

FCC RF Test Report

APPLICANT	:	HMD Global Oy
EQUIPMENT	:	Smart Phone
BRAND NAME	:	NOKIA
MODEL NAME	:	TA-1243, TA-1251
FCC ID	:	2AJOTTA-1243
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter

The product was received on May 12, 2020 and testing was completed on Jul. 03, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

TABLE	E OF CONTENTS	2
REVIS	ION HISTORY	3
SUMM	ARY OF THE TEST RESULT	4
1. GEN	VERAL DESCRIPTION	5
1.1	Applicant	5
1.2	Manufacturer	5
1.3	Product Feature of Equipment Under Test	5
1.4	Product Specification of Equipment Under Test	6
1.5	Modification of EUT	6
1.6	Testing Location	6
1.7	Test Software	7
1.8	Applicable Standards	
2. TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	8
2.2	Connection Diagram of Test System	9
2.3	Table for Supporting Units	
2.4		
3. TES	T RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	17
3.6	Antenna Requirements	-
	F OF MEASURING EQUIPMENT	
5. UNC	CERTAINTY OF EVALUATION	22
APPE	NDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPE	NDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1.	. Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR051228D	Rev. 01	Initial issue of report	Aug. 24, 2020

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 5.67 dB at 13.560MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 53.09 dBµV/m at 13.560 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 16.11 dB at 954.410MHz
3.6	15.203	Antenna Requirements	Complies	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1 Applicant

HMD Global Oy

Bertel Jungin aukio 9, 02600 Espoo, Finland

1.2 Manufacturer

HMD Global Oy

Bertel Jungin aukio 9, 02600 Espoo, Finland

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Smart Phone			
Brand Name	NOKIA			
Model Name TA-1243, TA-1251				
FCC ID	2AJOTTA-1243			
	GSM/WCDMA/LTE/5G NR/NFC			
	WLAN 2.4GHz 802.11b/g/n HT20			
FUT our nexts Dedies explication	WLAN 5GHz 802.11a/n HT20/HT40			
EUT supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
	FM Receiver and GNSS			
	Conducted: N/A			
IMEI Code	Conduction: 353137110023226/353137110023234			
	Radiation: 353137110023325/353137110023333			
HW Version HW03				
SW Version	00WW_0_180			
EUT Stage	Identical Prototype			

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two types of EUT, the difference is that dual SIM card mobile phone (Model Name: TA-1243) and single SIM card mobile phone (Model Name: TA-1251), the others are the same. According to the difference, we choose dual SIM card mobile phone to perform full test.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.489 KHz		
99%OBW	2.099 KHz		
Antenna Type	Loop Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Site	Sporton International (Kunshan) Inc.								
	No. 1098, Pe	No. 1098, Pengxi North Road, Kunshan Economic Development Zone							
Test Site	Jiangsu Prov	vince 215300 F	People's Repub	lic of China					
Location	TEL : +86-51	2-57900158							
	FAX : +86-51	12-57900958							
	S	Sporton Site N	lo.	FCC	FCC Test Firm				
Test Site No.				Designation No.	Registration No.				
	TH01-KS	03CH02-KS	CO01-KS						
Test Engineer	Weller Liu	Jack Guo	Amos Zhang						
Temperature	22~24°C 21~22°C 25.3~26.2°C CN1257 314309								
Relative	53~55%	53~55% 41~42% 38~40%							
Humidity	00~00%	41~4270	30~4076						

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH02-KS	AUDIX	E3	6.2009-8-24a
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

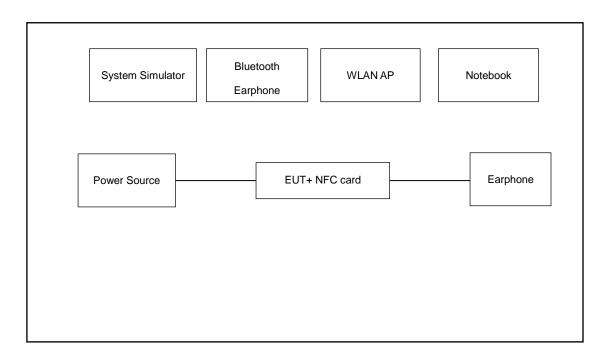
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

Test Cases				
AC Conducted Emission	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link(2.4G) + Earphone + USB Cable(Charging from Adapter) + NFC Tx			



