

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24101700101 FCC ID.....: 2BH6A-ST012

Compiled by

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue.....: Oct. 18, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Lingthia XYOR

CTATESTIN'

Applicant's name Shenzhen STARTRC Technology Co., Ltd.

No.401, Block 4, Zhonghaixin Industrial Park, No.2, Shengbao

Road, Nanwan, Longgang, Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....BLUETOOTH REMOTE CONTROLLER

Trade Mark: STARTRC

Manufacturer Shenzhen STARTRC Technology Co., Ltd.

Model/Type reference..... ST012

Listed ModelsN/A

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 3.7V From battery and DC 5.0V From external circuit

Result...... PASS

Report No.: CTA24101700101 Page 2 of 36

TEST REPORT

CTA TESTING **BLUETOOTH REMOTE CONTROLLER** Equipment under Test

Model /Type ST012

Listed Models N/A

Shenzhen STARTRC Technology Co., Ltd. **Applicant**

No.401, Block 4, Zhonghaixin Industrial Park, No.2, Shengbao Road, Address CTA TESTING

Nanwan, Longgang, Shenzhen, China

Manufacturer Shenzhen STARTRC Technology Co., Ltd.

No.401, Block 4, Zhonghaixin Industrial Park, No.2, Shengbao Road, Address

Nanwan, Longgang, Shenzhen, China

d	C/L	INC
	Test Result:	PASS
uavi	CTP	TING

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 36 Report No.: CTA24101700101

Contents

		TESTING	ntents	
	1	TEST STANDARDS	TING	4
	C TO	TATE		.NG
	2	SUMMARY		STING
	_	O W W A K T	- 40	
				_
	2.1	General Remarks		5
	2.2	Product Description*		5
	2.3	Equipment Under Test	T (/ELIT)	5
	2.4	Short description of the Equipment under	r lest (EUI)	5
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
60	2.7	Related Submittal(s) / Grant (s)		6
7	2.8	Modifications		6
	<u>3</u>	TEST ENVIRONMENT		
	_			lar-
				CTA TEST 7 7 7 7 8
	3.1	Address of the test laboratory		7
	3.2	Test Facility		G 7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		
	3.5	Statement of the measurement uncertain	ıty	8
	3.6	Equipments Used during the Test		9
		-ESTITUTE -ESTITUTE - ESTITUTE - E		
	4	TEST CONDITIONS AND RESU	II TS	10
	C	TEST CONDITIONS AND RESC	711	
			CTAT	
	4.1	AC Power Conducted Emission		10
	4.2	Radiated Emissions and Band Edge		13
	4.3	Maximum Peak Output Power	ATA	20
	4.4	Power Spectral Density	Carlo Ci.	21
	4.5	6dB Bandwidth		23
	4.6	Out-of-band Emissions		23
	4.7	Antenna Requirement		29
CTAT	5	TEST SETUP PHOTOS OF THE	EIIT	
CTA'	<u>J</u>	TEST SETOF FILOTOS OF THE		
		STILL		
	<u>6</u>	PHOTOS OF THE EUT	<u></u>	
		CIL	CTATESTING	
			CIA'	
				ZESI"
				CTATESTIN

Report No.: CTA24101700101 Page 4 of 36

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA24101700101 Page 5 of 36

SUMMARY

General Remarks 2.1

CTATES			
2.1 General Remarks			
Date of receipt of test sample	TATE	Oct. 12, 2024	TESTING
Testing commenced on	The state of the s	Oct. 12, 2024	CTA
Testing concluded on	:	Oct. 18, 2024	

2.2 Product Description*

2.2 Product Descri	ntion*			
Product Description:	BLUETOOTH REMOTE CONTROLLER			
Model/Type reference:	ST012			
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit			
Adapter information	Model: EP-TA20CBC			
(Auxiliary test supplied by	Input: AC 100-240V 50/60Hz			
test Lab):	Output: DC 5V 2A			
Hardware version:	V1.0			
Software version:	V1.0			
Testing sample ID:	CTA241017001-1# (Engineer sample)			
resting sample ib.	CTA241017001-2# (Normal sample)			
Bluetooth BLE				
Supported type:	Bluetooth low Energy			
Modulation:	GFSK			
Operation frequency:	2402MHz to 2480MHz			
Channel number:	40			
Channel separation:	2 MHz			
Antenna type:	Ceramic antenna			
Antenna gain:	2.48 dBi			
	TO THE			

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Te	est				211	
Power supply system utilis	sed					
Power supply voltage	 :	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
	TIM	•	Other (specified in b	lank below)	

DC 3.7V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a BLUETOOTH REMOTE CONTROLLER. For more details, refer to the user's manual of the EUT.

