance	Calculated Value		
	(MHz)	(dBm)	(mW)	(mm)		(1-g SAR)	
BT	2402-2480	9.5	8.9	5	2.8	3	Yes
BLE	2402-2480	6	4.0	5	1.3	3	Yes

Result: SAR test is exempted.

6. FCC §15.203 – Antenna Requirements

6.1. Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ211207001RF02

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

6.2. Antenna Information

Manufacturer	Model	Туре	Antenna Gain	
CC&C Technologies, Inc.	BT-330S-V2	Printed Antenna	-4.10 dBi	

Result: Compliance

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

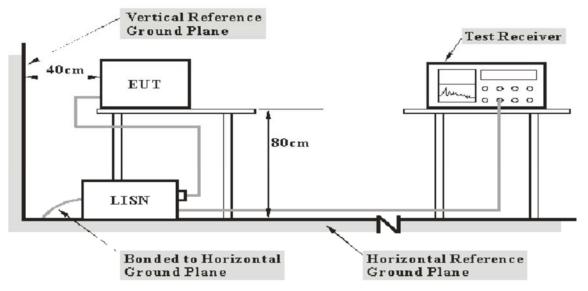
Page 15 of 75

7. FCC §15.207(a) – AC Line Conducted Emissions

7.1. Applicable Standard

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.


No.: RXZ211207001RF02

Frequency of Emission	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2			
0.5-5	56	46			
5-30	60	50			

Note 1: Decreases with the logarithm of the frequency.

Note 2: A linear average detector is required

7.2. EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 16 of 75

7.3. EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

No.: RXZ211207001RF02

7.4. Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

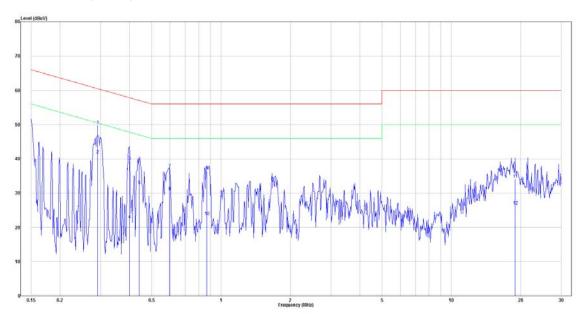
Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

7.5. Corrected Factor & Margin Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation


The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

7.6. Test Results

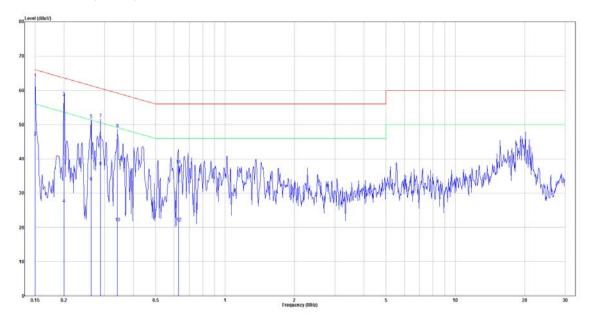
Test Mode: Transmitting

Main: AC120 V, 60 Hz, Line

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark	Phase
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	0.291	30.37	19.51	49.87	60.50	-10.63	QP	Line
2	0.291	21.79	19.51	41.30	50.50	-9.20	Average	Line
3	0.400	19.77	19.51	39.29	57.86	-18.57	QP	Line
4	0.400	2.72	19.51	22.24	47.86	-25.62	Average	Line
5	0.442	19.04	19.52	38.55	57.02	-18.47	QP	Line
6	0.442	12.66	19.52	32.18	47.02	-14.85	Average	Line
7	0.598	17.48	19.53	37.00	56.00	-19.00	QP	Line
8	0.598	10.84	19.53	30.36	46.00	-15.64	Average	Line
9	0.866	16.81	19.54	36.34	56.00	-19.66	QP	Line
10	0.866	3.59	19.54	23.12	46.00	-22.88	Average	Line
11	18.920	14.22	19.81	34.04	60.00	-25.96	QP	Line
12	18.920	6.43	19.81	26.25	50.00	-23.75	Average	Line

Note:

Level = Read Level + Factor


Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 18 of 75

Main: AC120 V, 60 Hz, Neutral

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark	Phase
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	0.150	43.99	19.51	63.49	66.00	-2.51	QP	Neutral
2	0.150	27.06	19.51	46.56	56.00	-9.44	Average	Neutral
3	0.200	38.57	19.49	58.06	63.62	-5.57	QP	Neutral
4	0.200	7.38	19.49	26.87	53.62	-26.75	Average	Neutral
5	0.262	32.08	19.50	51.58	61.38	-9.80	QP	Neutral
6	0.262	13.69	19.50	33.19	51.38	-18.19	Average	Neutral
7	0.288	32.26	19.50	51.76	60.59	-8.82	QP	Neutral
8	0.288	18.20	19.50	37.70	50.59	-12.88	Average	Neutral
9	0.341	29.27	19.51	48.77	59.18	-10.41	QP	Neutral
10	0.341	1.85	19.51	21.35	49.18	-27.83	Average	Neutral
11	0.627	18.69	19.52	38.21	56.00	-17.79	QP	Neutral
12	0.627	1.79	19.52	21.31	46.00	-24.69	Average	Neutral

Note:

Level = Read Level + Factor

Over Limit = Level - Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 19 of 75

8. FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

8.1. Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

No.: RXZ211207001RF02

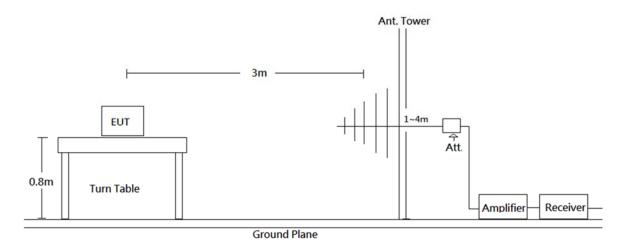
As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 – 614	4.5 - 5.15
0.495 - 0.505	16.69475 – 16.69525	960 - 1240	5. 35 – 5. 46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 – 1626.5	8.025 - 8.5
4.17725 – 4.17775	37.5 - 38.25	1645.5 – 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 – 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 – 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 –167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 – 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 – 12.57725	322 - 335.4		Above 38.6
13.36 – 13.41	399.9 - 410		

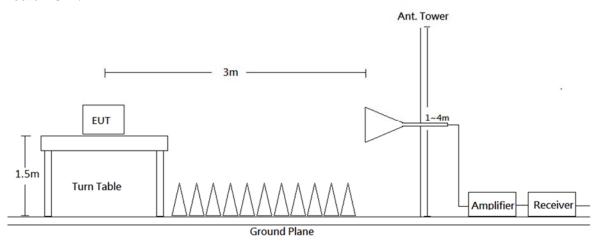
As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 20 of 75


As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

8.2. EUT Setup

Below 1 GHz:

Above 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

8.3. EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

No.: RXZ211207001RF02

Frequency Range	RBW	VBW	Measurement method
30-1000 MHz	120 kHz	/	QP
Alexand CH-	1 MHz	3 MHz	PK
Above 1 GHz	1 MHz	10 Hz	Ave

8.4. Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

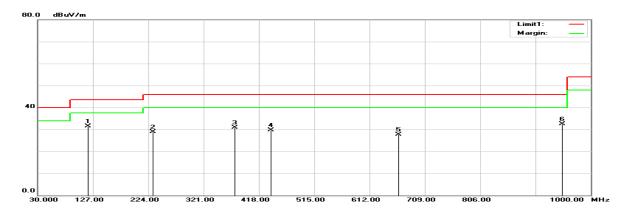
All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

8.5. Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

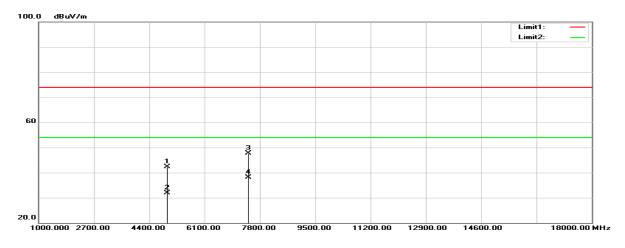
Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

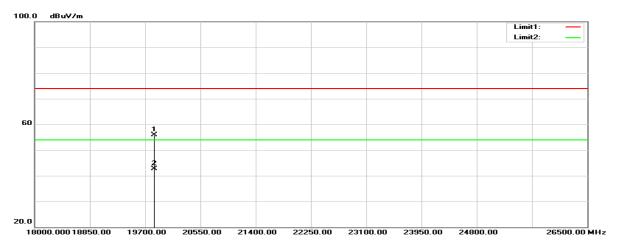

Margin = Result - Limit

8.6. Test Results

Test Mode: Transmitting (Pre-scan with three orthogonal axis, and worse case as X axis.)