2.2 Connection Diagram of Test System

For Radiation

E	UT	

For Conducted Emission

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

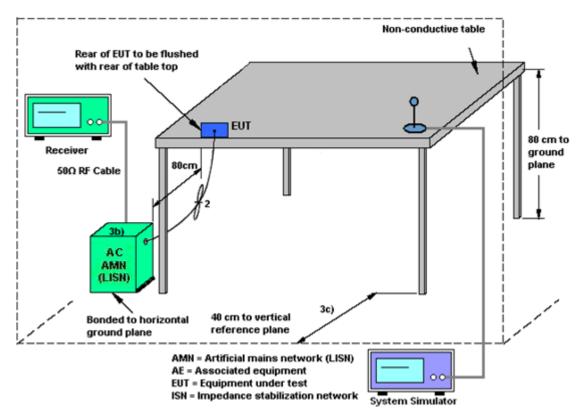
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

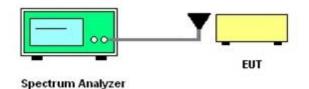
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

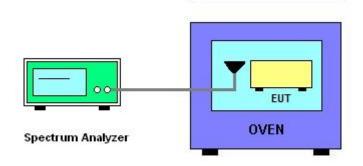
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

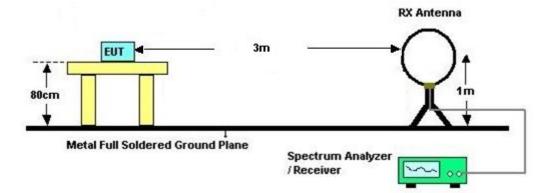
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225						
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.						
	Field Strength	Field Strength	Field Strength	Field Strength			
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m			
1.705~13.110	30	29.5	48.58	69.5			
13.110~13.410	106	40.5	59.58	80.5			
13.410~13.553	334	50.5	69.58	90.5			
13.553~13.567	15848	84.0	103.08	124.0			
13.567~13.710	334	50.5	69.58	90.5			
13.710~14.010	106	40.5	59.58	80.5			
14.010~30.000	30	29.5	48.58	69.5			

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

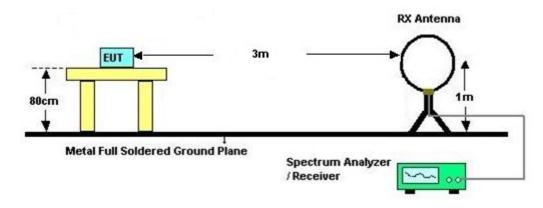
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

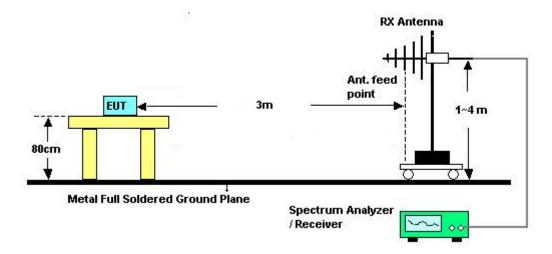
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Jul. 03, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Thermal Chamber	Ten Billion	TTC-B3S	TBN-9605 02	-40~+150°C	Oct. 28, 2019	Jul. 03, 2020	Oct. 27, 2020	Conducted (TH01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct. 18, 2019	Jul. 01, 2020	Oct. 17, 2020	Radiation (03CH02-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Jul. 01, 2020	Nov. 09, 2020	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 30, 2019	Jul. 01, 2020	Dec. 29, 2020	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	616010002 473	N/A	NCR	Jul. 01, 2020	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Jul. 01, 2020	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Jul. 01, 2020	NCR	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Jan. 02, 2020	Jul. 01, 2020	Jan. 03, 2021	Radiation (03CH02-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	Jun. 30, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Jun. 30, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Jun. 30, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Jun. 30, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

