

FCC PART 15 SUBPART C TEST REPORT				
FCC PART 15.247				
Report Reference No		,		
Compiled by (position+printed name+signature):	Engineer/ Cindy Zheng	Cindy zheng Haley wen Vivian Frank		
Supervised by (position+printed name+signature):	Manager/Haley Wen	Haley wer		
Approved by (position+printed name+signature):	RF Manager/ Vivian Jiang	VIVEM) rand		
Date of issue	January 16, 2024			
Testing Laboratory Name	BSL Testing Co., Ltd.			
Address::	1/F, Building B, Xinshidai GR Park, Shenzhen,Guangdong, 518052, Pe			
Applicant's name:	Zhejiang Flashforge 3D Technology CO., Ltd.			
Address:	No. 518, Xianyuan Road, Jinhua, Zhejiang, China			
Test specification:				
Standard FCC Part 15.247				
BSL Testing Co., Ltd. All rights rese This publication may be reproduced in Testing Co., Ltd.is acknowledged as co no responsibility for and will not assum reproduced material due to its placeme	whole or in part for non-commercial popyright owner and source of the mat e liability for damages resulting from	erial. BSL Testing Co., Ltd.takes		
Test item description	3D Printer			
Trade Mark:	<i>VFLASHFORGE</i>			
Manufacturer	Zhejiang Flashforge 3D Technology	r CO., Ltd.		
Model/Type reference:	Adventurer 5M Pro			
Listed Models	N/A			
Modulation Type	: CCK/DSSS/ OFDM			
Operation Frequency:	From 2412 - 2462MHz, 2422 - 2452	2MHz		
Rating	AC 100-240V,50-60Hz, 350W			
Result	PASS			

Report No.: MK23122510P01-R02

TEST REPORT

Equipment under Test	:	3D Printer
Model /Type	:	Adventurer 5M Pro
Series Model No.		N/A
Model Declaration	:	N/A
Applicant	:	Zhejiang Flashforge 3D Technology CO., Ltd.
Address	:	No. 518, Xianyuan Road, Jinhua, Zhejiang, China
Manufacturer	:	Zhejiang Flashforge 3D Technology CO., Ltd.
Address	:	No. 518, Xianyuan Road, Jinhua, Zhejiang, China

Test Result:	PASS
The test report merely corresponds to the test	samnle

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1	TEST STANDARDS	4
2	S U M M A R Y	5
2.1	General Remarks	5
2.2	Product Description	5
2.3 2.4	Equipment Under Test Short description of the Equipment under Test (EUT)	5 5
2.4 2.5	Short description of the Equipment under Test (EUT) EUT operation mode	56
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
3	TEST ENVIRONMENT	7
3.1	Address of the test laboratory	7
3.2	Test Facility	7
3.3	Environmental conditions	7
3.4	Test Description	8
3.5 3.6	Statement of the measurement uncertainty Equipments Used during the Test	8 9
4	TEST CONDITIONS AND RESULTS	11
4.1	AC Power Conducted Emission	11
4.2	Radiated Emission	16
4.3	Maximum Peak Conducted Output Power	26
4.4	Power Spectral Density	28
4.5 4.6	6dB Bandwidth Out-of-band Emissions	31 34
4.7	Antenna Requirement	41
5	TEST SETUP PHOTOS OF THE EUT	42
6	PHOTOS OF THE EUT	

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 v05r02</u>: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	December 25, 2023
Testing commenced on	:	December 25, 2023
Testing concluded on	:	January 15, 2024

2.2 **Product Description**

Product Name:	3D Printer
Model/Type reference:	Adventurer 5M Pro
Power supply:	AC 100-240V,50-60Hz, 350W
Adapter information	N/A
testing sample ID:	MK23122510P01-R02-1# (Engineer sample), MK23122510P01-R02-2# (Normal sample)
Hardware version:	V1.0
Software version:	V1.0
WIFI :	·
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40):2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7
Channel separation:	5MHz
Antenna type:	FPC antenna
Antenna gain:	3.2 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	5 V DC	0	24 V DC
		•	Other (specified in blank bel AC 100-240V,50-60Hz	ow)

2.4 Short description of the Equipment under Test (EUT)

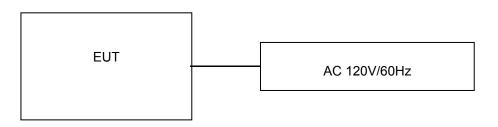
This is Adventurer 5M Pro 3D Printer.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.


802.11b/802.11g/802.11n(H20)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

802.11n(H40)

Channel	Frequency(MHz)	
3	2422	
4	2427	
5	2432	
6	2437	
7	2442	
8	2447	
9	2452	_

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

BSL Testing Co., Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

BSL Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

BSL Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

25 ° C
44 %
950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	Output Power 11b/DSSS		1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10 th Harmonic	11n(40MHz)/OFDM	13.5Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the BSL Testing Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for BSL Testing Co., Ltd.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

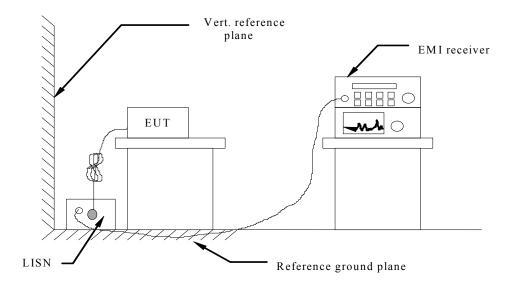
3.6	Equipments Used during the Test
-----	---------------------------------