Horizontal (worst case is EDR (π /4-DQPSK) mode, high channel)

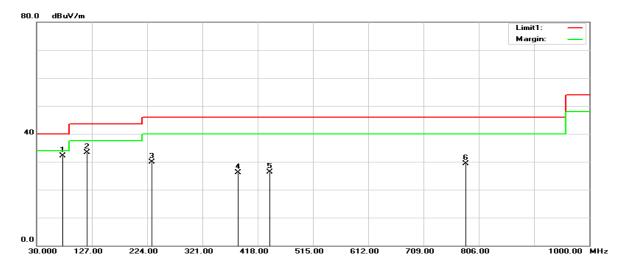
30MHz-1GHz:



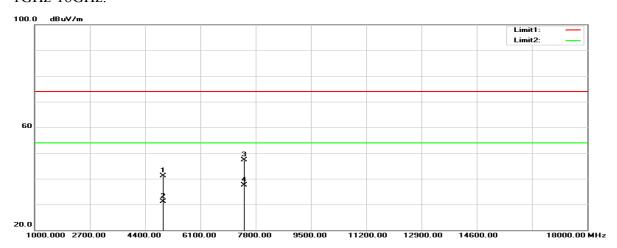
No.: RXZ211207001RF02

1GHz-18GHz:

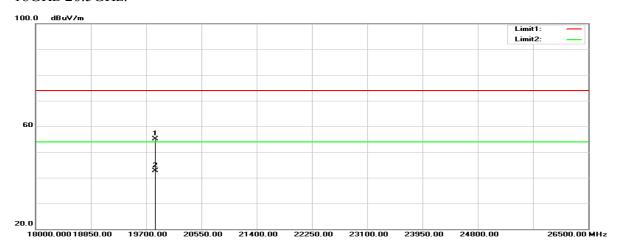
18GHz-26.5GHz:


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 23 of 75


No.: RXZ211207001RF02

Vertical worst case is EDR (π /4-DQPSK) mode, high channel)


30MHz-1GHz:

1GHz-18GHz:

18GHz-26.5GHz:

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 24 of 75

Below 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
118.2700	42.29	-10.69	31.60	43.50	-11.90	100	298	peak
232.7300	41.52	-12.54	28.98	46.00	-17.02	100	155	peak
375.3200	39.40	-8.53	30.87	46.00	-15.13	100	298	peak
439.3400	36.31	-6.64	29.67	46.00	-16.33	100	70	peak
662.4400	31.23	-3.54	27.69	46.00	-18.31	100	46	peak
950.5300	30.33	2.11	32.44	46.00	-13.56	100	357	peak

No.: RXZ211207001RF02

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
75.5900	48.33	-16.21	32.12	40.00	-7.88	100	51	peak
118.2700	43.91	-10.69	33.22	43.50	-10.28	100	3	peak
232.7300	42.52	-12.54	29.98	46.00	-16.02	100	91	peak
383.0800	34.37	-8.35	26.02	46.00	-19.98	100	314	peak
439.3400	32.92	-6.64	26.28	46.00	-19.72	100	350	peak
783.6900	30.65	-1.31	29.34	46.00	-16.66	100	264	peak

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Above 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
BR (GFSK), Low channel									
2378.400	56.37	-9.55	46.82	74.00	-27.18	151	151	peak	
2378.400	42.84	-9.55	33.29	54.00	-20.71	151	151	AVG	
4804.000	42.67	-2.17	40.50	74.00	-33.50	146	235	peak	
4804.000	32.45	-2.17	30.28	54.00	-23.72	146	235	AVG	
7206.000	43.23	4.18	47.41	74.00	-26.59	152	188	peak	
7206.000	33.85	4.18	38.03	54.00	-15.97	152	188	AVG	
		I	BR (GFSK), I	Middle chann	el				
4882.000	43.30	-1.86	41.44	74.00	-32.56	154	258	peak	
4882.000	33.45	-1.86	31.59	54.00	-22.41	154	258	AVG	
7323.000	41.88	5.11	46.99	74.00	-27.01	166	311	peak	
7323.000	31.28	5.11	36.39	54.00	-17.61	166	311	AVG	
			BR (GFSK),	High channe	1				
2497.060	56.04	-8.26	47.78	74.00	-26.22	145	155	peak	
2497.060	42.48	-8.26	34.22	54.00	-19.78	145	155	AVG	
4960.000	42.45	-1.49	40.96	74.00	-33.04	151	247	peak	
4960.000	32.66	-1.49	31.17	54.00	-22.83	151	247	AVG	
7440.000	41.28	5.23	46.51	74.00	-27.49	168	322	peak	
7440.000	31.74	5.23	36.97	54.00	-17.03	168	322	AVG	

No.: RXZ211207001RF02

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
BR (GFSK), Low channel									
2382.800	55.99	-9.52	46.47	74.00	-27.53	141	305	peak	
2382.800	42.67	-9.52	33.15	54.00	-20.85	141	305	AVG	
4804.000	44.92	-2.17	42.75	74.00	-31.25	156	311	peak	
4804.000	34.28	-2.17	32.11	54.00	-21.89	156	311	AVG	
7206.000	43.26	4.18	47.44	74.00	-26.56	162	258	peak	
7206.000	33.54	4.18	37.72	54.00	-16.28	162	258	AVG	
		I	BR (GFSK), I	Middle chann	el				
4882.000	44.31	-1.86	42.45	74.00	-31.55	161	311	peak	
4882.000	34.28	-1.86	32.42	54.00	-21.58	161	311	AVG	
7323.000	41.48	5.11	46.59	74.00	-27.41	158	258	peak	
7323.000	31.55	5.11	36.66	54.00	-17.34	158	258	AVG	
			BR (GFSK),	High channe	1				
2488.390	56.18	-8.38	47.80	74.00	-26.20	134	325	peak	
2488.390	42.37	-8.38	33.99	54.00	-20.01	134	325	AVG	
4960.000	42.85	-1.49	41.36	74.00	-32.64	152	285	peak	
4960.000	32.59	-1.49	31.10	54.00	-22.90	152	285	AVG	
7440.000	41.44	5.23	46.67	74.00	-27.33	167	178	peak	
7440.000	31.68	5.23	36.91	54.00	-17.09	167	178	AVG	

No.: RXZ211207001RF02

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
EDR (π/4-DQPSK), Low channel									
2317.700	56.87	-9.80	47.07	74.00	-26.93	151	150	peak	
2317.700	42.79	-9.80	32.99	54.00	-21.01	151	150	AVG	
4804.000	42.13	-2.17	39.96	74.00	-34.04	152	211	peak	
4804.000	32.55	-2.17	30.38	54.00	-23.62	152	211	AVG	
7206.000	42.45	4.18	46.63	74.00	-27.37	163	328	peak	
7206.000	32.64	4.18	36.82	54.00	-17.18	163	328	AVG	
		EDR	k (π/4-DQPSI	(X), Middle ch	annel				
4882.000	43.55	-1.86	41.69	74.00	-32.31	165	218	peak	
4882.000	33.47	-1.86	31.61	54.00	-22.39	165	218	AVG	
7323.000	41.99	5.11	47.10	74.00	-26.90	153	147	peak	
7323.000	31.85	5.11	36.96	54.00	-17.04	153	147	AVG	
		ED	R (π/4-DQPS	K), High cha	nnel				
2488.000	56.68	-8.38	48.30	74.00	-25.70	147	155	peak	
2488.000	42.61	-8.38	34.23	54.00	-19.77	147	155	AVG	
4960.000	43.86	-1.49	42.37	74.00	-31.63	152	312	peak	
4960.000	33.45	-1.49	31.96	54.00	-22.04	152	312	AVG	
7440.000	42.41	5.23	47.64	74.00	-26.36	164	248	peak	
7440.000	32.86	5.23	38.09	54.00	-15.91	164	248	AVG	

No.: RXZ211207001RF02

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier GainEDR

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
EDR ($\pi/4$ -DQPSK), Low channel									
2315.800	55.78	-9.80	45.98	74.00	-28.02	140	307	peak	
2315.800	42.69	-9.80	32.89	54.00	-21.11	140	307	AVG	
4804.000	43.20	-2.17	41.03	74.00	-32.97	166	325	peak	
4804.000	33.57	-2.17	31.40	54.00	-22.60	166	325	AVG	
7206.000	43.46	4.18	47.64	74.00	-26.36	159	134	peak	
7206.000	33.64	4.18	37.82	54.00	-16.18	159	134	AVG	
		EDR	(π/4-DQPSI	K), Middle ch	annel				
4882.000	42.25	-1.86	40.39	74.00	-33.61	153	149	peak	
4882.000	32.49	-1.86	30.63	54.00	-23.37	153	149	AVG	
7323.000	42.56	5.11	47.67	74.00	-26.33	164	228	peak	
7323.000	32.61	5.11	37.72	54.00	-16.28	164	228	AVG	
		ED	R (π/4-DQPS	SK), High cha	ınnel				
2493.520	56.36	-8.31	48.05	74.00	-25.95	133	324	peak	
2493.520	42.35	-8.31	34.04	54.00	-19.96	133	324	AVG	
4960.000	42.60	-1.49	41.11	74.00	-32.89	157	118	peak	
4960.000	32.55	-1.49	31.06	54.00	-22.94	157	118	AVG	
7440.000	42.05	5.23	47.28	74.00	-26.72	163	238	peak	
7440.000	32.28	5.23	37.51	54.00	-16.49	163	238	AVG	

Result = Reading + Correct Factor

Margin = Result - Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
EDR (8DPSK), Low channel									
2325.900	56.61	-9.80	46.81	74.00	-27.19	151	149	peak	
2325.900	42.98	-9.80	33.18	54.00	-20.82	151	149	AVG	
4804.000	43.01	-2.17	40.84	74.00	-33.16	158	172	peak	
4804.000	33.45	-2.17	31.28	54.00	-22.72	158	172	AVG	
7206.000	43.30	4.18	47.48	74.00	-26.52	164	233	peak	
7206.000	33.67	4.18	37.85	54.00	-16.15	164	233	AVG	
		EI	OR (8DPSK),	Middle chan	nel				
4882.000	43.37	-1.86	41.51	74.00	-32.49	145	225	peak	
4882.000	33.45	-1.86	31.59	54.00	-22.41	145	225	AVG	
7323.000	41.72	5.11	46.83	74.00	-27.17	152	168	peak	
7323.000	31.68	5.11	36.79	54.00	-17.21	152	168	AVG	
		E	EDR (8DPSK)), High chann	nel				
2485.780	56.85	-8.42	48.43	74.00	-25.57	124	10	peak	
2485.780	42.88	-8.42	34.46	54.00	-19.54	124	10	AVG	
4960.000	42.70	-1.49	41.21	74.00	-32.79	152	258	peak	
4960.000	32.45	-1.49	30.96	54.00	-23.04	152	258	AVG	
7440.000	40.72	5.23	45.95	74.00	-28.05	147	322	peak	
7440.000	30.55	5.23	35.78	54.00	-18.22	147	322	AVG	