Page 6 of 36 Report No.: CTA24101700101

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	Channel	Frequency (MHz)			
	00	2402			
	01	2404			
	02	2406			
	TING	:			
STATE	19	2440			
; 61,	ESTIL	i i			
,	37	2476			
	38	2478			
	39	2480			
	2.6 Block Diagram of Test Setup	CTATESTING CTATESTING			
(G					

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTATESTING Report No.: CTA24101700101 Page 7 of 36

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
VIN	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
NG	
Humidity:	47 %
. (
Atmospheric pressure:	950-1050mbar

	Allilosphenc pressure.	330-103011Ibai	
С	onducted testing:	TES.	TING
	Temperature:	24 ° C	TESI
	No. of the last of	110	(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24101700101 Page 8 of 36

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	-1NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

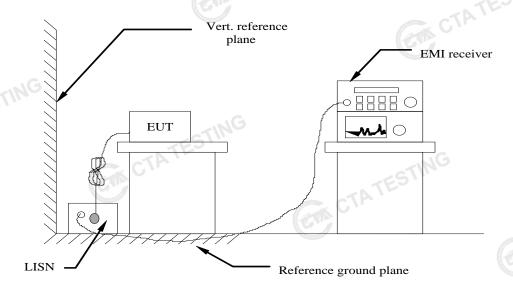
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density		0.57 dB	(1)
Spectrum bandwidth	-25\1	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

Page 9 of 36 Report No.: CTA24101700101

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	A TO MATTER	C	75		ING			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date		
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02		
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02		
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02		
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02		
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02		
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02		
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02		
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02		
	WIDEBAND RADIO COMMUNICATION TESTER CMW500		R&S	CTA-302	2024/08/03	2025/08/02		
	Temperature and humidity meter			CTA-326	2024/08/03	2025/08/02		
	Ultra-Broadband Antenna Schwarzbeck		VULB9163	CTA-310	2023/10/17	2026/10/16		
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12		
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16		
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16		
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02		
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02		
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02		
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02		
TE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02		
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02		
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02		
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02		
						TES		


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
(ETP)	C. C.	TATESIN	- CT	TESTING	

Report No.: CTA24101700101 Page 10 of 36

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

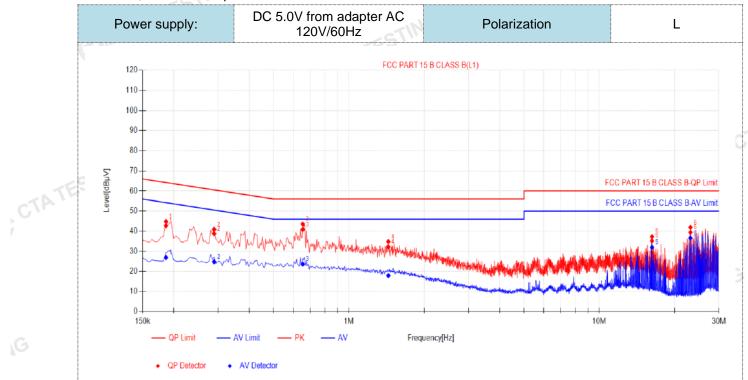
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency rang	no (MHz)	Limit (dBuV)					
Frequency rang	ge (IVII 12)	Quasi-peak	Average				
0.15-0.	5	66 to 56*	56 to 46*				
0.5-5		56	46				
5-30		60	50				
* Decreases with the loga	arithm of the frequency	STING					
TEST RESULTS	CTAT		ESTING				
Remark:			CATES				

