D.4 System Check Dipole SAR Calibration Certificate -Dipole 2600 MHz(D2600V2,S/N: 1030) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL Japan (Vitec) Certificate No: D2600V2-1030_Mar19 | Dbject | D2600V2 - SN:10 | 030 | | |--|---|--|---| | Calibration procedure(s) | QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz | | | | Calibration date: | March 14, 2019 | | | | all calibrations have been conducted | ed in the closed laborato | robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$ 0 | C and humidity < 70%. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | | | 04-Apr-18 (No. 217-02683) | Apr-19 | | ype-N mismatch combination | SN: 5047.2 / 06327 | | | | Type-N mismatch combination
Reference Probe EX3DV4 | SN: 5047.27 06327
SN: 7349
SN: 601 | 31-Dec-18 (No. EX3-7349_Dec18)
04-Oct-18 (No. DAE4-601_Oct18) | Dec-19
Oct-19 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 7349
SN: 601 | 31-Dec-18 (No. EX3-7349_Dec18)
04-Oct-18 (No. DAE4-601_Oct18) | Dec-19
Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec18) | Dec-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 7349
SN: 601 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Dec-19
Oct-19
Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 7349
SN: 601
ID #
SN: GB39512475 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) | Dec-19 Oct-19 Scheduled Check In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41092317 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349
SN: 601
ID#
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 31-Dec-18 (No. EX3-7349_Dec18) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Dec-19 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | Certificate No: D2600V2-1030_Mar19 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1030_Mar19 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
|---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.8 ± 6 % | 2.17 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.1 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1030_Mar19 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.0 Ω - 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.1 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.0 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1030_Mar19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 14.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2600 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.29 W/kgMaximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 14.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.17 \text{ S/m}$; $\epsilon_r = 50.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.89, 7.89, 7.89) @ 2600 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(10.c) = 13.7 W/km; SAR(10.c) = 6.06 W/km SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.06 W/kgMaximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg # Impedance Measurement Plot for Body TSL # D2600V2 Calibration for Impedance and Return-loss | Equipment | Dipole Antenna | Model | D2600V2 | |----------------|-------------------------------|--------------|---------| | Manufacture | Schmid&Partner Engineering AG | Serial | 1030 | | Tested by | Hisayoshi Sato | | _ | | Test environme | nt | - | | | Date | March 31, 2020 | | | |------------------------|----------------|-------------------|-------| | Ambient
Temperature | 24.0 deg.C | Relative humidity | 47%RH | | Date | March 31, 2021 | | | | Ambient
Temperature | 22.5 deg.C | Relative humidity | 45%RH | # 2. Equipment used March 31, 2020 | Control No. | Instrument | Manufacturer | Model No | Serial No | Test Item | Calibration Date * Interval(month) | |--------------------|------------------------|------------------------------------|-----------------|------------------|-----------|------------------------------------| | EST-63 | Network Analyzer | Keysight
Technologies Inc | E5071C | MY46523746 | SAR | 2019/04/13 * 12 | | EST-64 | Calibration Kit | Keysight
Technologies Inc | 85032F | MY53200995 | SAR | 2019/04/16 * 12 | | MPF-03 | 2mm Oval Flat Phantom | Schmid&Partner
Engineering AG | QDOVA001BB | 1203 | SAR | 2019/05/14 * 12 | | MPSAM-03 | SAM Phantom | Schmid&Partner
Engineering AG | QD000P40CD | 1764 | SAR | 2019/05/13 * 12 | | MOS-30 | Thermo-Hygrometer | CUSTOM | CTH-201 | 3001 | SAR | 2019/07/03 * 12 | | MHBBL600-