Conducted Emissio	Conducted Emission								
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date				
Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	BSL252	2023-10-28	2024-10-27				
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27				
Coaxial Switch	ANRITSU CORP	MP59B	BSL225	2023-10-28	2024-10-27				
ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	BSL226	2023-10-28	2024-10-27				
Coaxial Cable	BSL	N/A	BSL227	N/A	N/A				
EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
Thermo meter	KTJ	TA328	BSL233	2023-10-28	2024-10-27				
Absorbing clamp	Elektronik- Feinmechanik	MDS21	BSL229	2023-10-28	2024-10-27				
LISN	R&S	ENV216	308	2023-10-28	2024-10-27				
LISN	R&S	ENV216	314	2023-10-28	2024-10-27				

Radiation Test equ	ipment				
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	BSL250	2023-10-28	2024-10-27
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	BSL251	N/A	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	BSL203	2023-10-28	2024-10-27
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	BSL214	2023-10-28	2024-10-27
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	BSL208	2023-10-28	2024-10-27
Horn Antenna	ETS-LINDGREN	3160	BSL217	2023-10-28	2024-10-27
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	BSL	N/A	BSL213	2023-10-28	2024-10-27
Coaxial Cable	BSL	N/A	BSL211	2023-10-28	2024-10-27
Coaxial cable	BSL	N/A	BSL210	2023-10-28	2024-10-27
Coaxial Cable	BSL	N/A	BSL212	2023-10-28	2024-10-27
Amplifier(100kHz- 3GHz)	HP	8347A	BSL204	2023-10-28	2024-10-27
Amplifier(2GHz- 20GHz)	HP	84722A	BSL206	2023-10-28	2024-10-27
Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	BSL218	2023-10-28	2024-10-27
Band filter	Amindeon	82346	BSL219	2023-10-28	2024-10-27
Power Meter	Anritsu	ML2495A	BSL540	2023-10-28	2024-10-27
Power Sensor	Anritsu	MA2411B	BSL541	2023-10-28	2024-10-27
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	BSL575	2023-10-28	2024-10-27
Splitter	Agilent	11636B	BSL237	2023-10-28	2024-10-27

Report No.: MK23122510P01-R02

Loop Antenna	ZHINAN	ZN30900A	BSL534	2023-10-28	2024-10-27
Breitband	SCHWARZBECK	BBHA 9170	BSL579	2023-10-28	2024-10-27
hornantenne	SUNWARZDEUN	DDNA 9170	D3L379	2023-10-20	2024-10-27
Amplifier	TDK	PA-02-02	BSL574	2023-10-28	2024-10-27
Amplifier	TDK	PA-02-03	BSL576	2023-10-28	2024-10-27
PSA Series Spectrum	Dabda & Caburar	FOD		2022 40 20	2024 40 27
Analyzer	Rohde & Schwarz	FSP	BSL578	2023-10-28	2024-10-27


RF Conducted Test:					
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
MXA Signal Analyzer	Agilent	N9020A	BSL566	2023-10-28	2024-10-27
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27
Spectrum Analyzer	Agilent	E4440A	BSL533	2023-10-28	2024-10-27
MXG vector Signal Generator	Agilent	N5182A	BSL567	2023-10-28	2024-10-27
ESG Analog Signal Generator	Agilent	E4428C	BSL568	2023-10-28	2024-10-27
USB RF Power Sensor	DARE	RPR3006W	BSL569	2023-10-28	2024-10-27
RF Switch Box	Shongyi	RFSW3003328	BSL571	2023-10-28	2024-10-27
Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	BSL572	2023-10-28	2024-10-27

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

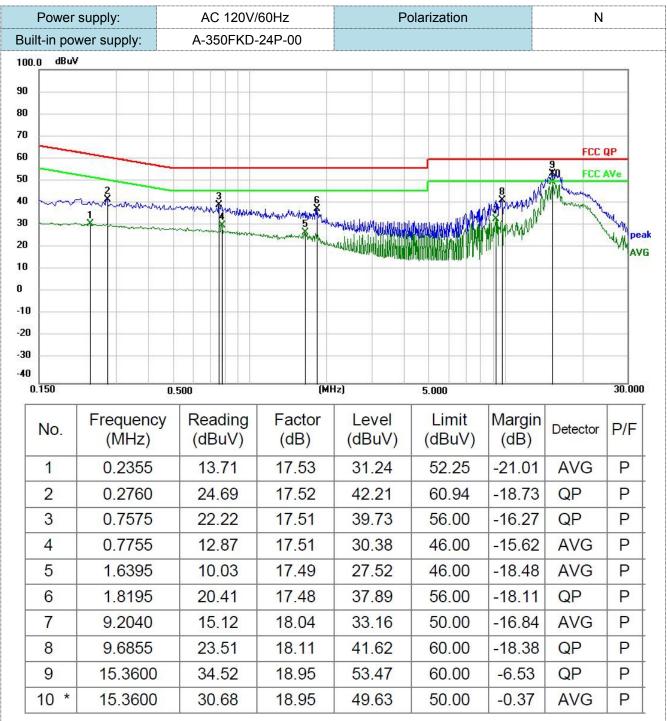
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)
Frequency range (Miriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequer	ncy.	