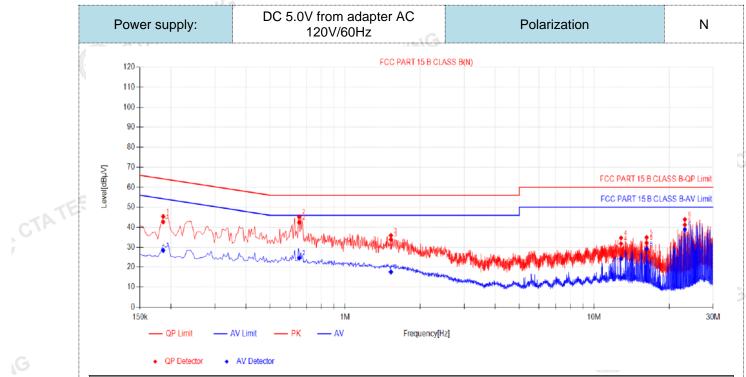

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Report No.: CTA24101700101 Page 11 of 36

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dΒμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.186	10.03	32.69	42.72	64.21	21.49	16.88	26.91	54.21	27.30	PASS	
2	0.2895	9.95	28.89	38.84	60.54	21.70	14.88	24.83	50.54	25.71	PASS	
3	0.654	9.97	30.91	40.88	56.00	15.12	13.70	23.67	46.00	22.33	PASS	
4	1.437	9.90	22.29	32.19	56.00	23.81	8.05	17.95	46.00	28.05	PASS	THE STATE
5	16.2285	10.33	24.91	35.24	60.00	24.76	21.61	31.94	50.00	18.06	PASS	
6	23.127	10.48	29.01	39.49	60.00	20.51	26.14	36.62	50.00	13.38	PASS	4

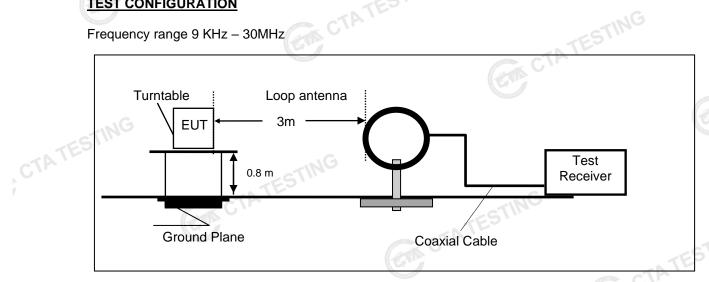
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- CTA TESTING 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

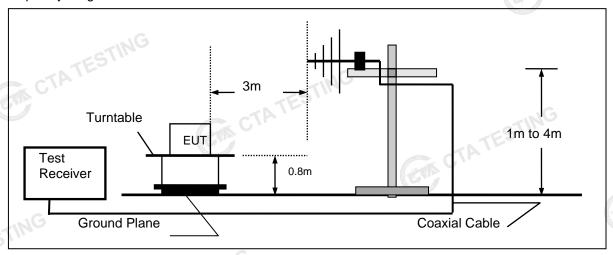
CTA TESTING

Report No.: CTA24101700101 Page 12 of 36

Fina	l Data Lis	t										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.186	10.01	32.63	42.64	64.21	21.57	18.40	28.41	54.21	25.80	PASS	
2	0.654	10.10	32.34	42.44	56.00	13.56	14.49	24.59	46.00	21.41	PASS	
3	1.527	10.13	23.64	33.77	56.00	22.23	7.50	17.63	46.00	28.37	PASS	
4	12.8085	10.41	21.34	31.75	60.00	28.25	13.87	24.28	50.00	25.72	PASS	
5	16.2285	10.45	21.72	32.17	60.00	27.83	18.62	29.07	50.00	20.93	PASS	
6	23.127	10.65	30.55	41.20	60.00	18.80	28.21	38.86	50.00	11.14	PASS	
Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
-1810	,	,			` ,		` '					
3)	. QPMargir	h(dB) = 0	QP Limit	(dBuV) -	QP Valu	e (dBuV)					

