

Global United Technology Services Co., Ltd.

Report No.: GTS201611000003E05

FCC Report

Applicant: SHENZHEN GIEC DIGITAL CO., LTD

Address of Applicant: No.1 Building, Factory, No.7 District, Dayang Development

Areas, FuYong Street, Baoan, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: TM101W635L, GK-MER1027, TM101W638L, GK-MEV1027

FCC ID: 2AHYKTM1011

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2015

Date of sample receipt: November 01, 2016

Date of Test: November 02-17, 2016

Date of report issue: November 18, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	November 18, 2016	Original

Prepared By:	Tigor Cher	Date:	November 18, 2016
	Project Engineer		
Check By:	Andy www.	Date:	November 18, 2016

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
	4.1	Measurement Uncertainty	4
5	GEN	NERAL INFORMATION	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	CLIENT INFORMATION GENERAL DESCRIPTION OF EUT TEST MODE TEST FACILITY TEST LOCATION DESCRIPTION OF SUPPORT UNITS DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS. OTHER INFORMATION REQUESTED BY THE CUSTOMER	5 6 6 6 6
6			
7	TES	T RESULTS AND MEASUREMENT DATA	8
	7.1 7.2	CONDUCTED EMISSIONS	
8	TES	T SETUP PHOTO	17
9	EUT	CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	PASS	
Radiated Emissions	Part15.109	PASS	

PASS: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz ± 4.686		(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Applicant:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China
Manufacturer:	SHENZHEN GIEC DIGITAL CO., LTD
Address of Manufacturer:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China

5.2 General Description of EUT

Product Name:	Tablet PC				
Model No.:	TM101W635L, GK-MER1027, TM101W638L,GK-MEV1027				
Test Model:	TM101W635L				
	s are identical in the same PCB layout, interior structure and electrical is the model name and battery capacity for commercial purpose.				
Power Supply:	Quick Charger:				
	Model:A68-502000				
	Input: AC 100-240V, 50/60Hz, 0.35A				
	Output: DC 5V, 2A				
	or				
	DC 3.7V 6000mAh Li-ion Battery for TM101W635L and GK-MER102				
	DC 3.7V 6800mAh Li-ion Battery for TM101W638L and GK-MEV1027				

5.3 Test mode

Test mode:	
HDMI mode	Keep the EUT in HDMI mode
REC mode	Keep the EUT in video record mode.
USB playing mode	Keep the EUT in USB flash disk playing mode.
TF card playing mode	Keep the EUT in SD card playing mode.
Buring test mode	Keep the EUT in PC working mode

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	KEYBOARD	SK-8115	N/A	DOC
DELL	MOUSE	N/A	N/A	DOC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 29 2016	June. 28 2017
4	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 29 2016	June. 28 2017
5	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 29 2016	June. 28 2017
6	RF Amplifier	HP	8347A	GTS204	June. 29 2016	June. 28 2017
7	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 29 2016	June. 28 2017
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial cable	GTS	N/A	GTS210	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS211	N/A	N/A
11	Thermo meter	N/A	N/A	GTS256	June. 29 2016	June. 28 2017

Conduc	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	Jun. 29 2016	Jun. 28 2017	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 7 of 18

7 Test Results and Measurement Data

7.1 Conducted Emissions

Test Requirement:	FCC Part15 B Section 15.107							
Test Method:	ANSI C63.4:2014							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto						
Limit:	Frequency range (MHz)	Limit (d	dBuV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5 5-30	56 60	46 50					
	* Decreases with the logarithn		50					
Test setup:	Reference Plane							
	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m							
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 							
Test Instruments:	according to ANSI C63.4: 2 Refer to section 6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:)						
rest results:	Pass							