No.: RXZ211207001RF02

Result = Reading + Correct Factor

Margin = Result - Limit

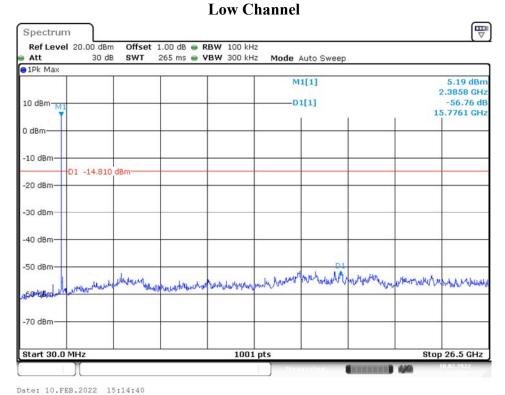
Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
EDR (8DPSK), Low channel									
2371.200	55.81	-9.61	46.20	74.00	-27.80	141	305	peak	
2371.200	42.64	-9.61	33.03	54.00	-20.97	141	305	AVG	
4804.000	42.22	-2.17	40.05	74.00	-33.95	161	258	peak	
4804.000	32.46	-2.17	30.29	54.00	-23.71	161	258	AVG	
7206.000	42.07	4.18	46.25	74.00	-27.75	152	354	peak	
7206.000	32.58	4.18	36.76	54.00	-17.24	152	354	AVG	
		EI	OR (8DPSK),	Middle chan	nel				
4882.000	42.79	-1.86	40.93	74.00	-33.07	158	167	peak	
4882.000	32.48	-1.86	30.62	54.00	-23.38	158	167	AVG	
7323.000	42.50	5.11	47.61	74.00	-26.39	169	238	peak	
7323.000	32.66	5.11	37.77	54.00	-16.23	169	238	AVG	
		Е	EDR (8DPSK), High chann	iel				
2492.230	56.02	-8.32	47.70	74.00	-26.30	139	306	peak	
2492.230	42.36	-8.32	34.04	54.00	-19.96	139	306	AVG	
4960.000	43.52	-1.49	42.03	74.00	-31.97	154	206	peak	
4960.000	33.57	-1.49	32.08	54.00	-21.92	154	206	AVG	
7440.000	41.32	5.23	46.55	74.00	-27.45	168	301	peak	
7440.000	31.64	5.23	36.87	54.00	-17.13	168	301	AVG	

No.: RXZ211207001RF02

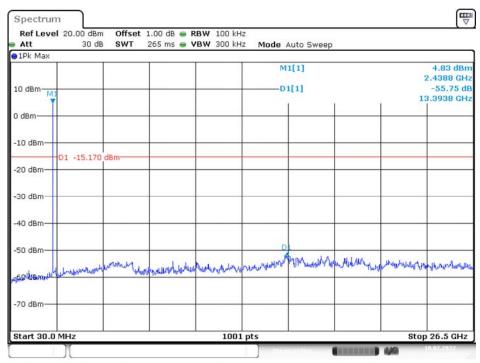
Result = Reading + Correct Factor


Margin = Result - Limit

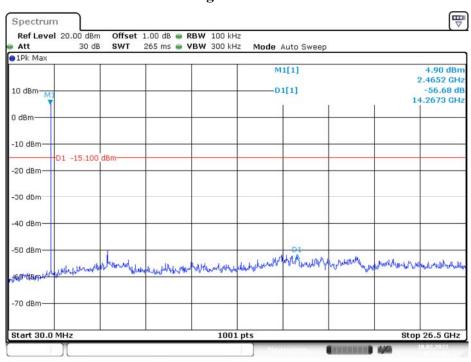
Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Conducted Spurious Emissions:

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result					
	BR Mode (GFSK)								
Low	2402	56.76	≥ 20	PASS					
Mid	2441	55.75	≥ 20	PASS					
High	2480	56.68	≥ 20	PASS					
	EDR Mode (π/4-DQPSK):								
Low	2402	53.08	≥ 20	PASS					
Mid	2441	52.86	≥ 20	PASS					
High	2480	54.18	≥ 20	PASS					
	EDR Mode (8DPSK):								
Low	2402	52.86	≥ 20	PASS					
Mid	2441	55.00	≥ 20	PASS					
High	2480	54.65	≥ 20	PASS					


BR Mode (GFSK)

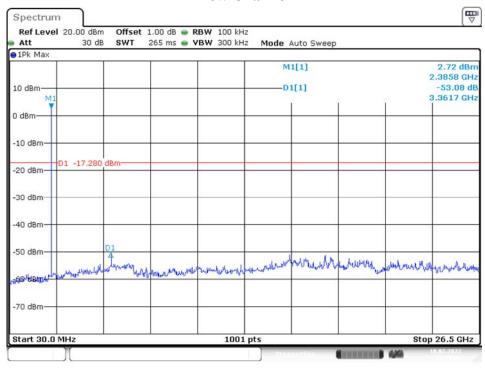
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 32 of 75

Middle Channel

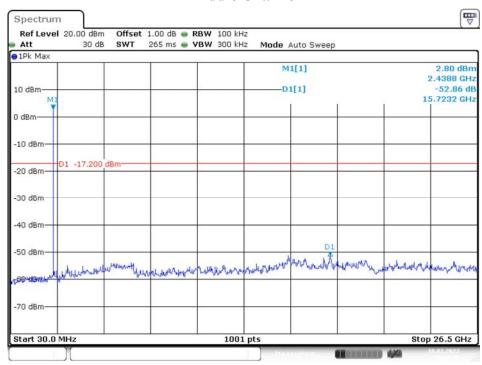
Date: 10.FEB.2022 15:16:57

High Channel

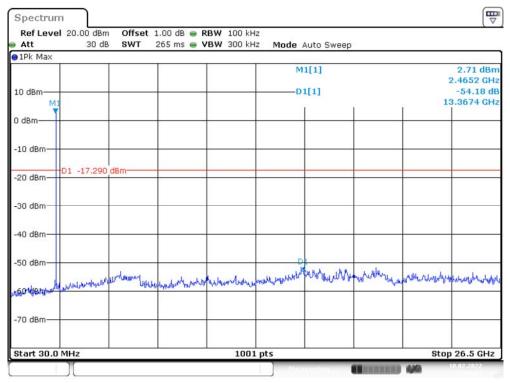


Date: 10.FEB.2022 15:23:17

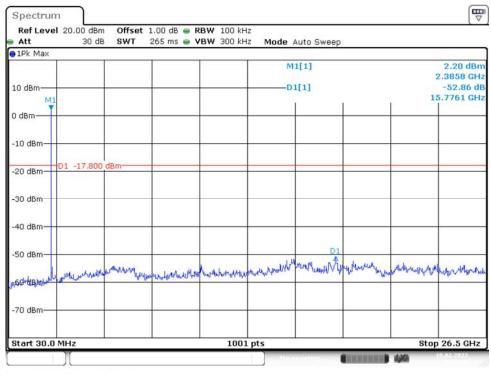
No.: RXZ211207001RF02


EDR Mode ($\pi/4$ -DQPSK)

Low Channel


Date: 10.FEB.2022 15:30:42

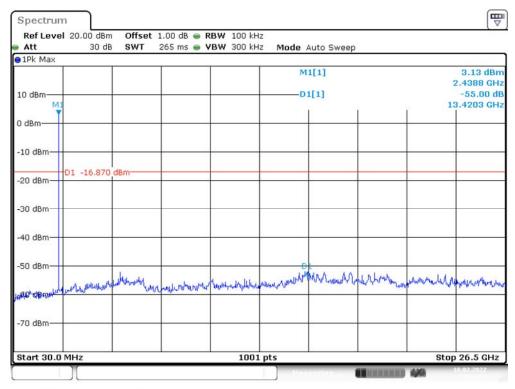
Middle Channel


Date: 10.FEB.2022 15:32:20

High Channel

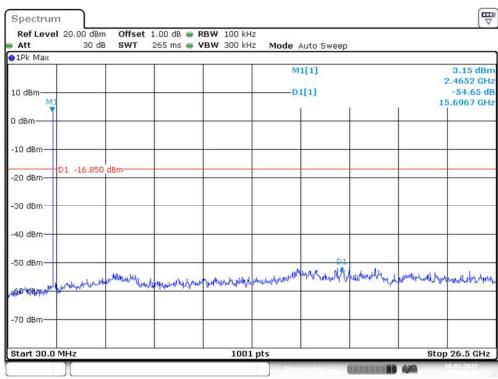
Date: 10.FEB.2022 15:36:35

EDR Mode (8DPSK) Low Channel



Date: 10.FEB.2022 15:41:55

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 35 of 75

Middle Channel

Date: 10.FEB.2022 15:43:51

High Channel

Date: 10.FEB.2022 15:46:14

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 36 of 75

9. FCC §15.247(a)(1) – 20 dB Emission Bandwidth

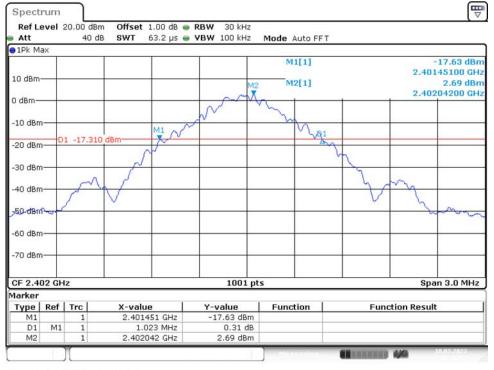
9.1. Applicable Standard

According to FCC §15.247(a) (1) the maximum 20 dB bandwidth of the hopping channel shall be presented.

