

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC179115

1 of 15 Page:

FCC Radio Test Report FCC ID: XMF-MID1035

Change II

TB-FCC179115 Report No.

Lightcomm Technology Co., Ltd. **Applicant**

Equipment Under Test (EUT)

EUT Name 10.1"Tablet Model No. 100026203

MID1035A, 100003562, MID1035 Series Model No.

Brand Name onn

Sample ID 20210310-36-1#

Receipt Date 2021-03-12

2021-03-13 to 2021-03-16 **Test Date**

2021-03-17 **Issue Date**

FCC Part 15, Subpart C 15.247 **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

INAN SU fay Lai. **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TB-FCC179115 Page: 2 of 15

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	RADIATED EMISSION TEST	11
	5.1 Test Standard and Limit	11
	5.2 Test Setup	11
	5.3 Test Procedure	12
	6.4 Deviation From Test Standard	
	5.5 EUT Operating Condition	13
	5.6 Test Data	13
ΔΤΤ	TACHMENT A RADIATED EMISSION TEST DATA	14

Report No.: TB-FCC179115 Page: 3 of 15

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178281	Rev.01	Initial issue of report	2021-01-19
TB-FCC179115	Rev.02	Delete the audio noise reduction IC module	2021-03-17
	1037		33
mus s			min in
B	131	a True and	
MIRE			
			OTO .
	4000		
		TUDE TO THE TOTAL OF THE TOTAL	won,
	4000		33
			COD 3
	Dist.		

Page: 4 of 15

1. General Information about EUT

1.1 Client Information

Applicant	: Lightcomm Technology Co., Ltd.	
Address : UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK		UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer	Manufacturer : Huizhou Hengdu Electronics Co., Ltd.	
No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China

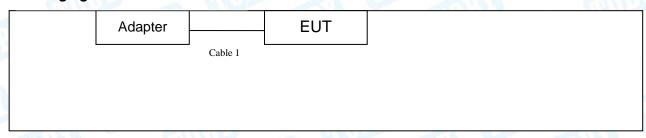
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	10.1"Tablet		
Models No.	1	100026203, MID1035A, 100003562, MID1035		
Model Difference	12	All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name and memory capacity.		
Product	5	Operation Frequency: Number of Channel:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz 802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40):7 channels see note(3)	
Description		Modulation Type: Antenna Gain:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM) 2.92dBi FPC Antenna	
Power Supply	3	Adapter(TEKA-UCA20US) Input: 100-240V~, 50/60Hz, 0.35A MAX Output: DC 5V 2A DC 3.8V by 6600mAh Li-ion Polymer battery		
Software Version	\ : \	RP1A.200720.011	release-keys	
Hardware Version	:	MID1035MQ_MT8768_LPDDR4_DSP_MB-VER1_1		
Connecting I/O Port(S)	118	Please refer to the User's Manual		
Remark	10	The antenna gain and adapter provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.		

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	(1411 12)		(1411 12)		(1V11 12 <i>)</i>


Page: 5 of 15

			E 1 12 1		I I I I I
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 9 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Charging Mode+Tx Mode

TX Mode

	EUT	

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
	Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	Yes	NO	1.0M	Accessory		

Page: 6 of 15

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	Charging+ TX B Mode			

For Radiated Test			
Final Test Mode Description			
Mode 2	TX Mode B Mode Channel 01/06/11		
Mode 3	TX Mode G Mode Channel 01/06/11		
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11		
Mode 5 TX Mode N(HT40) Mode Channel 03/06/09			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 15

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		LaunchEngmode	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	15	15	15
IEEE 802.11g OFDM	17	17	17
IEEE 802.11n (HT20)	17	17	17
Test Software Version		n/a	a China
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	18	18	18

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 15

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 9 of 15

2. Test Summary

	FCC P	art 15 Subpart C(15.247)/ RSS 247 Iss	sue 2	
Standard	d Section	Took Itam	Toot Comple(e)	lu dama ant	Domosta
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
15.203		Antenna Requirement	N/A	N/A	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	N/A	N/A	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	N/A	N/A	N/A Note(2)
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	N/A	N/A	N/A Note(2)
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	N/A	N/A	N/A Note(2)
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	N/A	N/A	N/A Note(2)
15.247(d)	RSS 247 5.5	Band Edge	N/A	N/A	N/A Note(2)
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	20210310-36-1#	PASS	N/A

Note:

- (1) N/A is an abbreviation for Not Applicable.
- (2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.
- (3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Report No.: TB-FCC179115 Page: 10 of 15

4. Test Equipment

Radiation Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2020	Jul. 05, 2021
Pre-amplifier	Sonoma	310N	185903	Feb. 24, 2021	Feb. 25, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 24, 2021	Feb. 25, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 07, 2020	Jul. 06, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 24, 2021	Feb. 25, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

Page: 11 of 15

5. Radiated Emission Test

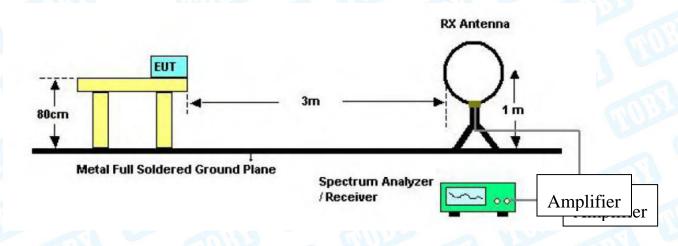
5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