Measurement Data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 LINE

Job No. : 0003

Test mode : Burning test mode

Test Engineer: Boy

COL	Diffilect.						_		
		Read	LISN	Cable		Limit	Over		
	Fred	Level	Factor	Loss	Level	Line	Limit	Remark	
	1104	20,01	1 40 (01	LODD	20101			TORIGH II	
	\mathtt{MHz}	dBuV	d₿	aв	dBuV	dBu∀	d₿		
1	0.152	43.38	0.42	0.12	43, 92	65, 91	-21.99	ΩP	
2			0.28					-	
								-	
3	1.503	40.22	0.22	0.14	40.58	56.00	-15.42	QP	
4	2.309	40, 73	0.20	0.15	41.08	56,00	-14.92	QΡ	
5	2. 900								
								-	
6	12, 253	44. 78	0. 22	0. 20	45, 20	60. 00	-14.80	ΩP	

Neutral:

Site

: Shielded room : FCC PART15 CLASSB QP LISN-2016 NEUTRAL : 0003 Condition

Job No.

Test mode : Burning test mode

Test Engineer: Boy

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	₫B	dBuV	dBu₹	dB	
1 2 3	0.157 0.708		0.41 0.24					
3 4	1.153 2.088							
5	2. 736 17. 199	40.94	0.20	0.15	41.29	56.00	-14.71	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.2 Radiated Emission

 Naulateu Lillission							
Test Requirement:	FCC Part15 B S	Section 15.10	9				
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	30MHz to 25GHz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:							
	Frequency 30MHz-	Detector Quasi-pea	RBW k 120kHz	VBW 300kHz	Remark Quasi-peak Value		
	1GHz	Quasi-pea	K 120KHZ	300KI 12	Quasi-peak value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	710010 10112	Peak	1MHz	10Hz	Average Value		
Limit:					T		
	Freque	ency	Limit (dBuV	/m @3m)	Remark		
	30MHz-8	8MHz	40.0	0	Quasi-peak Value		
	88MHz-2	16MHz	43.5	0	Quasi-peak Value		
	216MHz-9	60MHz	46.0	0	Quasi-peak Value		
	960MHz-	-1GHz	54.0	0	Quasi-peak Value		
	Above 1	IGHz	54.0	0	Average Value		
	7,10010		74.0	0	Peak Value		
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.						
	2. The EUT wa antenna, whi tower.				ole-height antenna		
	ground to de	termine the r	naximum valu	e of the field	r meters above the d strength. Both are set to make the		
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test setup:	Below 1GHz						

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

For above 1GHz test, 1GHz to 25GHz all have been tested, only worse case 1GHz to 6GHz is reported, from 6GHz to 25GHz, no emission is found.

Measurement Data

Below 1GHz

Horizontal:

3m chamber FCC PART15 CLASS B 3m HORIZONTAL

0003

Site Condition Job No. Test Mode Test Engineer Burning test mode

000	LIIS IIICCI.	JAJ							
	_				Preamp				
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB7m	ā	dB	dBuV/m	dBuV7m		
	Juiz	шич	ш/ ж	ш	ш	abav/m	abav/ n	ш	
1	57.594	48.66	14.85	0.84	29.94	34.41	40.00	-5.59	QP
2	83.816	50.02	11.87	1.06	29.78	33.17	40.00	-6.83	QP
3	119.856	52.90	12.48	1.36	29.57	37.17	43.50	-6.33	QP
4	172.599	54.32	11.16		29.31				
5	239.987				29.56				
6	383.932	48.98	16.68	2.78	29.57	38.87	46.00	-7.13	QP

Vertical:

Site Condition Job No. Test Mode Burning test mode

est	Engineer:	Sky							
	-	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	36.001	49.74	14.58	0.62	30.06	34.88	40.00	-5.12	QP
2	57.392	49.38	14.85	0.84	29.94	35.13	40.00	-4.87	QP
3	172.599	53.81	11.16	1.70	29.31	37.36	43.50	-6.14	QP
4	268.485	51.48	14.34	2.21	29.79	38.24	46.00	-7.76	QP
5	422.058	50.98	17.48	2.96	29.45	41.97	46.00	-4.03	QP
6	962, 162	43.06	23.49	5.09	29.10	42.54	54, 00	-11.46	ΩP

Above 1GHz

Horizontal:

3m chamber FCC PART 15 (PK) 3m HORIZONTAL 0003 Site Condition

Job No.