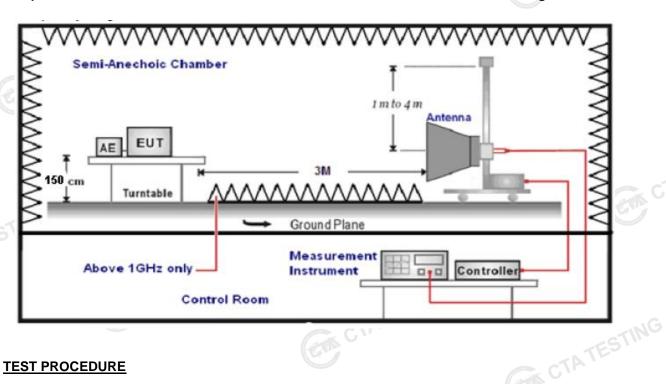

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 13 of 36 Report No.: CTA24101700101


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 36 Report No.: CTA24101700101

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range					
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz-30MHz	QP				
30MHz-1GHz	QP				
and the second	Peak Value: RBW=1MHz/VBW=3MHz,	TING			
1GHz-40GHz	Sweep time=Auto	Peak			
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,				
	Sweep time=Auto				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: CTATEST

FS = RA + AF + CL - AG

RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Report No.: CTA24101700101 Page 15 of 36

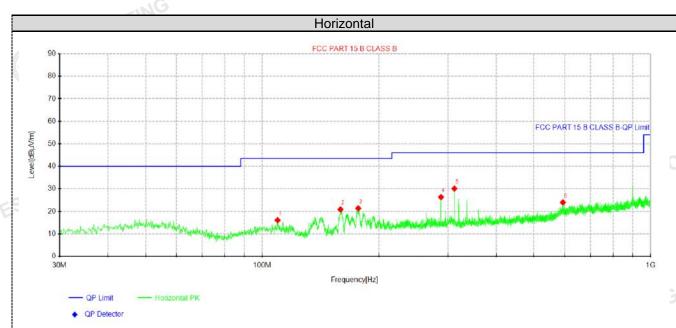
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		


TEST RESULTS

Remark:

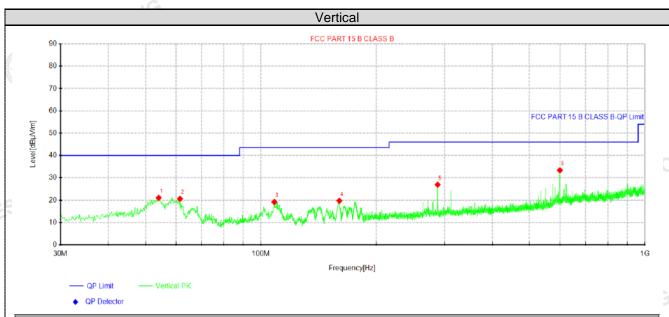
- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

Report No.: CTA24101700101 Page 16 of 36

Susp	ected Data	List							
NO.	Freq.	Freq. Reading		Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
1	109.54	29.37	16.06	-13.31	43.50	27.44	100	197	Horizontal
2	159.131	36.53	20.85	-15.68	43.50	22.65	100	233	Horizontal
3	176.833	36.07	21.35	-14.72	43.50	22.15	100	221	Horizontal
4	288.02	37.62	26.33	-11.29	46.00	19.67	100	257	Horizontal
5	311.906	41.00	30.11	-10.89	46.00	15.89	100	71	Horizontal
6	594.055	30.15	23.97	-6.18	46.00	22.03	100	48	Horizontal

CTATE


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

CTATES

Report No.: CTA24101700101 Page 17 of 36

Susp	Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folality			
1	54.1288	32.55	21.08	-11.47	40.00	18.92	100	103	Vertical			
2	61.525	33.75	20.61	-13.14	40.00	19.39	100	194	Vertical			
3	108.448	32.42	19.17	-13.25	43.50	24.33	100	149	Vertical			
4	160.222	35.40	19.74	-15.66	43.50	23.76	100	324	Vertical			
5	288.02	38.24	26.95	-11.29	46.00	19.05	100	312	Vertical			
6	599.996	39.30	33.39	-5.91	46.00	12.61	100	209	Vertical			

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 18 of 36 Report No.: CTA24101700101