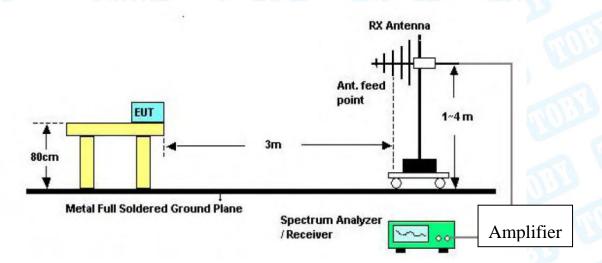
1101	alatea Elilleelell Elillite (e iti	
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

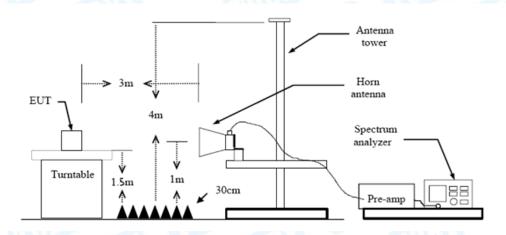

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


5.2 Test Setup



Page: 12 of 15

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Report No.: TB-FCC179115 Page: 13 of 15

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment A.

Page: 14 of 15

Attachment A-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.2℃	Alle		Relative Hu	ımidity:	41%	
Test Voltage:	AC 120)V/60 HZ	CHILL		ABOVE		19.3
Ant. Pol.	Horizon	ntal		THE STATE OF THE S		CASS	
Test Mode:	TXBM	1ode 2412N	ЛНz	Charles of			
Remark:	Only w	orse case i	s reported		Miles		
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiation	
						Margin -6	dB
1						5 6 X	
30		2 X	3 X	4	MA HAND	\sim	h
M	W	$\sqrt{}$	Whomy	month	why /"	Jan	JW/
Malling	L. moral		MW				
	V-10	W. W.					
20							
30.000 40 50	60 70	80	(MHz)	300	400 5	600 600 700	1000.00
		Reading	Correct	Measure-			
No. Mk. F	req.	Level	Factor	ment	Limit	Over	
1	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 * 46.	9947	54.53	-22.07	32.46	40.00	-7.54	peak
2 77.	3212	51.51	-22.71	28.80	40.00	-11.20	peak
	2005	48.62	-20.01	28.61	43.50	-14.89	peak
3 183	.2005					40.44	naal
	.0020	44.36	-16.50	27.86	46.00	-18.14	peak
4 289			-16.50 -8.87	27.86 35.80	46.00	-18.14	
4 289 5 554	.0020	44.36					peak peak peak

Report No.: TB-FCC179115 Page: 15 of 15

Temperature:	23.2°		Le	elative Humid	ity.	41%	
Test Voltage:	AC 12	20V/60 HZ					
Ant. Pol.	Vertic	al		7 11			650
Test Mode:	TX B	Mode 2412	:MHz		MA	III.	
Remark:	Only	worse case	is reported				NOB
80.0 dBuV/m							
					(RF)FCC	15C 3M Radiatio	
						Margin -	——Н
						5 X	
30	•	Z X	3	4	MM	\sim	mhu
M W	h N	$^{\prime}$ \ $ $ $ $ $ $ $ $		handle was	Man	المسيلاسية	Un Que
	In word	$ \setminus$ \setminus \setminus	W	W.			
	1000	7112111 .70					
	\range \(\sigma_{\nu} \)	WW					
	Λ,ν	W V					
	Λ,0						
-20	V-10	w					
-20 30.000 40	50 60 70	80	(MHz)	300	400	500 600 700	1000.00
	50 60 70	80 Reading	(MHz) Correct	300 Measure-			1000.00
	50 60 70 Freq.				400 Limit	500 600 700 Over	1000.00
30.000 40		Reading	Correct	Measure-		Over	1000.00
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over n dB	
No. Mk.	Freq. MHz 6.9948	Reading Level	Correct Factor	Measure- ment dBuV/m 36.40	Limit dBuV/n 40.00	Over n dB 0 -3.60	Detecto
No. Mk. 1 * 4 2 7	Freq. MHz 6.9948 7.3212	Reading Level dBuV 58.47 53.51	Correct Factor dB/m -22.07 -22.71	Measure- ment dBuV/m 36.40 30.80	Limit dBuV/n 40.00	Over n dB 0 -3.60 0 -9.20	Detecto QP peak
No. Mk. 1 * 4 2 7 3 18	Freq. MHz 6.9948 7.3212 33.2005	Reading Level dBuV 58.47 53.51 50.12	Correct Factor dB/m -22.07 -22.71 -20.01	Measure- ment dBuV/m 36.40 30.80 30.11	Limit dBuV/n 40.00 40.00 43.50	Over n dB 0 -3.60 0 -9.20 0 -13.39	Detecto QP peak peak
No. Mk. 1 * 4 2 7 3 18 4 28	Freq. MHz 6.9948 7.3212 33.2005 39.0021	Reading Level dBuV 58.47 53.51 50.12 44.36	Correct Factor dB/m -22.07 -22.71 -20.01 -16.50	Measure- ment dBuV/m 36.40 30.80 30.11 27.86	Limit dBuV/n 40.00 40.00 43.50 46.00	Over n dB 0 -3.60 0 -9.20 0 -13.39 0 -18.14	Detecto QP peak peak
No. Mk. 1 * 4 2 7 3 18 4 28	Freq. MHz 6.9948 7.3212 33.2005	Reading Level dBuV 58.47 53.51 50.12	Correct Factor dB/m -22.07 -22.71 -20.01	Measure- ment dBuV/m 36.40 30.80 30.11	Limit dBuV/n 40.00 40.00 43.50	Over n dB 0 -3.60 0 -9.20 0 -13.39 0 -18.14	Detecto QP peak peak

END OF REPORT----