No.: RXZ211207001RF02

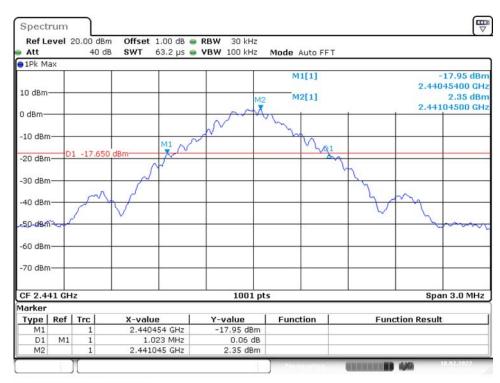
9.2. Test Procedure

- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (3) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- (4) Repeat above procedures until all frequencies measured were complete.

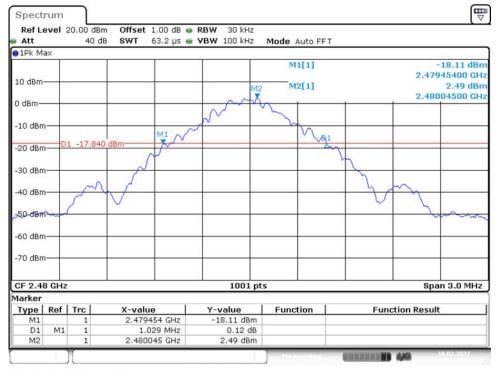

9.3. Test Results

Channel	Frequency	20 dBc BW					
Channel	(MHz)	(MHz)					
	BR Mode (GFSK)						
Low	2402	1.02					
Middle	2441	1.02					
High	2480	1.03					
	EDR Mode (π/4-DQPSK)						
Low	2402	1.37					
Middle	2441	1.37					
High	2480	1.37					
EDR Mode (8DPSK)							
Low	2402	1.35					
Middle	2441	1.35					
High	2480	1.35					

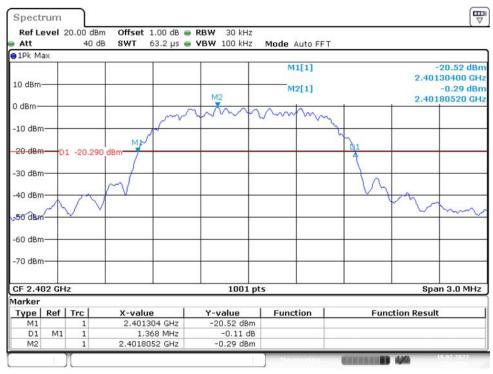
Please refer to the following plots


BR Mode (GFSK)

Low Channel


Date: 10.FEB.2022 15:13:54

Middle Channel

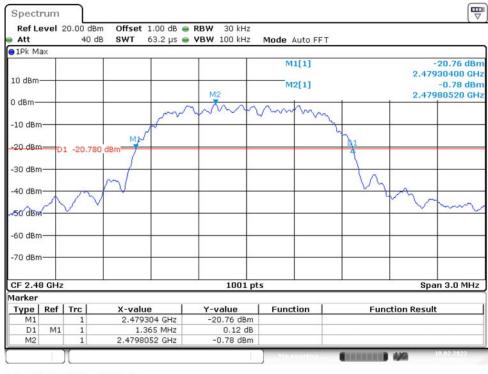

Date: 10.FEB.2022 15:16:26

High Channel

Date: 10.FEB.2022 15:22:30

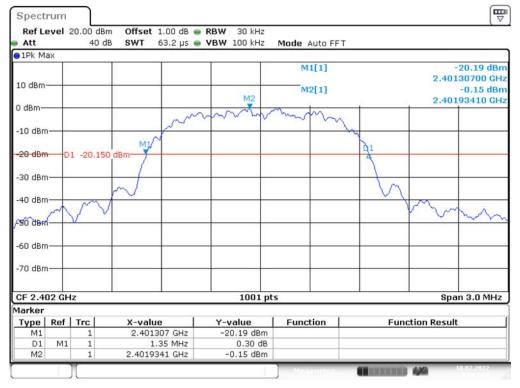
EDR Mode (π/4-DQPSK) Low Channel

Date: 10.FEB.2022 15:29:56

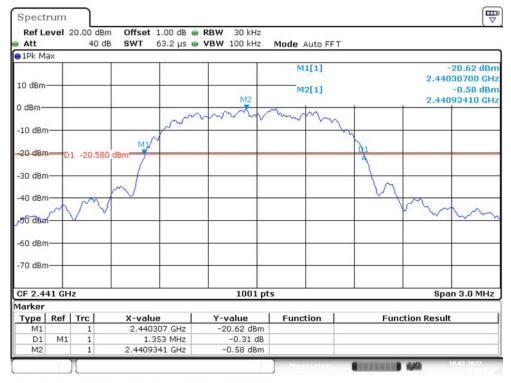

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 39 of 75

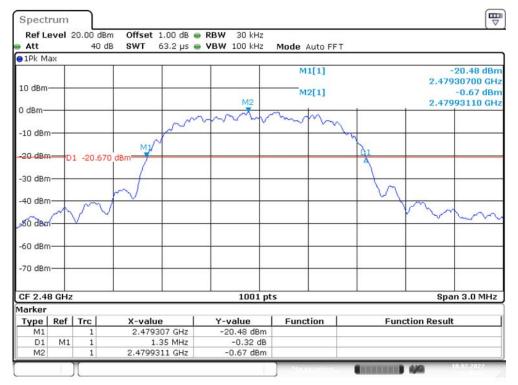
Middle Channel


High Channel

Date: 10.FEB.2022 15:35:48


EDR Mode (8DPSK)

Low Channel


Date: 10.FEB.2022 15:41:08

Middle Channel

Date: 10.FEB.2022 15:43:20

High Channel

Date: 10.FEB.2022 15:45:27

10. FCC §15.247(a)(1) – Channel Separation Test

10.1. Applicable Standard

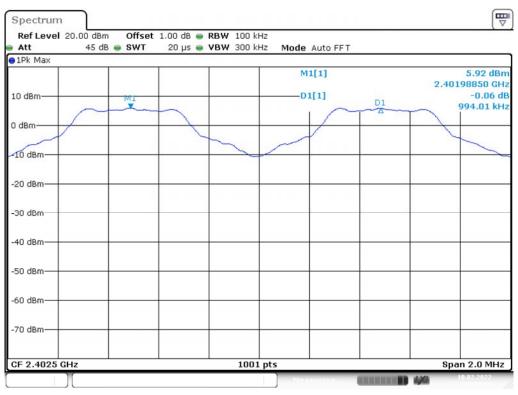
According to FCC §15.247(a) (1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

No.: RXZ211207001RF02

10.2. Test Procedure

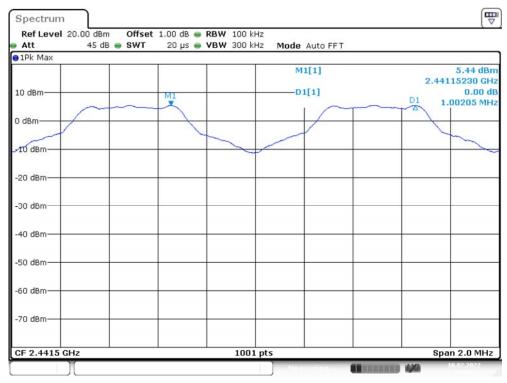
- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

10.3. Test Results


Channel	Channel Separation (MHz)	20 dBc BW (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Channel Separation Limit	Result	
		BR	Mode (GFSK)			
Low	0.99	1.02	0.682	>two-thirds of the 20 dB bandwidth	Compliance	
Middle	1.00	1.02	0.682	>two-thirds of the 20 dB bandwidth	Compliance	
High	1.00	1.03	0.686	>two-thirds of the 20 dB bandwidth	Compliance	
		EDR M	fode ($\pi/4$ -DQPSK)			
Low	1.00	1.37	0.912	>two-thirds of the 20 dB bandwidth	Compliance	
Middle	1.00	1.37	0.912	>two-thirds of the 20 dB bandwidth	Compliance	
High	1.00	1.37	0.910	>two-thirds of the 20 dB bandwidth	Compliance	
EDR Mode (8DPSK)						
Low	1.00	1.35	0.900	>two-thirds of the 20 dB bandwidth	Compliance	
Middle	1.00	1.35	0.902	>two-thirds of the 20 dB bandwidth	Compliance	
High	1.00	1.35	0.900	>two-thirds of the 20 dB bandwidth	Compliance	

Please refer to the following plots.