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		arity:	HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	62.48	PK	74	11.52	66.75	32.33	5.12	41.72	-4.27
4804.00	45.27	AV	54	8.73	49.54	32.33	5.12	41.72	-4.27
7206.00	53.86	PK	74	20.14	54.38	36.6	6.49	43.61	-0.52
7206.00	43.84	AV	54	10.16	44.36	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2402		Pola	arity:	VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.70	PK	74	13.30	64.97	32.33	5.12	41.72	-4.27	
4804.00	43.18	AV	54	10.82	47.45	32.33	5.12	41.72	-4.27	
7206.00	51.57	PK	74	22.43	52.09	36.6	6.49	43.61	-0.52	
7206.00	41.65	AV	54	12.35	42.17	36.6	6.49	43.61	-0.52	

Frequency(MHz):		2440		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	_	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.79	PK	74	12.21	65.67	32.6	5.34	41.82	-3.88
4880.00	44.33	AV	54	9.67	48.21	32.6	5.34	41.82	-3.88
7320.00	53.13	PK	74	20.87	53.24	36.8	6.81	43.72	-0.11
7320.00	43.07	ΑV	54	10.93	43.18	36.8	6.81	43.72	-0.11

Frequency(MHz):		2440		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.92	PK	74	14.08	63.80	32.6	5.34	41.82	-3.88
4880.00	42.74	AV	54	11.26	46.62	32.6	5.34	41.82	-3.88
7320.00	51.45	PK	74	22.55	51.56	36.8	6.81	43.72	-0.11
7320.00	41.31	AV	54	12.69	41.42	36.8	6.81	43.72	-0.11

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	()	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.27	PK	74	12.73	64.35	32.73	5.66	41.47	-3.08
4960.00	43.49	AV	54	10.51	46.57	32.73	5.66	41.47	-3.08
7440.00	52.56	PK	74	21.44	52.11	37.04	7.25	43.84	0.45
7440.00	42.25	PK	54	11.75	41.80	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.23	PK	74	14.77	62.31	32.73	5.66	9 41.47	-3.08
4960.00	41.47	AV	54	12.53	44.55	32.73	5.66	41.47	-3.08
7440.00	50.12	PK	74	23.88	49.67	37.04	7.25	43.84	0.45
7440.00	40.31	PK	54	13.69	39.86	37.04	7.25	43.84	0.45

REMARKS:

Page 19 of 36 Report No.: CTA24101700101

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Frequency Frequency	/B#LI=\									
Frequency	Sy(MHZ):	:	24	02	Pola	rity:	HORIZONTAL			
(MHz)	Emis: Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	61.96	PK	74	12.04	72.38	27.42	4.31	42.15	-10.42	
2390.00	43.53	AV	54	10.47	53.95	27.42	4.31	42.15	-10.42	
Frequenc	cy(MHz):	:	2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis: Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	60.04	PK	74	13.96	70.46	27.42	4.31	42.15	-10.42	
2390.00	41.46	AV	54	12.54	51.88	27.42	4.31	42.15	-10.42	
Frequenc	cy(MHz):	:	24	80	Polarity: HORIZONTAL		\L			
Frequency (MHz)	Emis: Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	61.28	PK	74	12.72	71.39	27.7	4.47	42.28	-10.11	
2483.50	42.89	AV	54	11.11	53.00	27.7	4.47	42.28	-10.11	
Frequenc	cy(MHz):	:	24	80	Polarity:		VERTICAL			
Frequency (MHz)	Emis: Lev (dBu\	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
1	59.48	PK	74	14.52	69.59	27.7	4.47	42.28	-10.11	
2483.50	41.19	AV	54	12.81	51.30	27.7	4.47	42.28	-10.11	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: CTA24101700101 Page 20 of 36

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

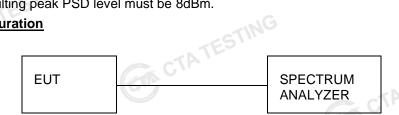
Test Configuration

Test Results

est Results				ATESTIN
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
.01	00	-2.07		
GFSK 1Mbps	19	-0.88	30.00	Pass
CTA	39	-0.83		
Note: 1.The test res	sults including the	cable lose.	CTATESTING	-
			C.	

