

FCC Part 15C Measurement and Test Report

For

Scosche Industries Inc

1550 Pacific Ave, Oxnard, CA 93033, USA

FCC ID: IKQWBUSSPFM

FCC Part 15.247			
car monitor			
WBUSSPF43			
WTH20X04022571W-1			
<u>Apr.29, 2020</u>			
<u>Apr.29, 2020 to May.07, 2020</u>			
<u>May.07, 2020</u>			
Jack Huang / Engineer	Jack Huang		
Lion Cai / RF Manager	Jack Huang (ion Con Elli-Chen		
<u>Silin Chen / Manager</u>	Eli-Chen		
Prepared By:			
Waltek Testing Group (Shenzhen) Co., Ltd.			
1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road,			
Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn			
	car monitor WBUSSPF43 WTH20X04022571W-1 Apr.29, 2020 Apr.29, 2020 to May.07, 2020 May.07, 2020 Jack Huang / Engineer Lion Cai / RF Manager Silin Chen / Manager Silin Chen / Manager Silin Chen / Manager		

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Waltek Testing Group (Shenzhen) Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards 1.3 Test Methodology	
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE	
1.6 Measurement Uncertainty	
1.7 Test Equipment List and Details	
2. SUMMARY OF TEST RESULTS	10
3. RF EXPOSURE	
3.1 Standard Applicable	
3.2 Test Result	
4. ANTENNA REQUIREMENT	
4.1 Standard Applicable	
4.2 EVALUATION INFORMATION	
5. POWER SPECTRAL DENSITY	
5.1 Standard Applicable	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS/PLOTS	
6. DTS BANDWIDTH	
6.1 STANDARD APPLICABLE	-
6.2 Test Procedure 6.3 Summary of Test Results/Plots	
7. RF OUTPUT POWER	
7.1 STANDARD APPLICABLE	
7.1 STANDARD APPLICABLE 7.2 TEST PROCEDURE	
7.3 Summary of Test Results/Plots	
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	
8.1 Standard Applicable	
8.2 Test Procedure	
8.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.4 SUMMARY OF TEST RESULTS/PLOTS	
9. OUT OF BAND EMISSIONS	
9.1 STANDARD APPLICABLE	
9.2 Test Procedure 9.3 Summary of Test Results/Plots	
10. CONDUCTED EMISSIONS	
10. Test Procedure	
10.1 TEST PROCEDURE	
10.3 Test Receiver Setup	
10.4 Summary of Test Results/Plots	

Report version

Version No.	Date of issue	Description
Rev.00	May.07, 2020	Original
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	Scosche Industries Inc
Address of applicant:	1550 Pacific Ave, Oxnard, CA 93033, USA
Manufacturer:	Shenzhen Sunveytech Co., Ltd
Address of manufacturer:	5th Floor, Bldg A, Penglongpan Hight-tech Park, #11 Dafu
	Industrial Zone, Guanlan Street, Longhua New District,
	Shenzhen ,China

General Description of EUT		
Product Name:	car monitor	
Trade Name:	/	
Model No.:	WBUSSPF43	
Adding Model(s):	/	
Rated Voltage:	DC 5V	
Firmware Version:	V1.00.41	
Hardware Version:	V1.2	
Note: The test data is gathered from a production sample provided by the manufacturer.		

Technical Characteristics of EU	Г
Support Standards:	802.11b
Frequency Range:	2412-2462MHz for 802.11b
RF Output Power:	14.31dBm (Conducted)
Type of Modulation:	DBPSK,BPSK,DQPSK,QPSK
Data Rate:	1-11Mbps
Quantity of Channels:	11 for 802.11b
Channel Separation:	5MHz
Type of Antenna:	Integral Antenna
Antenna Gain:	2.0dBi

1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

558074 D01 15.247 Meas Guidance v05r02: Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The Fcc Rules.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd. Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd., has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	802.11b	Low:2412MHz, Middle:2437MHz,High:2462MHz

Test Conditions		
Temperature:	22~25 °C	
Relative Humidity:	50~56 %.	
ATM Pressure:	1019 mbar	

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
USB Cable	0.32	Unshielded	Without Ferrite

Accessories Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Adapter	/	KA1517-0502000CNU	/
Notebook	Lenovo	E445	EB12648265