TEST RESULTS



Power supply: AC 120V/60Hz		/60Hz	P	olarization		L		
uilt-in po	ower supply:	A-350FKD-	-24P-00					
)0.0 dBu'	v							
)								_
i								_
								-
							A FCC	
			-			7 10	ECC.	Ave
	2 A Manufarman	remained when he was	man manuthan	www.ullas.		Martin A	and the second of the	m
	and the man	manhuma	Marin Samuelante	ada da				W pea
				starting and the starting of t		the i		AV
o 📃	· · · · · · · ·							_
0		· · · · · · · · · · · · ·						
0								_
0 0 0.150	0.	500	(Mł	12)	5.000			30.000
0 0.150	120	1				Margin		
0	0. Frequency (MHz)	500 Reading (dBuV)	Factor	Level	5.000 Limit (dBuV)	Margin (dB)	Detector	30.000 P/F
0 0.150	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	(dB)		
0 0.150	Frequency	Reading	Factor	Level (dBuV) 43.92	Limit (dBuV) 64.01	(dB) -20.09	Detector QP AVG	P/F
0 0.150 No.	Frequency (MHz) 0.1905	Reading (dBuV) 26.39	Factor (dB) 17.53	Level (dBuV)	Limit (dBuV)	(dB)	QP	P/F P
0 0.150 No. 1 2	Frequency (MHz) 0.1905 0.2085	Reading (dBuV) 26.39 15.51	Factor (dB) 17.53 17.53	Level (dBuV) 43.92 33.04	Limit (dBuV) 64.01 53.26	(dB) -20.09 -20.22	QP AVG	P/F P P
0 0.150 No. 1 2 3	Frequency (MHz) 0.1905 0.2085 1.4144	Reading (dBuV) 26.39 15.51 9.00	Factor (dB) 17.53 17.53 17.49	Level (dBuV) 43.92 33.04 26.49	Limit (dBuV) 64.01 53.26 46.00	(dB) -20.09 -20.22 -19.51	QP AVG AVG	P/F P P P
0 0.150 No. 1 2 3 4 5	Frequency (MHz) 0.1905 0.2085 1.4144 1.5180 7.6785	Reading (dBuV) 26.39 15.51 9.00 21.79 21.20	Factor (dB) 17.53 17.53 17.49 17.49 17.81	Level (dBuV) 43.92 33.04 26.49 39.28 39.01	Limit (dBuV) 64.01 53.26 46.00 56.00 60.00	(dB) -20.09 -20.22 -19.51 -16.72 -20.99	QP AVG AVG QP QP	P/F P P P P
0 0.150 No. 1 2 3 4 5 6	Frequency (MHz) 0.1905 0.2085 1.4144 1.5180 7.6785 7.8180	Reading (dBuV) 26.39 15.51 9.00 21.79 21.20 16.16	Factor (dB) 17.53 17.53 17.49 17.49 17.81 17.83	Level (dBuV) 43.92 33.04 26.49 39.28 39.01 33.99	Limit (dBuV) 64.01 53.26 46.00 56.00 60.00 50.00	(dB) -20.09 -20.22 -19.51 -16.72 -20.99 -16.01	QP AVG AVG QP QP AVG	P/F P P P P
0 0.150 No. 1 2 3 4 5 6 7	Frequency (MHz) 0.1905 0.2085 1.4144 1.5180 7.6785 7.8180 12.2460	Reading (dBuV) 26.39 15.51 9.00 21.79 21.20 16.16 22.01	Factor (dB) 17.53 17.53 17.49 17.49 17.81 17.83 18.49	Level (dBuV) 43.92 33.04 26.49 39.28 39.01 33.99 40.50	Limit (dBuV) 64.01 53.26 46.00 56.00 60.00 50.00 60.00	(dB) -20.09 -20.22 -19.51 -16.72 -20.99 -16.01 -19.50	QP AVG AVG QP QP AVG QP	P/F P P P P P P P P
0 0.150 No. 1 2 3 4 5 6	Frequency (MHz) 0.1905 0.2085 1.4144 1.5180 7.6785 7.8180	Reading (dBuV) 26.39 15.51 9.00 21.79 21.20 16.16	Factor (dB) 17.53 17.53 17.49 17.49 17.81 17.83	Level (dBuV) 43.92 33.04 26.49 39.28 39.01 33.99	Limit (dBuV) 64.01 53.26 46.00 56.00 60.00 50.00	(dB) -20.09 -20.22 -19.51 -16.72 -20.99 -16.01	QP AVG AVG QP QP AVG	P/F P P P P P P

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dBµV) - Level (dBµV)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