Burning test mode Sky

Test Mode Test Engineer

LIIS IIICCI.	JAJ							
							Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
					TD-777	75-77-		
MHZ	aBu√	αB/m	ФB	ФВ	aBuv/m	aBuv/m	ФB	
1080.000	47.13	24.70	4.37	32.89	43.31	74.00	-30.69	Peak
1730.000	48.05	25.04	4.82	34.00	43.91	74.00	-30.09	Peak
2375.000	45.21	27.65	5.36	34.03	44.19	74.00	-29.81	Peak
2700.000	45.50	28.16						
4120.000	40.83	29.95	7.99	32.03	46.74	74.00	-27.26	Peak
	Freq MHz 1080.000 1730.000 2375.000 2700.000 3510.000	Freq Level MHz dBuV 1080.000 47.13 1730.000 48.05 2375.000 45.21 2700.000 45.50	ReadAntenna Level Factor MHz dBuV dB/m 1080.000 47.13 24.70 1730.000 48.05 25.04 2375.000 45.21 27.65 2700.000 45.50 28.16 3510.000 41.66 28.99	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 1080.000 47.13 24.70 4.37 1730.000 48.05 25.04 4.82 2375.000 45.21 27.65 5.36 2700.000 45.50 28.16 5.67 3510.000 41.66 28.99 6.97	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 1080.000 47.13 24.70 4.37 32.89 1730.000 48.05 25.04 4.82 34.00 2375.000 45.21 27.65 5.36 34.03 2700.000 45.50 28.16 5.67 33.66 3510.000 41.66 28.99 6.97 32.73	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 1080.000 47.13 24.70 4.37 32.89 43.31 1730.000 48.05 25.04 4.82 34.00 43.91 2375.000 45.21 27.65 5.36 34.03 44.19 2700.000 45.50 28.16 5.67 33.66 45.67 3510.000 41.66 28.99 6.97 32.73 44.89	ReadAntenna Cable Preamp Limit Loss Factor Level Line Loss Factor Loss Factor Level Line Loss Factor Loss Factor	ReadAntenna Cable Preamp Loss Factor Limit Over Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 1080.000 47.13 24.70 4.37 32.89 43.31 74.00 -30.69 1730.000 48.05 25.04 4.82 34.00 43.91 74.00 -30.09 2375.000 45.21 27.65 5.36 34.03 44.19 74.00 -29.81 2700.000 45.50 28.16 5.67 33.66 45.67 74.00 -28.33 3510.000 41.66 28.99 6.97 32.73 44.89 74.00 -29.11

Vertical:

Site

3m chamber FCC PART 15 (PK) 3m VERTICAL

0003

Condition Job No. Test Mode Test Engineer Burning test mode

620	Engineer.				_				
		Read	Antenna	Cable	Preamp		Limit	Over	
	Frea	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	•								
	MHz	dBu∀	dB/m	dB	ab	dBuV/m	dBuV/m	dB	
	JILIZ	шич	ш/ лі	ш	ш	and any lit	abav/ iii	ш	
	4445 000		0.1.00		00.04			00 50	ъ.
1	1145.000	49.04	24.96	4.42	33.01	45.41	74.00	-28.59	Peak
2	1685.000	47.81	24.95	4.80	33.91	43.65	74.00	-30.35	Peak
3	2870.000	41.97	28.40	5.82	33.47	42.72	74.00	-31.28	Peak
4			28.99	6.97		43.40			
5		34.04	30.97	8. 21		41.35			
_									
6	5085.000	31.55	32.02	8.90	32.22	40.25	74.00	-33.75	Peak

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201611000003E01

----- End-----