Report No.: CTA24101700101 Page 21 of 36

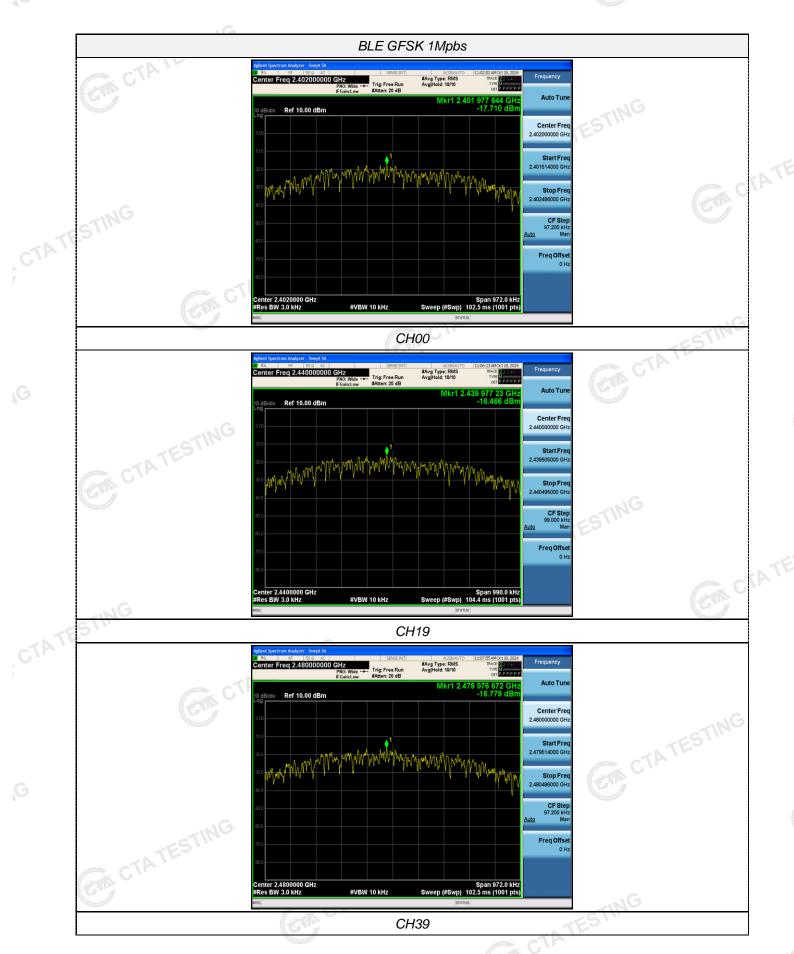
Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

ſ			Power Spectral Density		
-=	Type	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
77.		00	<u> </u>		
	GFSK 1Mbps	19	-16.47	8.00	Pass
		39	-16.78	-1G	
	Test plot as follows	31			

Report No.: CTA24101700101 Page 22 of 36

Report No.: CTA24101700101 Page 23 of 36

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		SPECTR	2"	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
STIM	00	0.648		
GFSK 1Mbps	19	0.660	≥500	Pass
C	39	0.648		
Test plot as follows:	CIN C	TATES	CTATESTIN	G