10000 | Head Simulating Liquid | Schmid &
Partner Engineering AG | HBBL600-10000V6 | SL AAH
U16 BC | | - | | MMBBL600-
6000 | Body Simulating Liquid | Schmid &
Partner Engineering AG | MBBL600-6000 | SL AAM
U16 BC | | - | # March 31, 2021 | Control No. | Instrument | Manufacturer | Model No | Serial No | Test Item | Calibration Date * Interval(month) | |--------------------|------------------------|------------------------------------|--------------|------------------|-----------|------------------------------------| | EST-63 | Network Analyzer | Keysight
Technologies Inc | E5071C | MY46523746 | SAR | 2020/06/04 * 12 | | EST-64 | Calibration Kit | Keysight
Technologies Inc | 85032F | MY53200995 | SAR | 2020/06/03 * 12 | | MPF-03 | 2mm Oval Flat Phantom | Schmid&Partner
Engineering AG | QDOVA001BB | 1203 | SAR | 2020/05/25 * 12 | | MPSAM-03 | SAM Phantom | Schmid&Partner
Engineering AG | QD000P40CD | 1764 | SAR | 2020/05/25 * 12 | | MOS-35 | Digital thermometer | HANNA | Checktemp 4 | - | SAR | 2020/07/10 * 12 | | MHBBL600-
10000 | Head Simulating Liquid | Schmid &
Partner Engineering AG | | SL AAH
U16 BC | | - | | MMBBL600-
6000 | Body Simulating Liquid | Schmid &
Partner Engineering AG | MBBL600-6000 | SL AAM
U16 BC | | - | # 3. Test Result | | | Head | Head | Deviation | Deviation | | | |---------------------------------------|-----------|-----------------|-----------------|-----------------|-----------------|-------------------------|----------| | Impeadance, Transformed to feed point | cal day | (real part) [Ω] | (img part) [jΩ] | (real part) [Ω] | (img part) [jΩ] | Tolerance | Result | | Calibration (SPEAG) | 2019/3/14 | 49.00 | -5.40 | - | - | - | - | | Calibration(ULJ) | 2020/3/31 | 51.27 | -6.79 | 2.27 | -1.39 | $+/-5\Omega+/-5j\Omega$ | Complied | | Calibration(ULJ) | 2021/3/31 | 51.12 | -4.86 | 2.12 | 0.54 | $+/-5\Omega+/-5j\Omega$ | Complied | | | | Head | Deviation | Tolerance | | |---------------------|-----------|--------|-----------|-----------|----------| | Return loss | cal day | [dB] | [dB] | [+/-dB] | Result | | Calibration (SPEAG) | 2019/3/14 | -25.10 | - | - | - | | Calibration(ULJ) | 2020/3/31 | -23.18 | 1.92 | 5.02 | Complied | | Calibration(ULJ) | 2021/3/31 | -26.21 | -1.11 | 5.02 | Complied | | | | Body | Body | Deviation | Deviation | | | |---------------------------------------|-----------|-----------------|-----------------|-----------------|-----------------|-------------------------|----------| | Impeadance, Transformed to feed point | cal day | (real part) [Ω] | (img part) [jΩ] | (real part) [Ω] | (img part) [jΩ] | Tolerance | Result | | Calibration (SPEAG) | 2019/3/14 | 45.00 | -4.00 | - | - | - | - | | Calibration(ULJ) | 2020/3/31 | 48.98 | -5.89 | 3.98 | -1.89 | $+/-5\Omega+/-5j\Omega$ | Complied | | Calibration(ULJ) | 2021/3/31 | 46.40 | -3.63 | 1.40 | 0.37 | +/-5Ω+/-5jΩ | Complied | | | | Body | Deviation | Tolerance | | |---------------------|-----------|--------|-----------|-----------|----------| | Return loss | cal day | [dB] | [dB] | [+/-dB] | Result | | Calibration (SPEAG) | 2019/3/14 | -23.40 | - | - | - | | Calibration(ULJ) | 2020/3/31 | -24.25 | -0.85 | 4.68 | Complied | | Calibration(ULJ) | 2021/3/31 | -25.52 | -2.12 | 4.68 | Complied | Tolerance: According to the KDB865664 D1 # Measurement Plots (March 31, 2020) # Measurement Plots (March 31, 2021) <Head Liquid> # <Body Liquid> #### D.5 System Check Dipole SAR Calibration Certificate -DipoleD5 GHz (D5GHzV2 S/N: 1020) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst s Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation
Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION | CERTIFICATE | | | | | |---|---|---|---|--|--| | Object | D5GHzV2 - SN:1 | 020 | | | | | Calibration procedure(s) | QA CAL-22.v6
Calibration Proce | QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz | | | | | Calibration date: | November 18, 20 | 021 | | | | | The measurements and the u | uncertainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages at
ry facility: environment temperature $(22\pm3)^{\circ}$ | nd are part of the certificate. | | | | | ID# | Cal Date (Califfrate Na.) | | | | | Primary Standards | | Cai Date (Cerificate No.) | Scheduled Calibration | | | | Primary Standards Power meter NRP | SN: 104778 | Cal Date (Certificate No.)