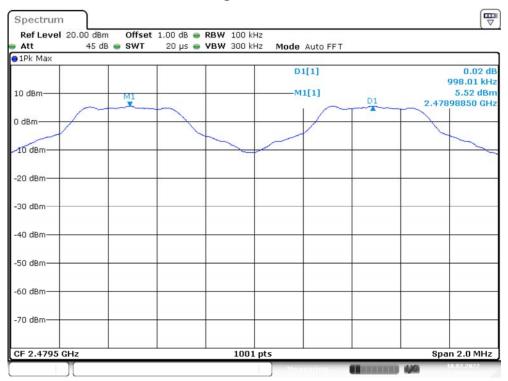
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 43 of 75

BR Mode (GFSK) Low Channel

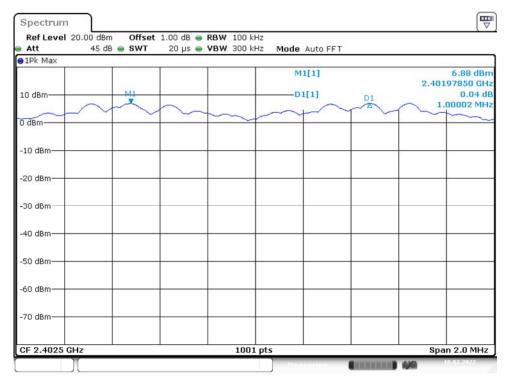
Date: 10.FEB.2022 16:08:06

Middle Channel



Date: 10.FEB.2022 16:07:18

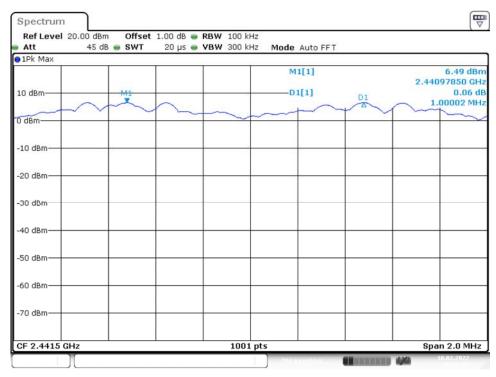
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 44 of 75

High Channel

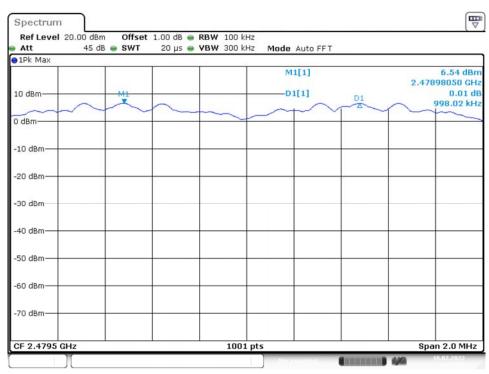
Date: 10.FEB.2022 16:06:22

EDR Mode (π/4-DQPSK) Low Channel



Date: 10.FEB.2022 16:27:14

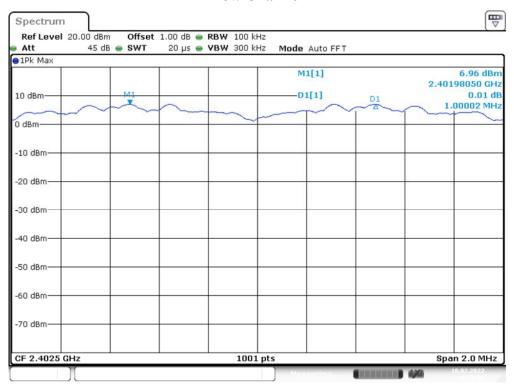
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 45 of 75

Middle Channel

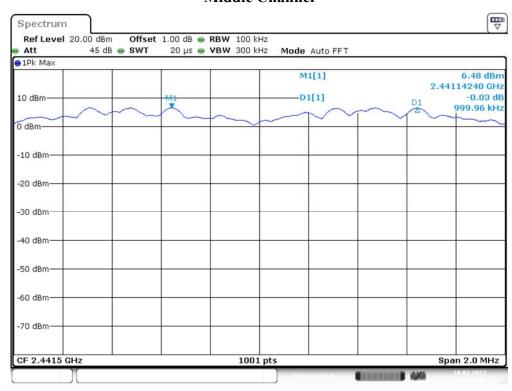
Date: 10.FEB.2022 16:26:35

High Channel


Date: 10.FEB.2022 16:25:35

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

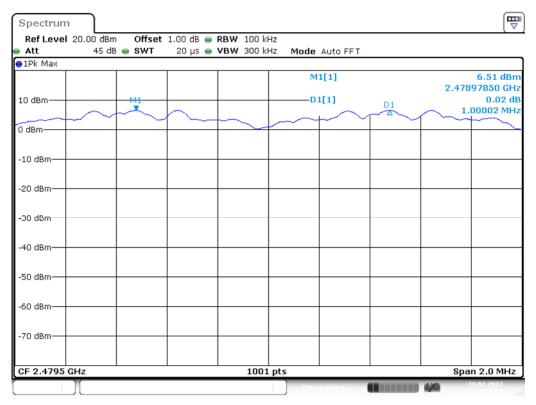
Page 46 of 75


EDR Mode (8DPSK)

Low Channel

Date: 10.FEB.2022 16:55:06

Middle Channel



Date: 10.FEB.2022 16:52:04

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 47 of 75

High Channel

Date: 10.FEB.2022 16:51:02

11. FCC§15.247(a)(1)(iii) –Time of Occupancy (Dwell Time)

11.1. Applicable Standard

According to FCC §15.247(a) (1) (iii).

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

No.: RXZ211207001RF02

11.2. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \leq channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements.

Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

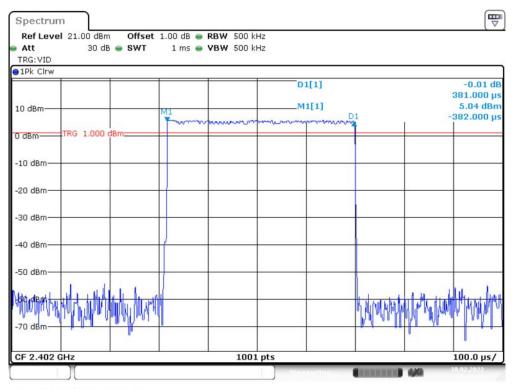
The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 49 of 75

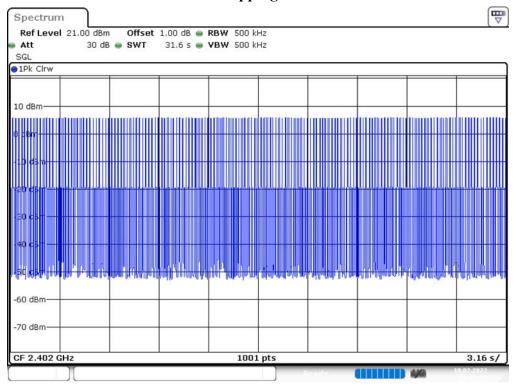
11.3. Test Results

Test mode: BR mode / 2402 ~ 2480MHz (GFSK)						
Mode	Pulse Time (ms)	Hopping Number	Period Time (s)	Total of Dwell (ms)	Limit (ms)	Result
DH1	0.381	320	31.6	121.92	<400	PASS
DH3	1.641	150	31.6	246.15	<400	PASS
DH5	2.875	130	31.6	373.75	<400	PASS
	Test 1	mode: EDR m	ode / 2402 ~ 2480N	IHz (π/4-DQPSK)		
N/ 1	Pulse Time Hopping Period Time		Period Time	Total of Dwell	Limit	D L
Mode	(ms)	Number (s)		(ms)	(ms)	Result
2DH1	0.39	320	31.6	124.80	<400	PASS
2DH3	1.644	150	31.6	246.60	<400	PASS
2DH5	2.89	130	31.6	375.70	<400	PASS
Test mode: EDR mode / 2402 ~ 2480MHz (8DPSK)						
N. 1	Pulse Time	Hopping	Period Time	Total of Dwell	Limit	D L
Mode	(ms)	Number	(s)	(ms)	(ms)	Result
3DH1	0.39	320	31.6	124.80	<400	PASS
3DH3	1.641	160	31.6	262.56	<400	PASS
3DH5	2.895	130	31.6	376.35	<400	PASS


Note 1: A period time = 0.4*79 = 31.6 (s), Total of Dwell=Pulse Time * Hopping Number

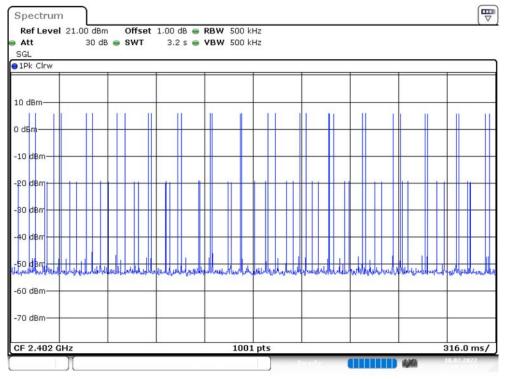
Note 2: Hopping Number = Hopping Number/10 * 10

Note 3: Hopping Number/10 = Total of highest signals in 3.16s. (Second high signals were other channel)

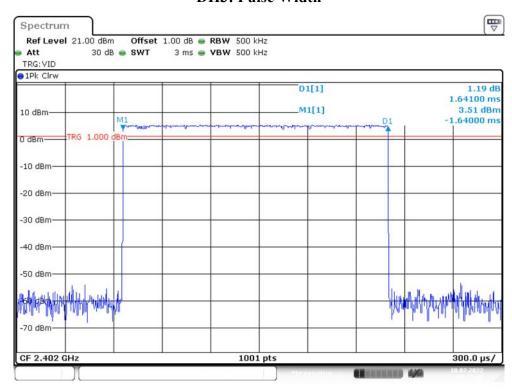

Please refer to the following plots

BR Mode (GFSK)
DH1: Pulse Width

Date: 10.FEB.2022 16:14:17


DH1: Hopping Number

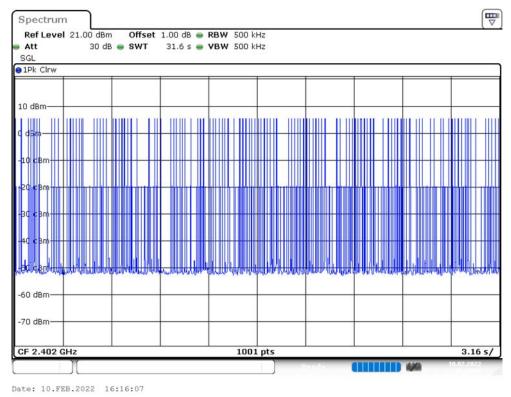
Date: 10.FEB.2022 16:11:40


DH1: Hopping Number /10

(Hopping Number = 32 in 1/10 period of highest signals, Second High signals were other channel)