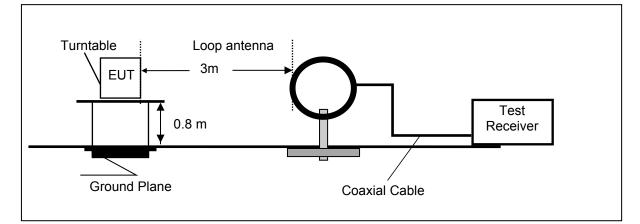
Power supply: AC 120V		60Hz	P	olarization		L		
Built-in p	ower supply:	MS-TA460J24	40-350B0					
100.0 dE	łu¥		1					
90								_
80								_
70								
60							FCC Q	
50	1						FCC A	Ve
40 ~~~	Junuman	man man man	Mynum with Myth	ę	7		10	M
30	- Charles and the second secon	man man Manana	3 4m		unal-historitation-herariant	Annon Marine Marine	un handling and	Mull peal
10				municher der dreiter	la universitation and a state of the state o	And Andrew Manufacture		AVG
0								
-10								
-20								_
-30								
-40 0.150		500	(MI	Hz)	5.000			30.000
CONTRACT OF CONTRACT		.500	(Mł		5.000			30.000
CONTRACT OF CONTRACT	Frequency	Reading	Factor	Level	Limit	Margin	Detector	30.000 P/F
0.150 No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	(dB)	Delector	P/F
0.150 No.	Frequency (MHz) 0.2130	Reading (dBuV) 26.45	Factor (dB) 16.72	Level (dBuV) 43.17	Limit (dBuV) 63.09	(dB) -19.92	QP	P/F P
0.150 No. 1 2	Frequency (MHz) 0.2130 0.2130	Reading (dBuV) 26.45 18.38	Factor (dB) 16.72 16.72	Level (dBuV) 43.17 35.10	Limit (dBuV) 63.09 53.09	(dB) -19.92 -17.99	QP AVG	P/F P P
0.150 No.	Frequency (MHz) 0.2130	Reading (dBuV) 26.45	Factor (dB) 16.72 16.72 16.54	Level (dBuV) 43.17 35.10 26.47	Limit (dBuV) 63.09 53.09 46.00	(dB) -19.92	QP AVG AVG	P/F P
0.150 No. 1 2	Frequency (MHz) 0.2130 0.2130	Reading (dBuV) 26.45 18.38	Factor (dB) 16.72 16.72	Level (dBuV) 43.17 35.10	Limit (dBuV) 63.09 53.09	(dB) -19.92 -17.99	QP AVG	P/F P P
0.150 No. 1 2 3	Frequency (MHz) 0.2130 0.2130 1.6395	Reading (dBuV) 26.45 18.38 9.93	Factor (dB) 16.72 16.72 16.54	Level (dBuV) 43.17 35.10 26.47	Limit (dBuV) 63.09 53.09 46.00	(dB) -19.92 -17.99 -19.53	QP AVG AVG	P/F P P P
0.150 No. 1 2 3 4	Frequency (MHz) 0.2130 0.2130 1.6395 1.7835	Reading (dBuV) 26.45 18.38 9.93 20.63	Factor (dB) 16.72 16.72 16.54 16.52	Level (dBuV) 43.17 35.10 26.47 37.15	Limit (dBuV) 63.09 53.09 46.00 56.00	(dB) -19.92 -17.99 -19.53 -18.85	QP AVG AVG QP	P/F P P P P
0.150 No. 1 2 3 4 5	Frequency (MHz) 0.2130 0.2130 1.6395 1.7835 2.9940	Reading (dBuV) 26.45 18.38 9.93 20.63 4.38	Factor (dB) 16.72 16.72 16.54 16.52 16.34	Level (dBuV) 43.17 35.10 26.47 37.15 20.72	Limit (dBuV) 63.09 53.09 46.00 56.00 46.00	(dB) -19.92 -17.99 -19.53 -18.85 -25.28	QP AVG AVG QP AVG	P/F P P P P P
0.150 No. 1 2 3 4 5 6	Frequency (MHz) 0.2130 0.2130 1.6395 1.7835 2.9940 3.0300	Reading (dBuV) 26.45 18.38 9.93 20.63 4.38 16.19	Factor (dB) 16.72 16.72 16.54 16.52 16.34 16.34	Level (dBuV) 43.17 35.10 26.47 37.15 20.72 32.53	Limit (dBuV) 63.09 53.09 46.00 56.00 46.00 56.00	(dB) -19.92 -17.99 -19.53 -18.85 -25.28 -23.47	QP AVG AVG QP AVG QP	P/F P P P P P P
0.150 No. 1 2 3 4 5 6 7	Frequency (MHz) 0.2130 0.2130 1.6395 1.7835 2.9940 3.0300 8.2635	Reading (dBuV) 26.45 18.38 9.93 20.63 4.38 16.19 15.54	Factor (dB) 16.72 16.72 16.54 16.52 16.34 16.34 16.34 16.78	Level (dBuV) 43.17 35.10 26.47 37.15 20.72 32.53 32.32	Limit (dBuV) 63.09 53.09 46.00 56.00 46.00 56.00 60.00	(dB) -19.92 -17.99 -19.53 -18.85 -25.28 -25.28 -23.47 -27.68	QP AVG AVG QP AVG QP QP	P/F P P P P P P P

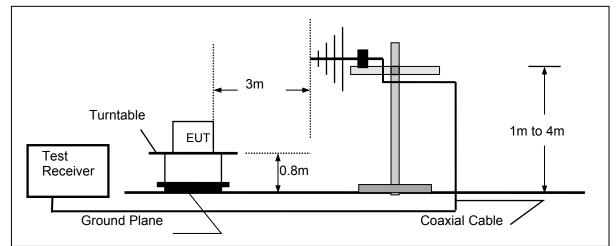
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

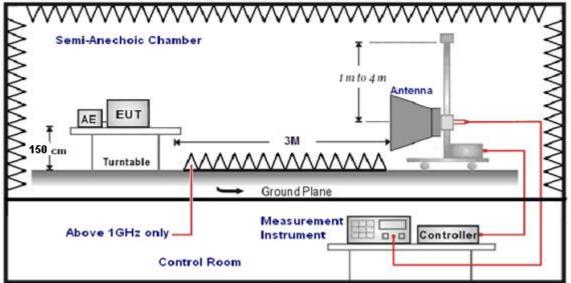
Power supply: AC 120V/60H		/60Hz	P	olarization		N		
uilt-in p	ower supply:	MS-TA460J2	40-350B0					
100.0 dl	3uV			1				
90								
80		<u> </u>						
70						. 7. 6.		
60							FCC (
50	1		2				FCC /	10
40 ~~~	Burn	momental	whentermarking		6	l Ja	Winender	Å.
30 20	Junio	Multin and an a start and a	and the second and th	antime provident and	www.withithithithithithithithithithithithithi	Mumulian D	White have been and the	pea
10				an all marked and a star star		and the second		AVE
10								
20								
-30								
-40								30.000
0.150	I	0.500	(M)	Hz)	5.000	1		30.000
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	-follower sta	1.141
1	0.2085	26.47	17.53	44.00	63.26	-19.26	QP	P
2	0.2130	20.42	17.53	37.95	53.09	-15.14	AVG	P
3	1.8150	21.77	17.48	39.25	56.00	-16.75	QP	Р
4	1.8150	9.35	17.48	26.83	46.00	-19.17	AVG	Р
5	8.1240	5.24	17.87	23.11	50.00	-26.89	AVG	Р
6	8.2635	16.57	17.89	34.46	60.00	-25.54	QP	Р
7	14.2440	13.49	18.79	32.28	50.00	-17.72	AVG	P
8 *	14.7660	26.44	18.86	45.30	60.00	-14.70	QP	P
9	25.9935	11.38	19.01	30.39	50.00	-19.61	AVG	P
-	26.4885	23.25	19.00	42.25	60.00	-17.75	QP	P
10								

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)


3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.