1.6 Measurement Uncertainty

Measurement uncertainty			
Parameter	Conditions	Uncertainty	
RF Output Power	Conducted	± 0.42 dB	
Occupied Bandwidth	Conducted	$\pm 1.5\%$	
Power Spectral Density	Conducted	±1.8dB	
Conducted Spurious Emission	Conducted	±2.17dB	
Conducted Emissions	Conducted	9-150kHz ±3.74dB	
Conducted Emissions		0.15-30MHz ±3.34dB	
Transmitter Spurious Emissions		30-200MHz ±4.52dB	
	Radiated	0.2-1GHz ±5.56dB	
	Kaulated	1-6GHz ±3.84dB	
		6-18GHz ±3.92dB	

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
CENT 1072	Spectrum	Agilant	E4407D	NIX 41 4 40 400	2020 04 28	2021 04 27
SEMT-1072	Analyzer	Agilent	E4407B	MY41440400	2020-04-28	2021-04-27
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2020-04-28	2021-04-27
SEIVI1-1051	Analyzer	Schwarz	F3F30	830079/033	2020-04-28	2021-04-27
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2020-04-28	2021-04-27
SEIVI1-1007	Receiver	Schwarz	ESVD	823471/003	2020-04-28	2021-04-27
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2020-04-28	2021-04-27
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2020-04-28	2021-04-27
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04
CENT 1001	EMI Test	Rohde &	ECDI	101/11	2020 04 28	2021 04 27
SEMT-1001	Receiver	Schwarz	ESPI	101611	2020-04-28	2021-04-27
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2020-04-28	2021-04-27
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2020-04-28	2021-04-27
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2020-04-28	2021-04-27
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2020-04-28	2021-04-27
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2020-04-28	2021-04-27
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2019-05-05	2021-05-04
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2020-04-28	2021-04-27
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2020-04-28	2021-04-27
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2020-04-28	2021-04-27
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2020-03-17	2021-03-16
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2020-03-17	2021-03-16
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2020-03-17	2021-03-16
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2020-03-17	2021-03-16
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16

	Software List			
Description	Manufacturer	Model	Version	
EMI Test Software	Farad	EZ-EMC	RA-03A1	
(Radiated Emission)*	rarau	EZ-EIVIC	KA-05A1	
EMI Test Software	Forod	EZ-EMC	DA 02A1	
(Conducted Emission)*	Farad	EZ-ENIC	RA-03A1	

*Remark: indicates software version used in the compliance certification testing

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§2.1091	RF Exposure	Compliant
§15.203;15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.207(a)	Conducted Emission	Compliant
§15.247(e)	Power Spectral Density	Compliant
§15.247(a)(2)	DTS Bandwidth	Compliant
§15.247(b)(3)	RF Output Power	Compliant
§15.209(a)	Radiated Emission	Compliant
§15.247(d)	Band Edge (Out of Band Emissions)	Compliant

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1091, the mobile transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an Integral antenna, fulfill the requirement of this section.

5. Power Spectral Density

5.1 Standard Applicable

According to 15.247(a)(1)(iii), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Procedure

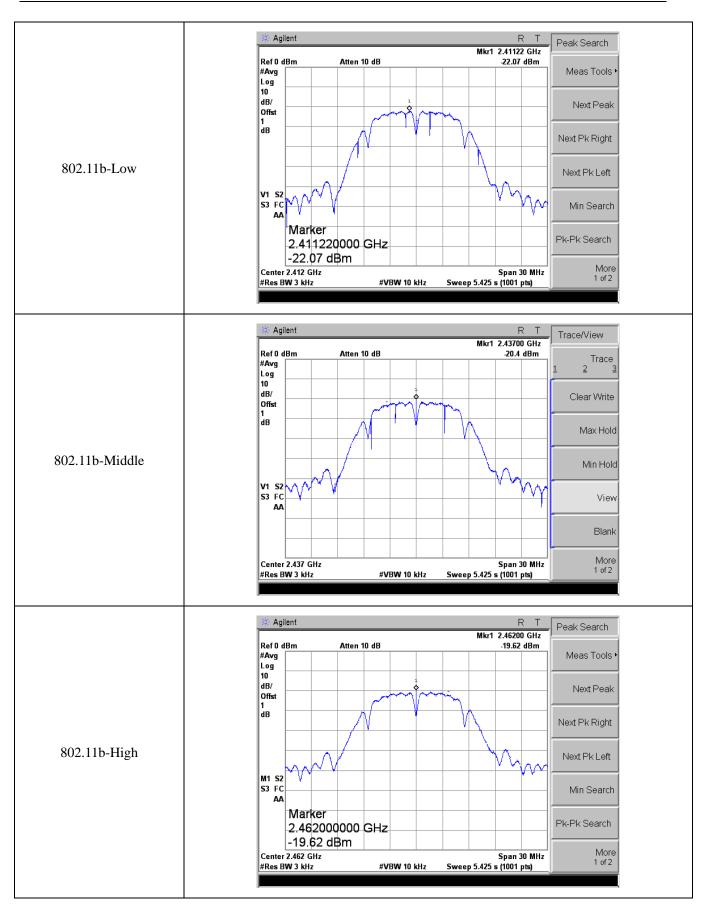
According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.10.3, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