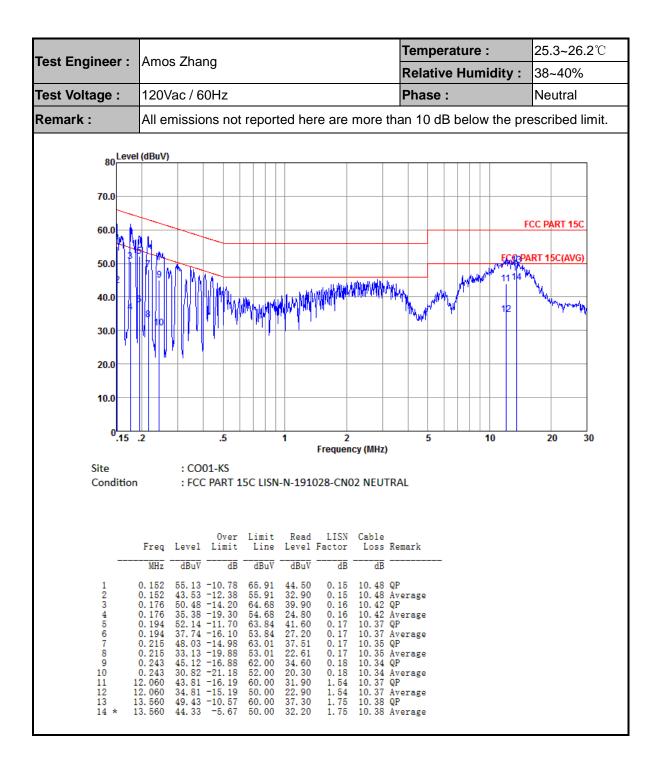
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

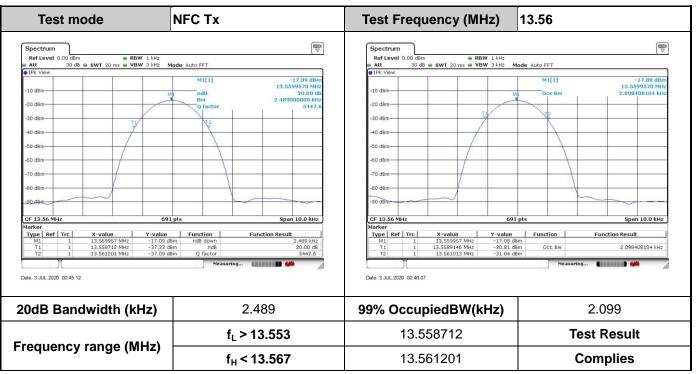
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	4.9dB
of 95% (U = 2Uc(y))	4.90B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)


Measuring Uncertainty for a Level of Confidence	4 0 d B
of 95% (U = 2Uc(y))	4.9dB

Appendix A. Test Results of Conducted Emission Test


Fact Engineer -	Amon Zhong		Temperature :	25.3~26.2℃	
Test Engineer :	Amos Zhang		Relative Humidity :	38~40%	
Fest Voltage :	120Vac / 60Hz		Phase :	Line	
Remark :	All emissions not	reported here are mo	ore than 10 dB below the	prescribed limit.	
80	l (dBuV)				
70.0					
60.0				FCC PART 15C	
50.0			FC	GPART 15C(AVG)	
30.0			11 Willing and 11	14	
40.02				The second secon	
30.0 4			12		
20.0					
10.0					
0 <mark>.15</mark>	.2 .5	1 2 Frequency	5 10 (MHz)	20 30	
Site	: CO01-KS				
Condition	: FCC PART 1	5C LISN-L-191028-CN02 L	INE		
	Over Freg Level Limit		able Loss Remark		
	MHz dBuV dB	dBuV dBuV dB	dB		
1 2	0.153 49.44 -16.38 0.153 37.74 -18.08		0.47 QP 0.47 Average		
2 3 4		54.68 19.30 0.08 10	0.42 QP 0.42 Average		
	0.197 47.66 -16.10 0.197 33.36 -20.40 0.230 41.04 -21.40	53.76 22.90 0.09 10			
8	0.230 26.34 -26.10 2.285 34.87 -21.13	52.44 15.91 0.09 10 56.00 24.21 0.43 10).34 Average).23 QP		
10 11 1	2.285 26.97 -19.03 2.060 43.10 -16.90	46.00 16.31 0.43 10 60.00 31.50 1.23 10).23 Average).37 QP		
13 1	2.060 33.70 -16.30 3.560 48.28 -11.72 3.560 42.38 -7.62	60.00 36.50 1.40 10) 37 Average) 38 QP) 38 Average		
	100 10100 1102				

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B3. Voltage vs. Fre	quency Stability	Temperature vs. Fi	requency Stability
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (℃)	Measurement Frequency (MHz)
120	13.559957	-20	13.559964
102	13.559964	-10	13.559964
138	13.559964	0	13.559964
		10	13.559964
		20	13.559964
		30	13.559964
		40	13.559964
		50	13.559964
Max.Deviation (MHz)	-0.000044	Max.Deviation (MHz)	-0.000037
Max.Deviation (ppm)	-3.2080	Max.Deviation (ppm)	-2.6917
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm
Test Result	PASS	Test Result	PASS