Report No.: CTA24101700101 Page 25 of 36

Out-of-band Emissions 4.6

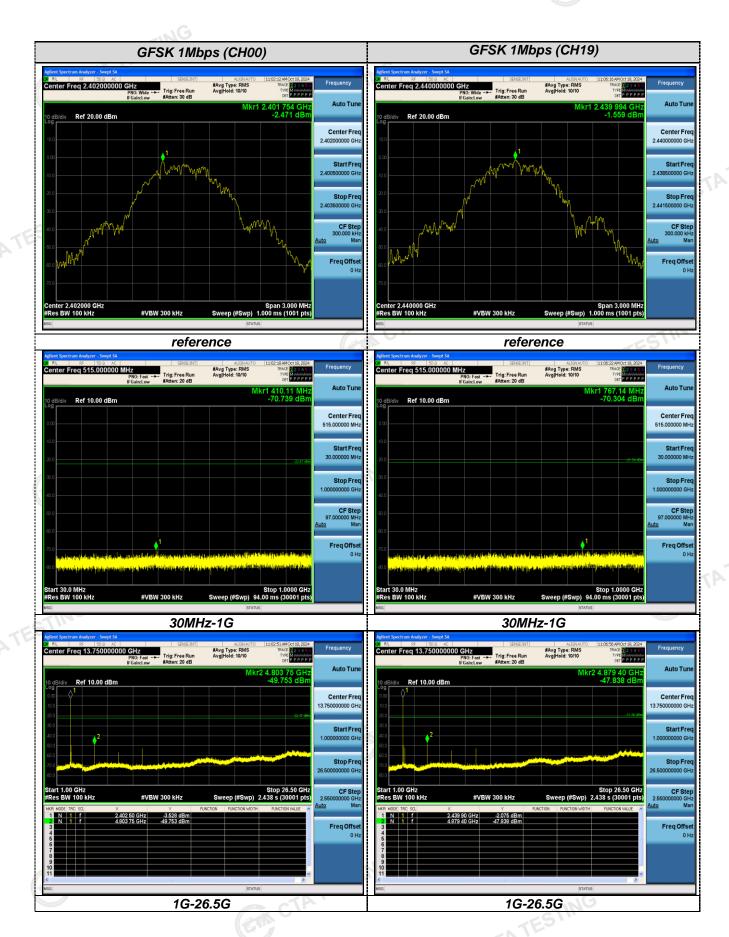
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

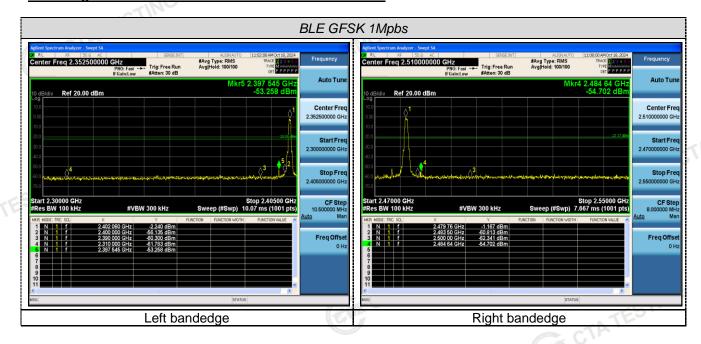


Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Report No.: CTA24101700101 Page 26 of 36



Report No.: CTA24101700101 Page 27 of 36

Report No.: CTA24101700101 Page 28 of 36

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24101700101 Page 29 of 36

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

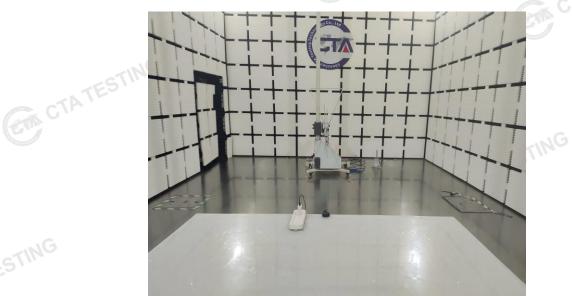
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 2.48 dBi.