09-Apr-21 (No. 217-03291/03292) | Scheduled Calibration
Apr-22 | | | | | | | | | | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3503_Dec20)
01-Nov-21 (No. DAE4-601_Nov21) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-22
Scheduled Check | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 8H49394 (20k)
SN: 310382 / 06327
SN: 3503
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: 8H9994 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292763 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292763 SN: MY41092317 SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (In house) 30-Oct-14 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 B Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292763 SN: WY41092317 SN: 100972 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 | | | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 B Attenuator Type-N mismatch combinatio Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292763 SN: MY41092317 SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3503_Dec20) 01-Nov-21 (No. DAE4-601_Nov21) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-22 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | | Certificate No: D5GHzV2-1020_Nov21 # Calibration Laboratory of Schmid & Partner Engineering AG ausstrasse 43, 8004 Zurich, Switzerland S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" # **Additional Documentation:** c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the
certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz
5850 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.9 ± 6 % | 4.58 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 5.20 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.7 ± 6 % | 5.43 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | Arc recognization and artists are also | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.1 ± 6 % | 5.91 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.69 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 %
(k=2) | Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.8 ± 6 % | 6.19 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | S | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.29 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 72.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 1.99 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.1 | 6.06 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.7 ± 6 % | 6.26 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.50 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 52.3 Ω - 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | # Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.7 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | # Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.0 Ω + 0.5 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.9 dB | | | # Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | 55.5 Ω + 0.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.6 dB | | # Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 52.2 Ω - 4.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.9 dB | | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 55.9 Ω - 0.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.1 dB | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.7 Ω + 2.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.3 dB | | #### Antenna Parameters with Body TSL at 5850 MHz | Impedance, transformed to feed point | 56.6 Ω + 2.0 JΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.8 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.20 | 00 ns | |----------------------------------|------|-------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| #### DASY5 Validation Report for Head TSL Date: 18.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1020 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\varepsilon_r = 35.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.15 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³ , Medium parameters used: f = 5850 MHz; $\sigma = 5.20 \text{ S/m}$; $\varepsilon_r = 35.0$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 30.12.2020 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.24 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.2% Maximum value of SAR (measured) = 17.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.85 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 18.9 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.63 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 7.80 W/kg; SAR(10 g) = 2.21 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.98 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.87 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 15.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1020 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.43$ S/m; $\epsilon_f = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.91$ S/m; $\epsilon_f = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.91$ S/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.19$ S/m; $\epsilon_r = 47.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5850 MHz; $\sigma = 6.26$ S/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz, ConvF(4.61, 4.61, 4.61) @ 5850 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.20 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.2% Maximum value of SAR (measured) = 16.9 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.24 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.12 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.6% Maximum value of
SAR (measured) = 18.4 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.49 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 7.29 W/kg; SAR(10 g) = 1.99 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 17.7 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.50 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 7.50 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.2% Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.4 W/kg = 12.65 dBW/kg # Impedance Measurement Plot for Body TSL