6.	The distance between test antenna and EUT as following table states:								
	Test Frequency range	Test Antenna Type	Test Distance						
	9KHz-30MHz	Active Loop Antenna	3						
	30MHz-1GHz	Ultra-Broadband Antenna	3						
	1GHz-18GHz	Double Ridged Horn Antenna	3						
	18GHz-25GHz	Horn Anternna	1						

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector				
9KHz-150KHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto					
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP				
30MHz-1GHz	30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto					
	Peak Value: RBW=1MHz/VBW=3MHz,					
1GHz-40GHz	Sweep time=Auto	Peak				
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Feak				
	Sweep time=Auto					

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)					
RA = Reading Amplitude	AG = Amplifier Gain					
AF = Antenna Factor						

Transd=AF +CL-AG

RADIATION LIMIT

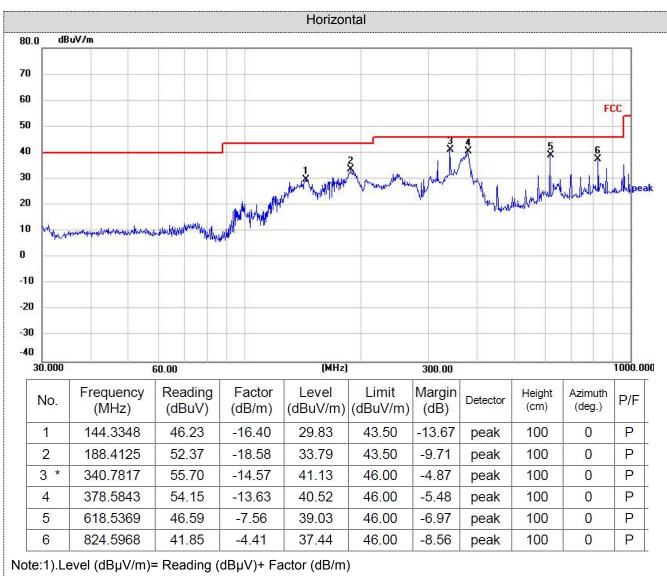
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150

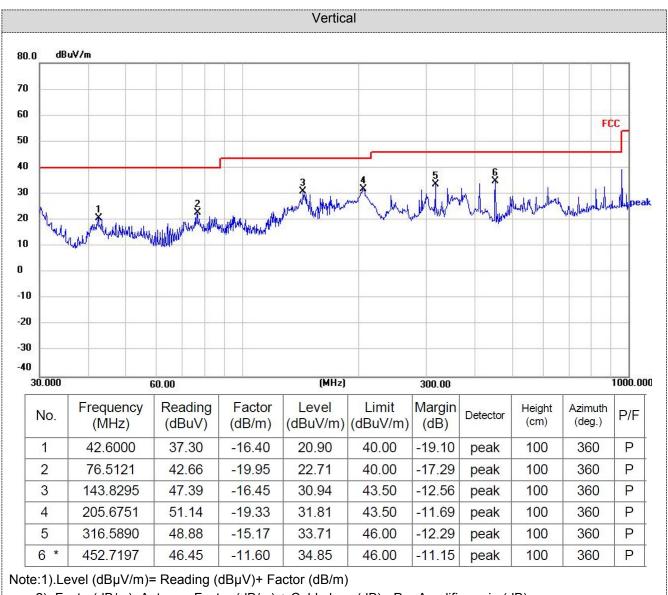
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS


Remark:

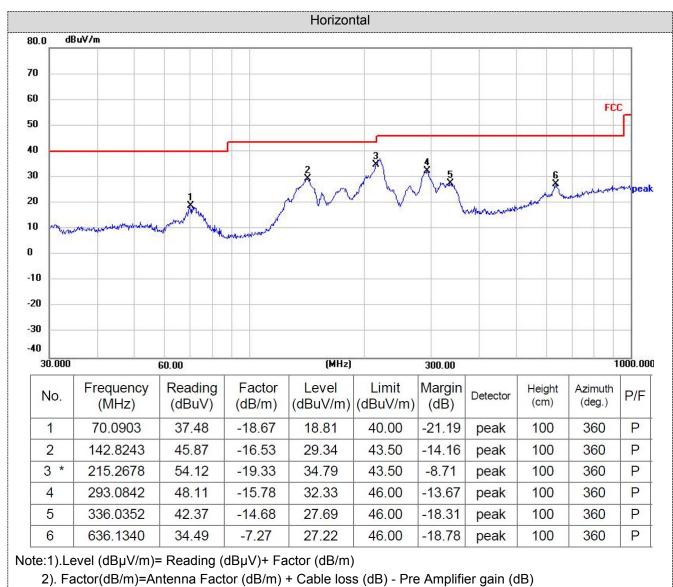
- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX(2.4G)		
Built-in power supply:	A-350FKD-24P-00		