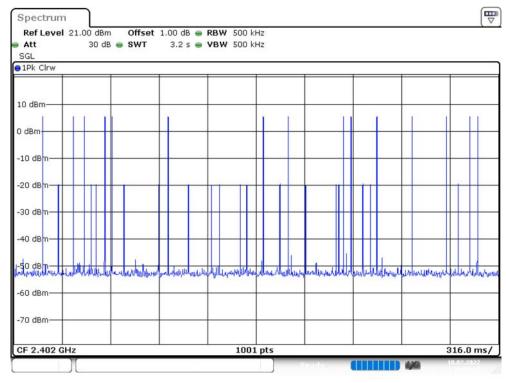
Date: 10.FEB.2022 16:11:58

DH3: Pulse Width

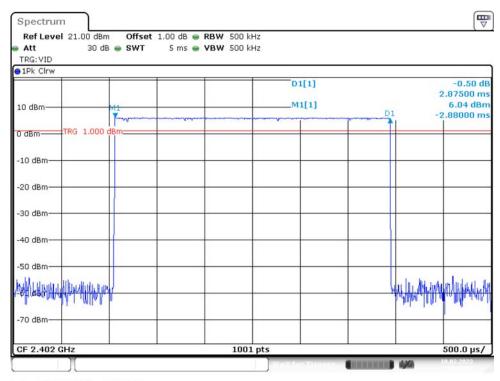


Date: 10.FEB.2022 16:17:30

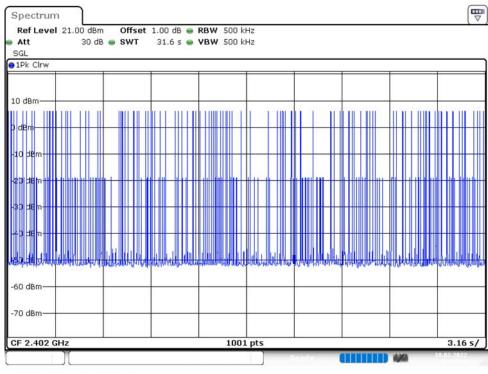
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 52 of 75

DH3: Hopping Number


DH3: Hopping Number /10

(Hopping Number = 15 in 1/10 period of highest signals, Second High signals were other channel)

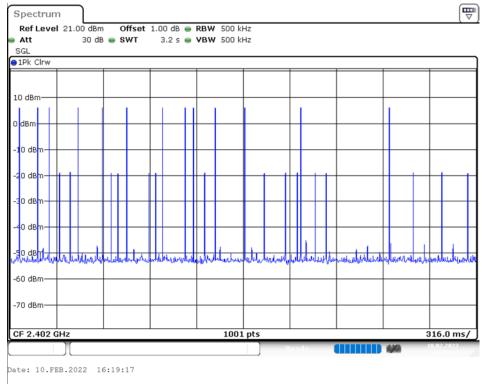

Date: 10.FEB.2022 16:16:13

DH5: Pulse Width

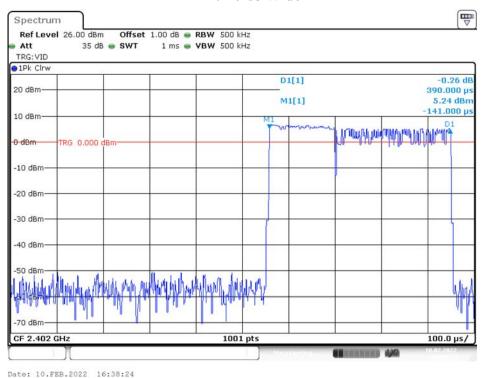
Date: 10.FEB.2022 16:20:04

DH5: Hopping Number

Date: 10.FEB.2022 16:19:10

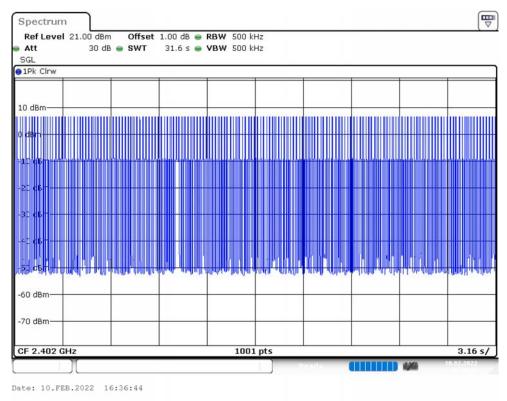

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 54 of 75

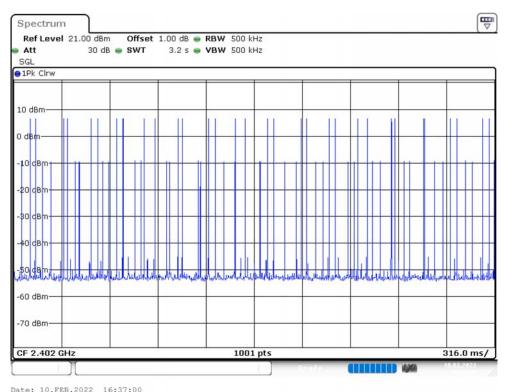

DH5: Hopping Number /10

No.: RXZ211207001RF02

(Hopping Number =13 in 1/10 period of highest signals, Second High signals were other channel)

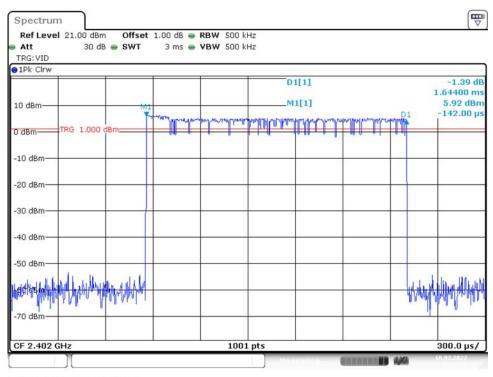


EDR Mode (π/4-DQPSK) 2DH1: Pulse Width

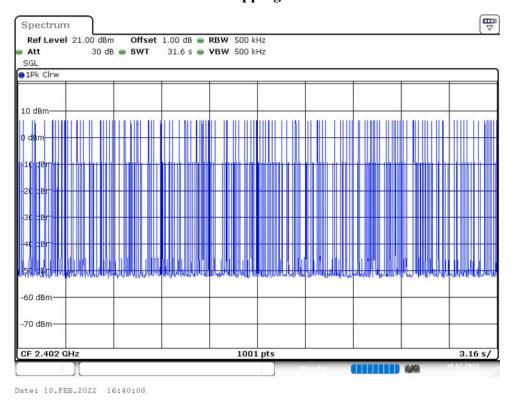

Date: 10.FEB.2022 10:30:24

2DH1: Hopping Number

2DH1: Hopping Number /10


(Hopping Number = 32 in 1/10 period of highest signals, Second High signals were other channel)

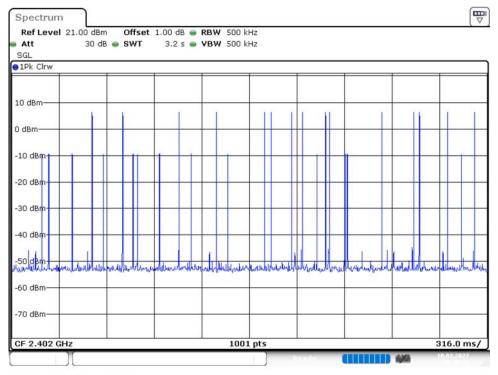
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 56 of 75

2DH3: Pulse Width

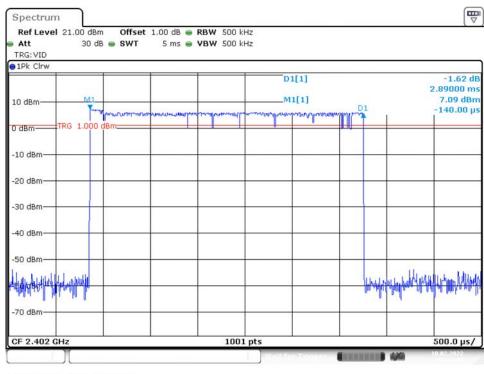
Date: 10.FEB.2022 16:41:18

2DH3: Hopping Number


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 57 of 75

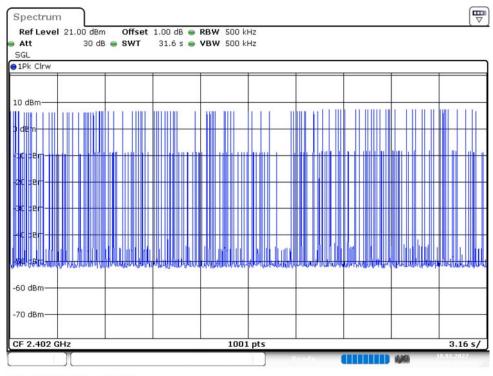
2DH3: Hopping Number /10


No.: RXZ211207001RF02

(Hopping Number = 15 in 1/10 period of highest signals, Second High signals were other channel)