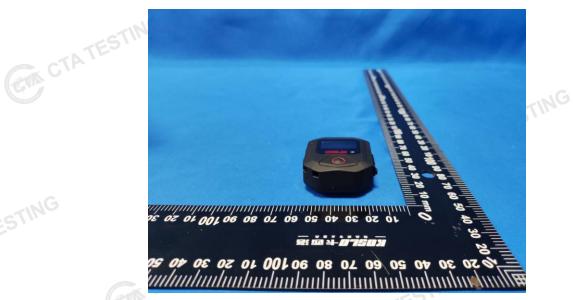

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

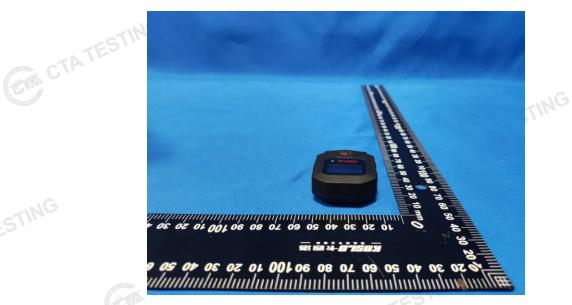
CTATESTING

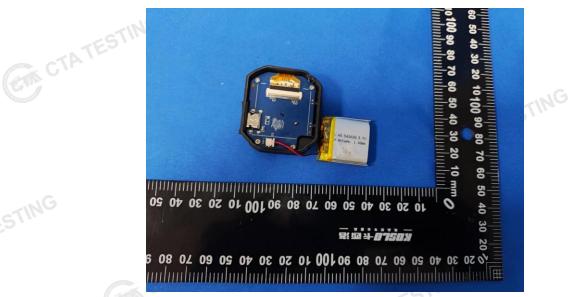
Page 30 of 36 Report No.: CTA24101700101

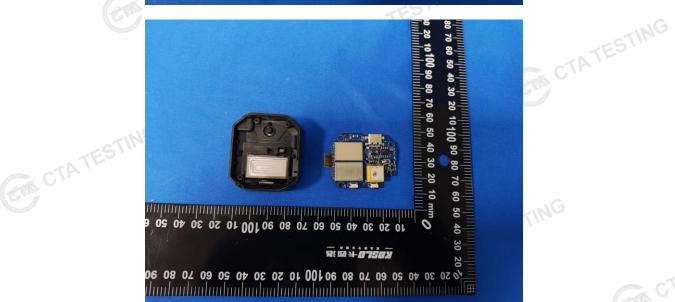
Test Setup Photos of the EUT

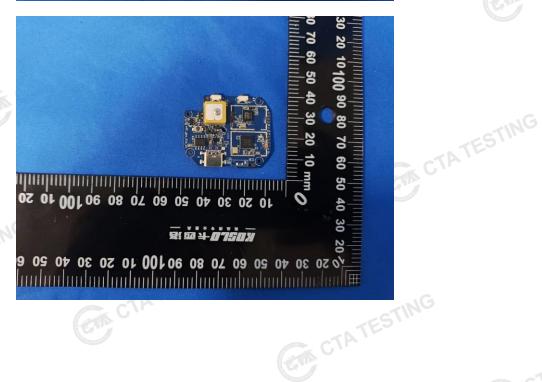
Report No.: CTA24101700101 Page 31 of 36

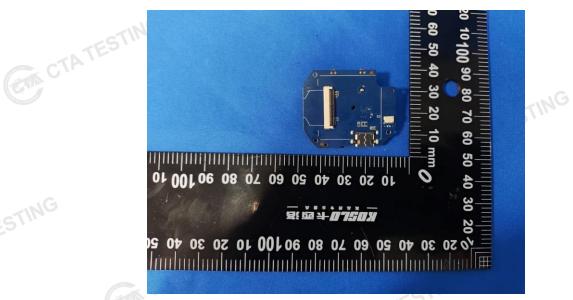

Photos of the EUT

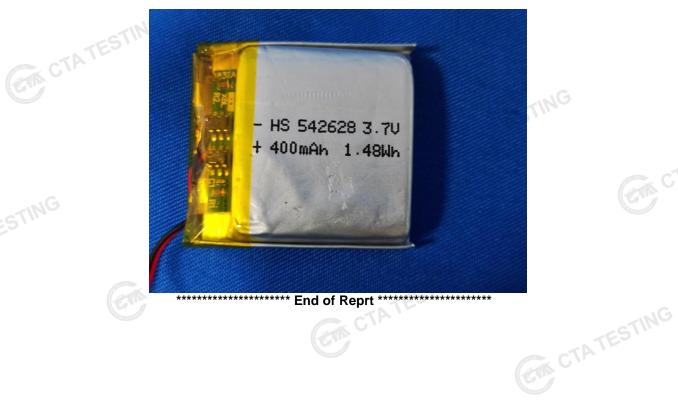

Page 32 of 36 Report No.: CTA24101700101


Report No.: CTA24101700101 Page 33 of 36






Page 34 of 36 Report No.: CTA24101700101


Page 35 of 36 Report No.: CTA24101700101

Page 36 of 36 Report No.: CTA24101700101