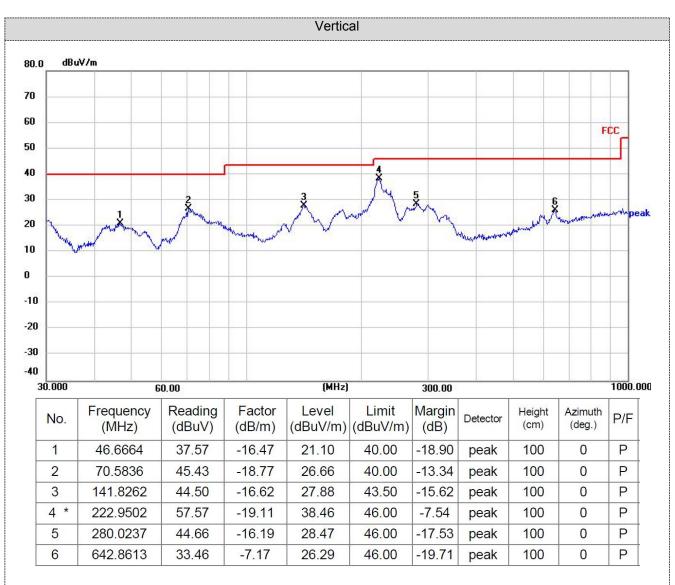
2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)



2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)



Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	TX(2.4G)		
Built-in power supply:	MS-TA460J240-350B0		

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 25GHz Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported (above 1GHz)

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	57.22	PK	74	16.78	61.58	32.40	5.11	41.87	-4.36
4824.00	47.29	AV	54	6.71	51.65	32.40	5.11	41.87	-4.36
7236.00	55.32	PK	74	18.68	55.95	36.58	6.43	43.64	-0.63
7236.00	45.05	AV	54	8.95	45.68	36.58	6.43	43.64	-0.63

Frequency(MHz):			2412		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	56.52	PK	74	17.48	60.88	32.40	5.11	41.87	-4.36
4824.00	46.32	AV	54	7.68	50.68	32.40	5.11	41.87	-4.36
7236.00	55.13	PK	74	18.87	55.76	36.58	6.43	43.64	-0.63
7236.00	44.99	AV	54	9.01	45.62	36.58	6.43	43.64	-0.63

Frequency(MHz):			2437		Polarity:		HORIZONTAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	57.29	PK	74	16.71	61.24	32.56	5.34	41.85	-3.95
4874.00	47.13	AV	54	6.87	51.08	32.56	5.34	41.85	-3.95
7311.00	55.50	PK	74	18.50	55.86	36.54	6.81	43.71	-0.36
7311.00	45.53	AV	54	8.47	45.89	36.54	6.81	43.71	-0.36

Frequency(MHz):			2437		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	57.40	PK	74	16.60	61.35	32.56	5.34	41.85	-3.95
4874.00	47.51	AV	54	6.49	51.46	32.56	5.34	41.85	-3.95
7311.00	55.49	PK	74	18.51	55.85	36.54	6.81	43.71	-0.36
7311.00	45.49	AV	54	8.51	45.85	36.54	6.81	43.71	-0.36

Frequency(MHz):			2462		Polarity:		HORIZONTAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	56.99	PK	74	17.01	60.45	32.73	5.64	41.83	-3.46
4924.00	47.39	AV	54	6.61	50.85	32.73	5.64	41.83	-3.46
7386.00	55.68	PK	74	18.32	55.74	36.50	7.23	43.79	-0.06
7386.00	45.63	PK	54	8.37	45.69	36.50	7.23	43.79	-0.06

Frequency(MHz):		2462		Polarity:		VERTICAL			
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	56.78	PK	74	17.22	60.24	32.73	5.64	41.83	-3.46
4924.00	51.95	AV	54	2.05	55.41	32.73	5.64	41.83	-3.46
7386.00	55.28	PK	74	18.72	55.34	36.50	7.23	43.79	-0.06
7386.00	45.10	PK	54	8.90	45.16	36.50	7.23	43.79	-0.06

- Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. Margin value = Limits-Emission level. 1)
- 2)
- -- Mean the PK detector measured value is below average limit. The other emission levels were very low against the limit. 3)
- 4)
- 5) RBW 1MHz VBW 3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) Mode all have been tested, only worse case 802.11b mode is reported

Freque	Frequency(MHz):		2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	50.43	PK	74	23.57	60.85	27.42	4.31	42.15	-10.42
2390.00	48.21	AV	54	5.79	58.63	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)):	24	12	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	46.00	PK	74	28.00	56.42	27.42	4.31	42.15	-10.42
2390.00	44.21	AV	54	9.79	54.63	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)):	2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	42.24	PK	74	31.76	52.35	27.70	4.47	42.28	-10.11
2483.50	41.30	AV	54	12.70	51.41	27.70	4.47	42.28	-10.11
Freque	Frequency(MHz):		2462		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	39.57	PK	74	34.43	49.68	27.70	4.47	42.28	-10.11
2483.50	37.52	AV	54	16.48	47.63	27.70	4.47	42.28	-10.11

Note:

1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.

2) Margin value = Limits-Emission level.

3) -- Mean the PK detector measured value is below average limit.

4) The other emission levels were very low against the limit.

5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

4.3 Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	6.365	30.00	Pass
802.11b	06	5.456		
	11	4.658		
	01	1.523		Pass
802.11g	06	0.546	30.00	
	11	-0.521		
	01	-0.845	30.00	Pass
802.11n(HT20)	06	-2.456		
	11	-2.854		
	03	-3.456	30.00	Pass
802.11n(HT40)	06	-3.854		
	09	-3.954		

Note:

1) Measured output power at difference data rate for each mode and recorded worst case for each mode.

2) Test results including cable loss.