B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

NFC Tx Test Frequency (MHz) 13.56 Test Mode : 140 Level (dBuV/m) 126.0 112.0 98.0 84.0 NFC 15.22 70.0 56.0 42.0 28.0 14.0 013.11 13.5 13.6 Frequency (MHz) 13.2 13.3 13.4 13.7 13.8 13.9 14.01 Site Condition : 03CH02-KS : NFC 15.225 3m NFC ANT 100321 HORIZONTAL A/Pos T/Pos Remark Limit ReadAntenna Line Level Factor Cable Loss Level Limit Freq MHz dBuV/m dB dBuV/m dBuV dB/m dB cm deg 13.56 53.09 -70.91 124.00 32.63 20.30 0.16 1 --- OP 140 Level (dBuV/m) 126.0 112.0 98.0 84.0 NFC 15.225 70.0 56 (42.0 28. 14.0 0¹13.11 13.7 13.2 13.3 13.8 13.9 14.01 13.4 13.5 13.6 Frequency (MHz) : 03CH02-KS : NFC 15.225 3m NFC ANT 100321 VERTICAL Site Condition Limit ReadAntenna Cable A/Pos T/Pos Freq Level Limit Line Level Factor Loss Remark MHz dBuV/m dB dBuV/m dB/m dB deg dBuV cm ---- QP 1 13.56 49.61 -74.39 124.00 29.15 20.30 0.16

C1. Test Result of Field Strength of Fundamental Emissions

Note:

- 1. Level(dB μ V/m) = Read Level(dB μ V) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

Test Mode :	NFC Tx		Mode : NFC T		Polariz	ation :	Hor	izontal		
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark	
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg)		
	· · · /			· · /		. /	(cm)	(ueg)		
0.00999	31.49	-96.13	127.62	10.88	20.6	0.01	-	-	Average	
0.01746	36.51	-86.25	122.76	15.9	20.6	0.01	-	-	Average	
0.15185	39.38	-64.58	103.96	20.2	19.17	0.01	-	-	Average	
6.746	33.42	-36.12	69.54	12.42	20.92	0.08	-	-	QP	
8.272	33.17	-36.37	69.54	12.36	20.71	0.1	-	-	QP	
25.37	31.13	-38.41	69.54	10.69	20.15	0.29	-	-	QP	

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode :	: NFC Tx			ode : NFC Tx Polarization : Vertical			rtical		
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.01746	34.8	-87.96	122.76	14.19	20.6	0.01	-	-	Average
0.04721	27.78	-86.34	114.12	7.97	19.8	0.01	-	-	Average
0.1537	39.05	-64.81	103.86	19.87	19.17	0.01	-	-	Average
6.464	33.56	-35.98	69.54	12.53	20.95	0.08	-	-	QP
13.304	33.67	-35.87	69.54	13.22	20.29	0.16	-	-	QP
25.335	31.85	-37.69	69.54	11.41	20.15	0.29	-	-	QP

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Test Mode : NF		FC Tx			larization	Horizontal				
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m	Limit 1) (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
30	20.69	-19.31	40	26.81	25.1	0.76	31.98	-	-	Peak
40.67	21.34	-18.66	40	33.11	19.31	0.88	31.96	-	-	Peak
157.07	17.73	-25.77	43.5	31.09	16.68	1.89	31.93	-	-	Peak
270.56	17.96	-28.04	46	27.82	19.67	2.48	32.01	-	-	Peak
503.36	23.07	-22.93	46	27.88	24.08	3.38	32.27	-	-	Peak
692.51	24.64	-21.36	46	26.35	26.67	3.96	32.34	-	-	Peak
954.41	29.89	-16.11	46	25.29	30.96	4.58	30.94	100	0	Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode	e: Ni	FC Tx		Ро	larization	:	Vertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m	Limit	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
30	21.48	-18.52	40	27.6	25.1	0.76	31.98	-	-	Peak
40.67	23.37	-16.63	40	35.14	19.31	0.88	31.96	-	-	Peak
71.71	16.58	-23.42	40	34.57	12.7	1.23	31.92	-	-	Peak
269.59	18.01	-27.99	46	27.82	19.73	2.47	32.01	-	-	Peak
544.1	23.41	-22.59	46	27.02	25.24	3.48	32.33	-	-	Peak
841.89	27.94	-18.06	46	26.34	29.13	4.31	31.84	-	-	Peak
952.47	29.78	-16.22	46	25.18	30.98	4.58	30.96	100	0	Peak

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.