Date: 10.FEB.2022 16:40:21

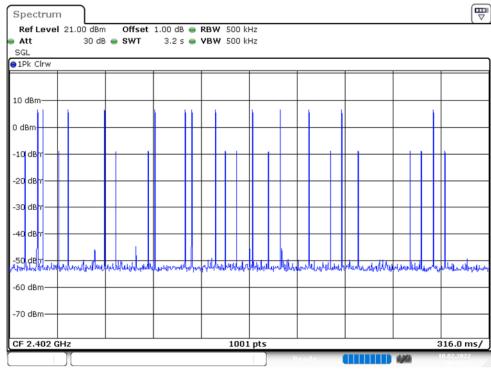
2DH5: Pulse Width



Date: 10.FEB.2022 16:44:41

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

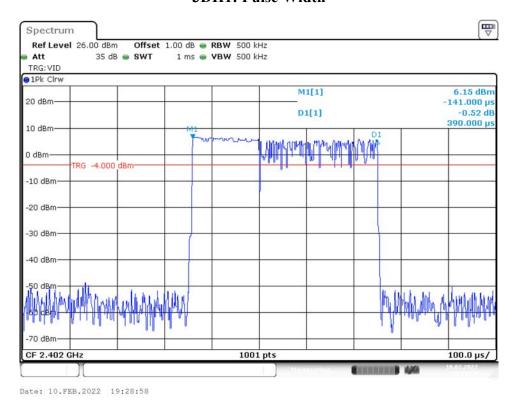
Page 58 of 75


2DH5: Hopping Number

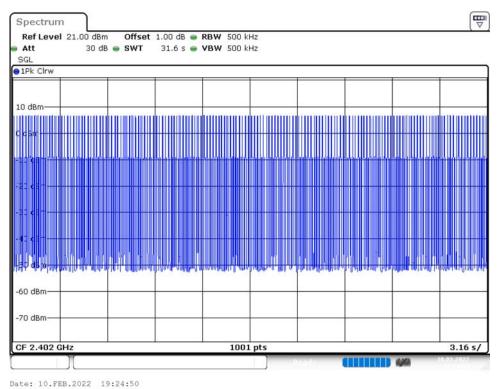
Date: 10.FEB.2022 16:43:31

2DH5: Hopping Number /10

(Hopping Number = 13 in 1/10 period of highest signals, Second High signals were other channel)



Date: 10.FEB.2022 16:43:38

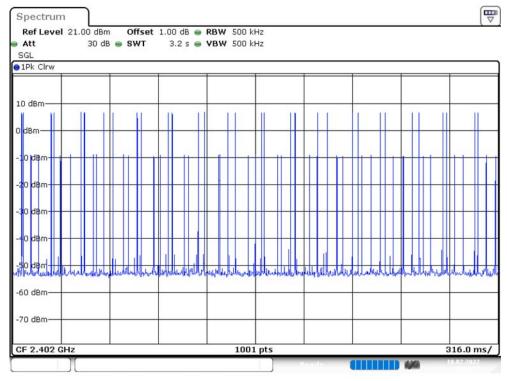

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 59 of 75

EDR Mode (8DPSK) 3DH1: Pulse Width

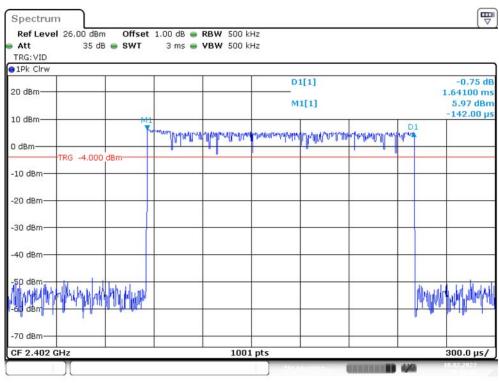
3DH1: Hopping Number

Date: 10.FEB.2022 19:24:50

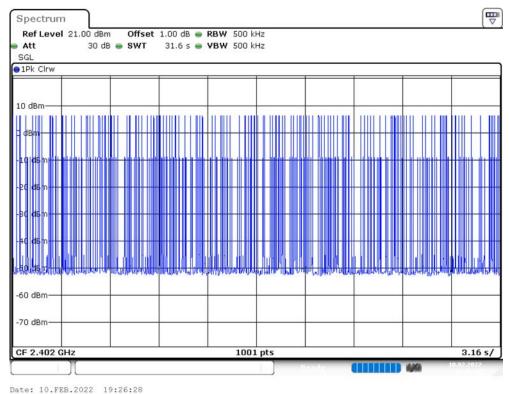

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 60 of 75

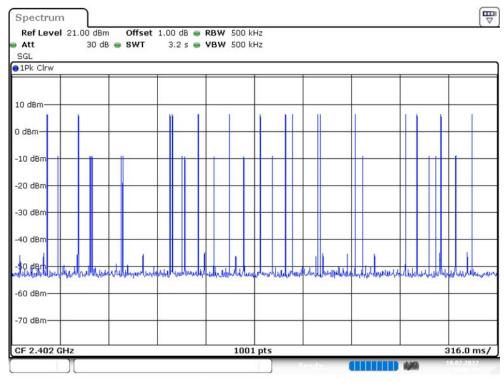
3DH1: Hopping Number /10


No.: RXZ211207001RF02

(Hopping Number = 32 in 1/10 period of highest signals, Second High signals were other channel)


Date: 10.FEB.2022 19:24:57

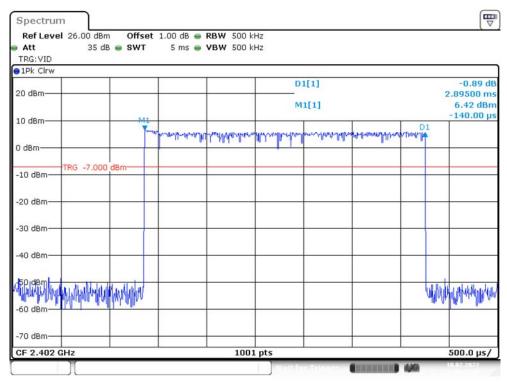
3DH3: Pulse Width


Date: 10.FEB.2022 19:27:46

3DH3: Hopping Number

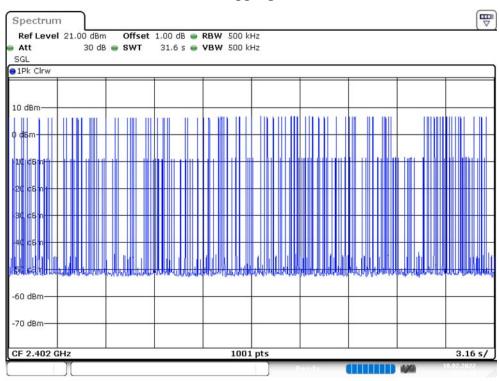
3DH3: Hopping Number /10

(Hopping Number = 16 in 1/10 period of highest signals, Second High signals were other channel)



Date: 10.FEB.2022 19:26:43

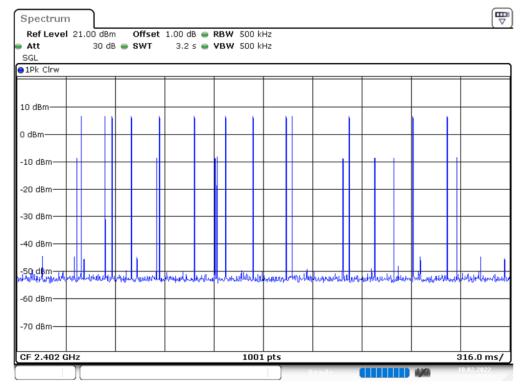
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 62 of 75

3DH5: Pulse Width

Date: 10.FEB.2022 19:32:36

3DH5: Hopping Number



Date: 10.FEB.2022 19:30:49

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 63 of 75

(Hopping Number = 13 in 1/10 period of highest signals, Second High signals were other channel)

Date: 10.FEB.2022 19:30:58

12. FCC §15.247(a)(1)(iii) –Quantity of hopping channel Test

12.1. Applicable Standard

According to FCC §15.247(a) (1) (iii).

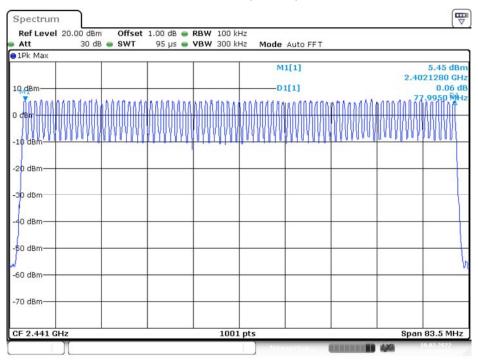
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

No.: RXZ211207001RF02

12.2. Test Procedure

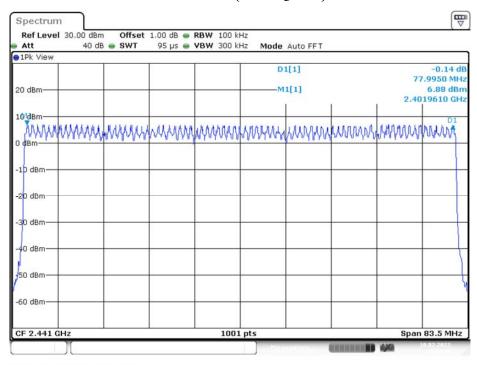
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

12.3. Test Results

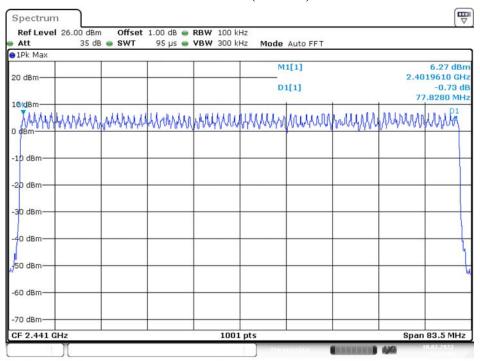

Mode	Frequency Range	Number of Hopping Channel	Limit	Result
Wiouc	(MHz)	(CH)	(CH)	Result
GFSK	2402-2480	79	>15	Compliance
π/4-DQPSK	2402-2480	79	>15	Compliance
8DPSK	2402-2480	79	>15	Compliance

Please refer to the following plots

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 65 of 75

BR Mode (GFSK)


Date: 10.FEB.2022 16:09:16

EDR Mode ($\pi/4$ -DQPSK)

Date: 10.FEB.2022 16:34:14

EDR Mode (8DPSK)

Date: 10.FEB.2022 16:57:24

13. FCC §15.247(b)(1) – Maximum Output Power

13.1. Applicable Standard

According to FCC §15.247(b) (1).

Frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

13.2. Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

13.3. Test Results

Channel	Frequency	Peak Conducted	Limit	Dogul4		
Channel	(MHz)	(dBm)	(W)	(W)	Result	
		BR Mode	(GFSK)			
Low	2402	6.11	0.004	0.125	Compliance	
Middle	2441	5.92	0.004	0.125	Compliance	
High	2480	5.88	0.004	0.125	Compliance	
		EDR Mode (π	/4-DQPSK)	•	•	
Low	2402	8.82	0.008	0.125	Compliance	
Middle	2441	8.44	0.007	0.125	Compliance	
High	2480	8.56	0.007	0.125	Compliance	
EDR Mode (8DPSK)						
Low	2402	9.21	0.008	0.125	Compliance	
Middle	2441	9.12	0.008	0.125	Compliance	
High	2480	9.05	0.008	0.125	Compliance	

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 68 of 75

14. FCC §15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

14.1. Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

No.: RXZ211207001RF02

14.2. Test Procedure

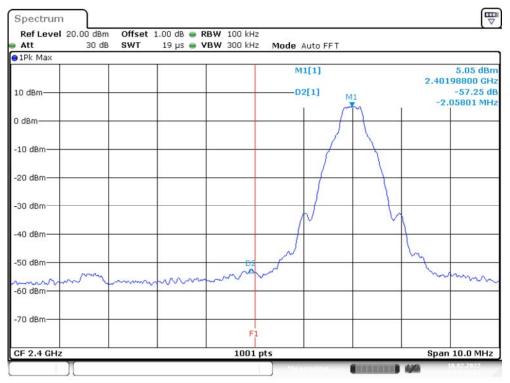
Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz VBW = 300 kHz

Sweep = coupled

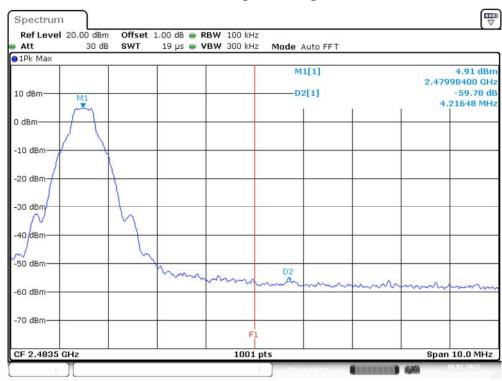
Detector function = peak Trace = max hold

14.3. Test Results


Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result		
		BR Mode (GFSK)				
Low	2402	57.25	≥ 20	PASS		
High	2480	59.78	≥ 20	PASS		
	BR	Hopping Mode (GF	SK)			
Low	2402-2480	59.96	≥ 20	PASS		
High	2402-2480	61.55	≥ 20	PASS		
	EI	DR Mode (π/4-DQPS	SK)			
Low	2402	54.37	≥ 20	PASS		
High	2480	59.65	≥ 20	PASS		
	EDR H	opping Mode (π/4-D	QPSK)			
Low	2402-2480	58.18	≥ 20	PASS		
High	2402-2480	62.71	≥ 20	PASS		
EDR Mode (8DPSK)						
Low	2402	55.1	≥ 20	PASS		
High	2480	59.91	≥ 20	PASS		
EDR Hopping Mode (8DPSK)						
Low	2402-2480	57.29	≥ 20	PASS		
High	2402-2480	63	≥ 20	PASS		

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

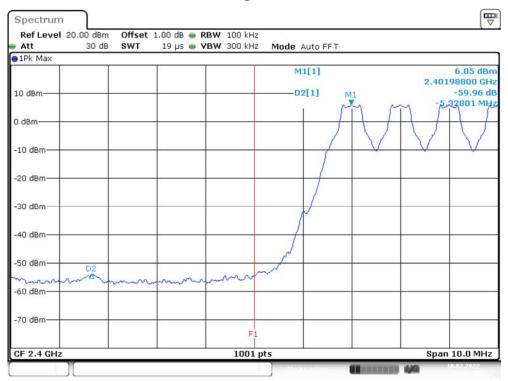
Page 69 of 75


Please refer to the following plots.

BR Mode (GFSK) Band Edge, CH Low

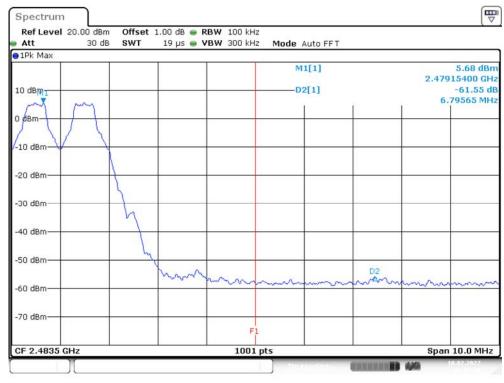
Date: 10.FEB.2022 15:14:25

Band Edge, CH High



Date: 10.FEB.2022 15:23:01

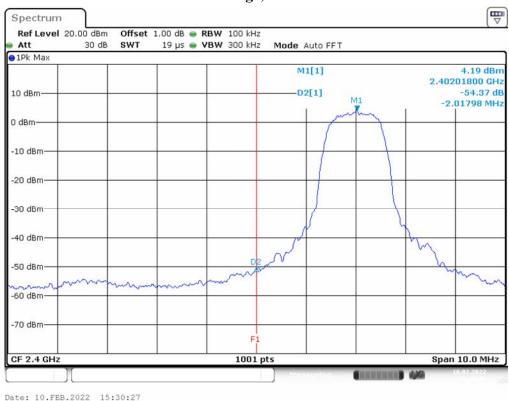
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 70 of 75

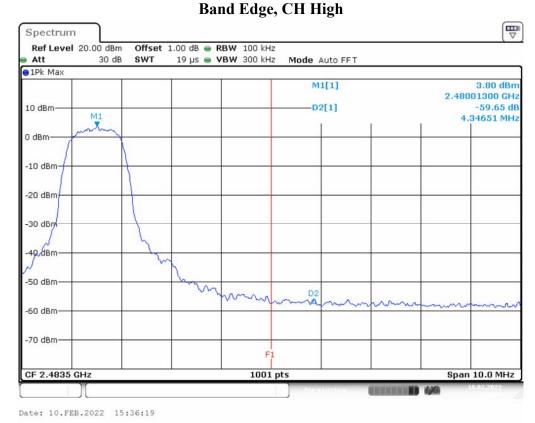
BR Hopping Mode (GFSK) Band Edge, CH Low

Date: 10.FEB.2022 16:04:36

Band Edge, CH High

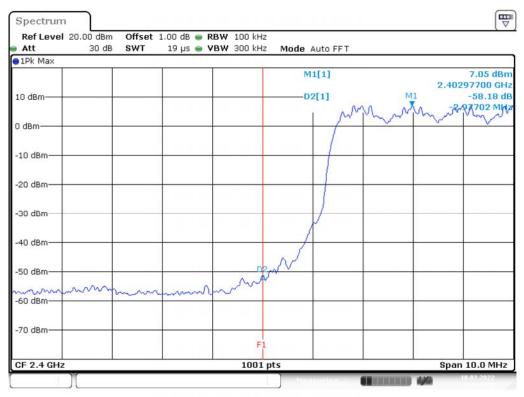


Date: 10.FEB.2022 16:05:08

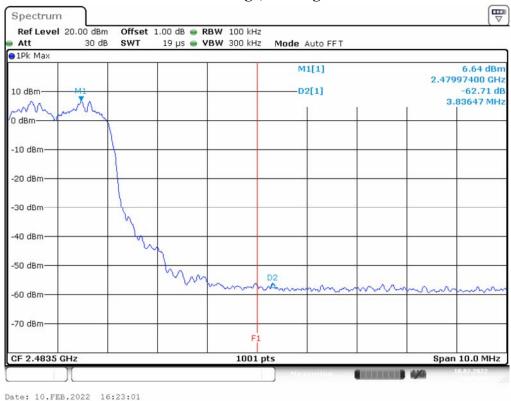

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 71 of 75

EDR Mode (π/4-DQPSK) Band Edge, CH Low

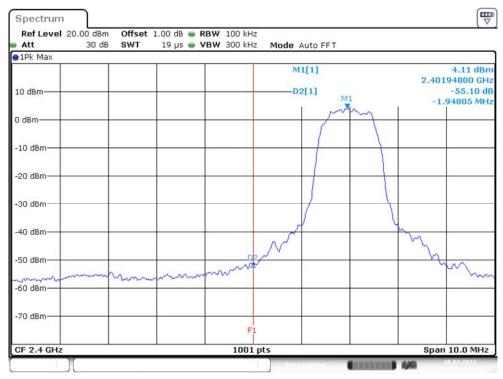

_ ._.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


Page 72 of 75

EDR Hopping Mode ($\pi/4$ -DQPSK) Band Edge, CH Low

Date: 10.FEB.2022 16:22:29


Band Edge, CH High

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 73 of 75

EDR Mode (8DPSK) Band Edge, CH Low

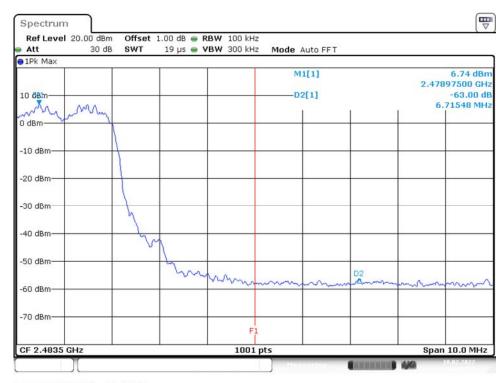
Date: 10.FEB.2022 15:41:39

Band Edge, CH High

Date: 10.FEB.2022 15:45:58

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 74 of 75


EDR Hopping Mode (8DPSK) Band Edge, CH Low

No.: RXZ211207001RF02

Date: 10.FEB.2022 16:48:19

Band Edge, CH High

Date: 10.FEB.2022 16:48:57

***** END OF REPORT *****

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 75 of 75