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Туре	Channel	Output power AV (dBm)	Limit (dBm)	Result
	01	3.546	30.00	Pass
802.11b	06	3.021		
	11	2.654		
	01	-1.526		
802.11g	06	-3.201	30.00	Pass
	11	-3.584		
	01	-3.895	30.00	Pass
802.11n(HT20)	06	-5.635		
	11	-5.965		
	03	-6.124		
802.11n(HT40)	06	-6.256	30.00	Pass
	09	-6.854		

Note:

4)

5)

Measured output power at difference data rate for each mode and recorded worst case for each mode. Test results including cable loss. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40; 6)

4.4 **Power Spectral Density**

<u>Limit</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

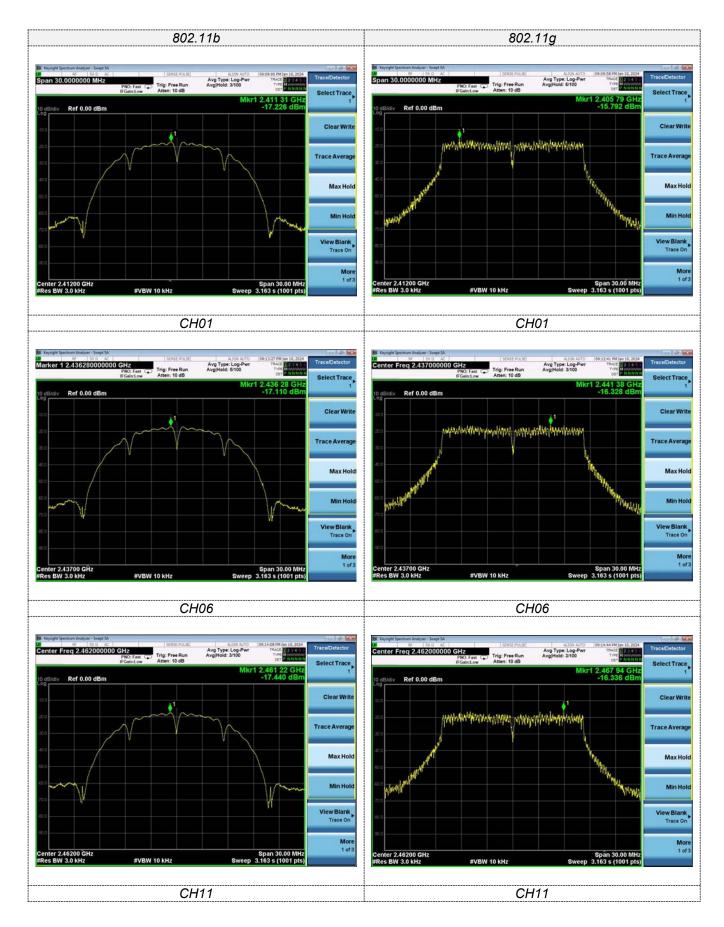
Test Configuration

EUT	SPECTRUM
	ANALYZER

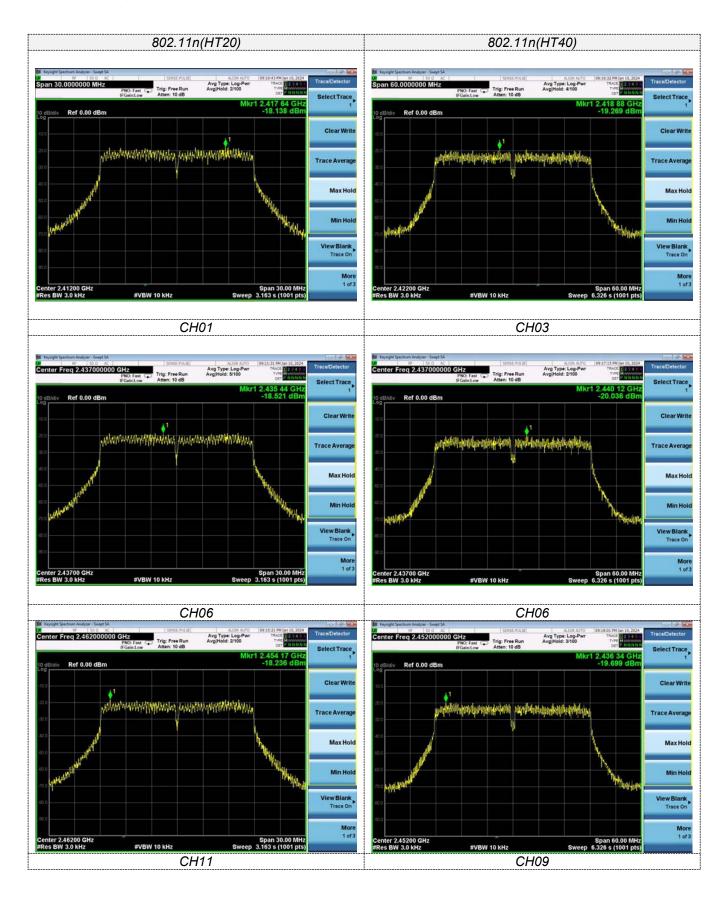
Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	01	-17.226		Pass
802.11b	06	-17.110	8.00	
	11	-17.440		
	01	-15.792		Pass
802.11g	06	-16.326	8.00	
	11	-16.336		
	01	-18.138		Pass
802.11n(HT20)	06	-18.521	8.00	
	11	-18.236		
802.11n(HT40)	03	-19.269		
	06	-20.036	8.00	Pass
	09	-19.699		

Note:


1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.

