

4_SIEM_0706_UMTS

Siemens AG Attn. Dieter Pfitzmann Information and Communication Mobile Wireless Modules Siemensdamm 50 13629 Berlin

Germany

Sven Lüngen 11.08.2006 Phone +49 (0) 2102 749 153 Fax +49 (0) 2102 749 350

FCC ID QIPHMS1 - predictions for Maximum Permissible Exposure

Dear Mr. Pfitzmann,

please find our Maximum Permissible Exposure calculations for the GSM module HMS1.

Best Regards

Sven Lüngen

Maximum Permissible Exposure

(as specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure)

Frequency range (MHz)	Power density (mW/cm²)
300 - 1,500	f/1500
1,500 - 100,000	1.0

Calculations 850 MHz band

Maximum peak output power at antenna input terminal: 31.5 dBm (1412,54 mW) (see 7 layers test results – FCC ID QIPHMS1)

Prediction distance R:

20 cm

Prediction frequency:

836,4 MHz

MPE limit **S**:

0.5576 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P*G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna

Maximum permissible antenna gain:

2,9759 dBi

Prediction

The maximum allowed MPE value of 0.5576 mW/cm²will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 0,5576 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 2,9759 dBi.

Calculations 1900 MHz band

Maximum peak output power at antenna input terminal: 28.6 dBm (724,44 mW) (see 7 layers test results – FCC ID QIPHMS1)

Prediction distance R:

20 cm

Prediction frequency:

1880 MHz

MPE limit **S**:

1 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P*G / (4\pi R^2)$

S = power density

P = power input to the antenna

 $\mathsf{G}=\mathsf{power}$ gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna

Maximum permissible antenna gain: 8.413 dBi

Prediction

The maximum allowed MPE value of 1 mW/cm² will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 8,413 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 8,413 dBi.