2) Test results including cable loss;


 Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

EUT	SPECTRUM ANALYZER

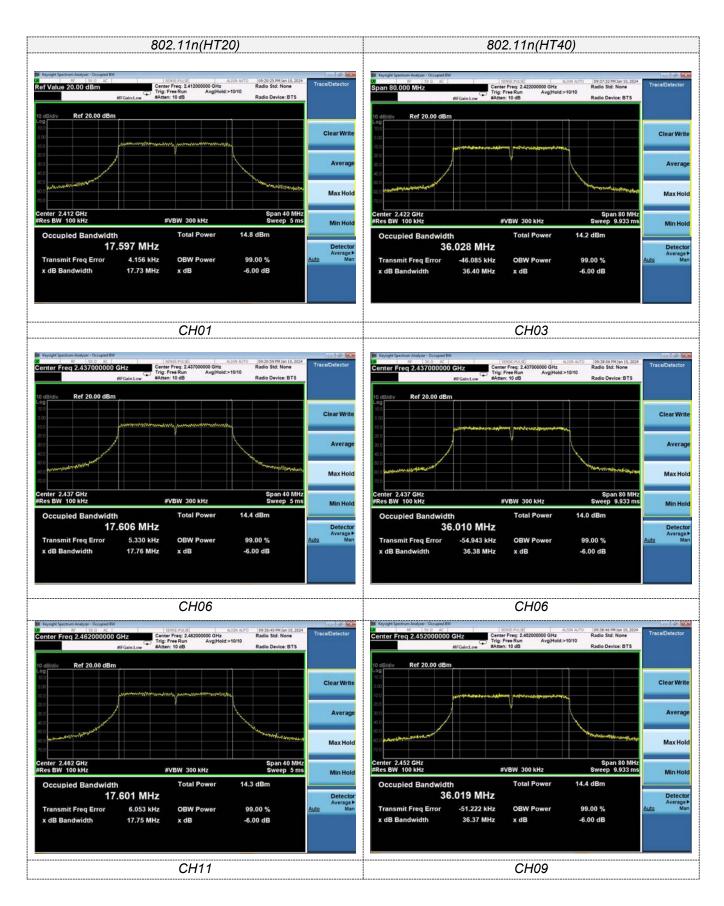
Test Results

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	10.13		
802.11b	06	10.12	≥500	Pass
	11	10.12		
	01	16.50		
802.11g	06	16.49	≥500	Pass
	11	16.50		
	01	17.73	≥500	Pass
802.11n(HT20)	06	17.76		
	11	17.75		
802.11n(HT40)	03	36.40	≥500 Pass	
	06	36.38		Pass
	09	36.37]	

Note:

1) Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.

2) Test results including cable loss;


 Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

Please refer to following plots;

4.6 Out-of-band Emissions

<u>Limit</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

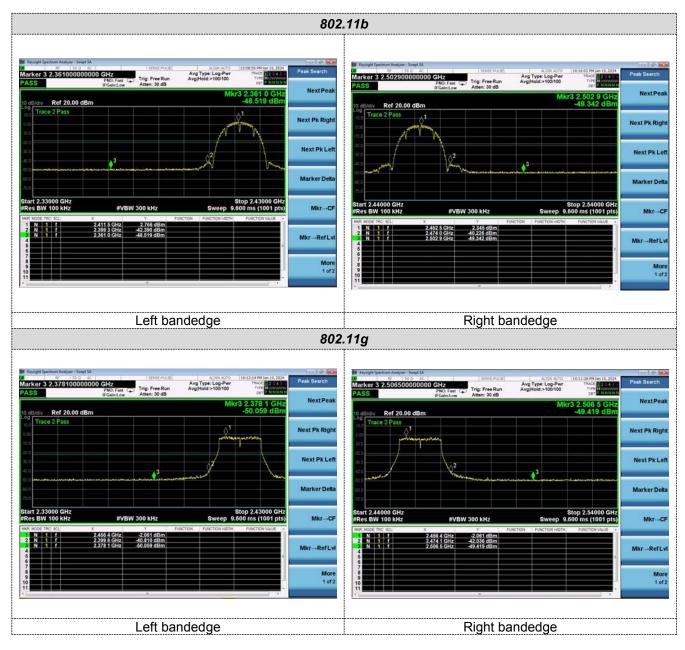
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

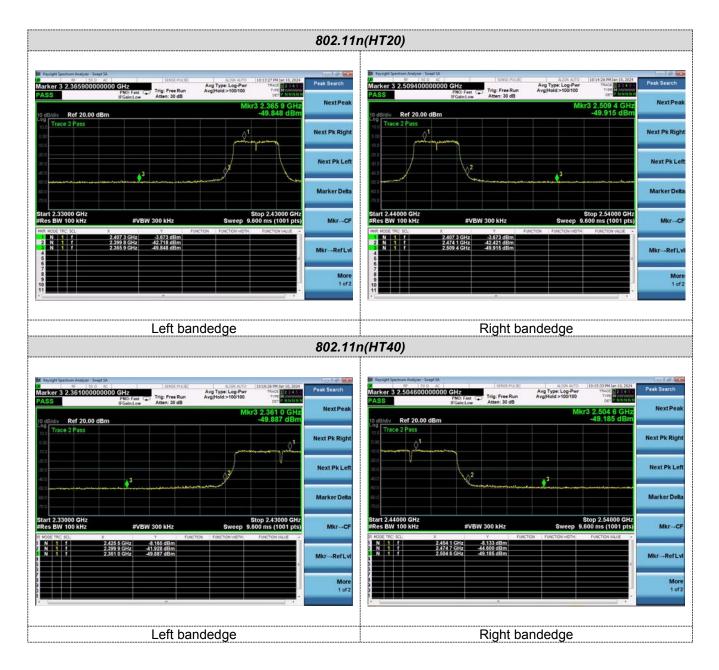
Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows:





Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 3.2 dBi.

Remark:The antenna gain is provided by the customer, if the data provided by the customer is not accurate, BSL Testing Co., Ltd. does not assume any responsibility.

5 <u>Test Setup Photos of the EUT</u>

Reference to the appendix I for details.

Report No.: MK23122510P01-R02

6 Photos of the EUT

Reference to the appendix II for details.