a) Set instrument center frequency to DTS channel center frequency.

- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d) Set VBW $\geq 3 \times RBW$.

e) Detector = power averaging (RMS) or sample detector (when RMS not available).

- f) Ensure that the number of measurement points in the sweep $\geq 2 \text{ x span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.


j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Summary of Test Results/Plots

Test Mode	Test Channel MHz	Power Spectral Density dBm/3kHz	Limit dBm/3kHz
	2412	-22.07	8
802.11b_11Mbps	2437	-20.40	8
	2462	-19.62	8

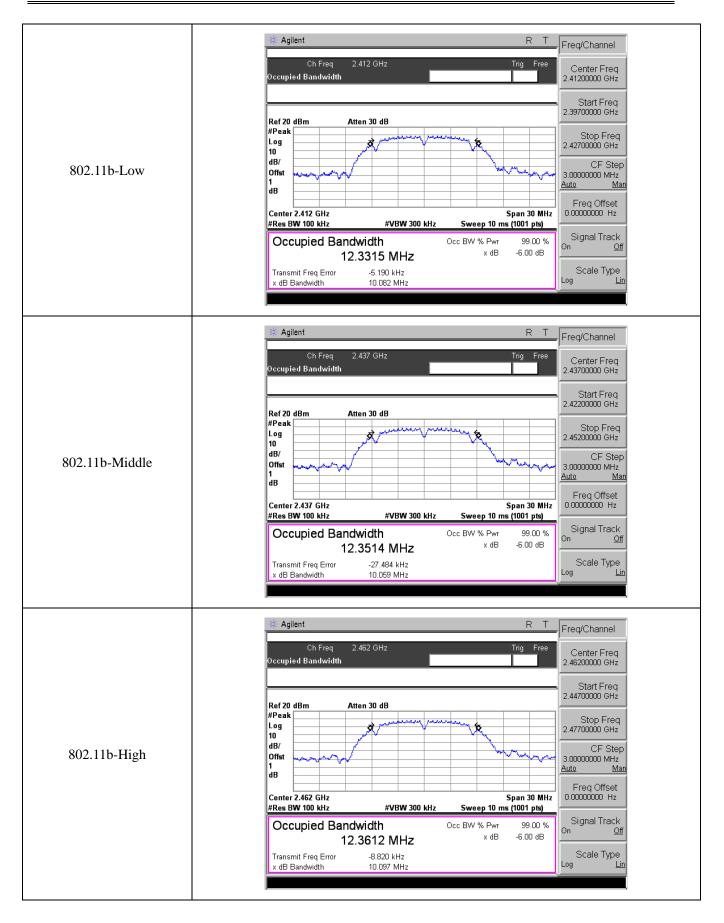
Please refer to the following test plots:

6. DTS Bandwidth

6.1 Standard Applicable

According to 15.247(a)(2), systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.2 Test Procedure


According to the KDB 558074 D01 v05r02 Subclause 8.2 and ANSI C63.10-2013 Subclause 11.8.1, the test method of DTS Bandwidth as below:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 Summary of Test Results/Plots

Test Mode	Test Channel MHz	6 dB Bandwidth MHz	Limit kHz
	2412	10.082	≥500
802.11b_11Mbps	2437	10.059	≥500
	2462	10.097	≥500

Please refer to the following test plots:

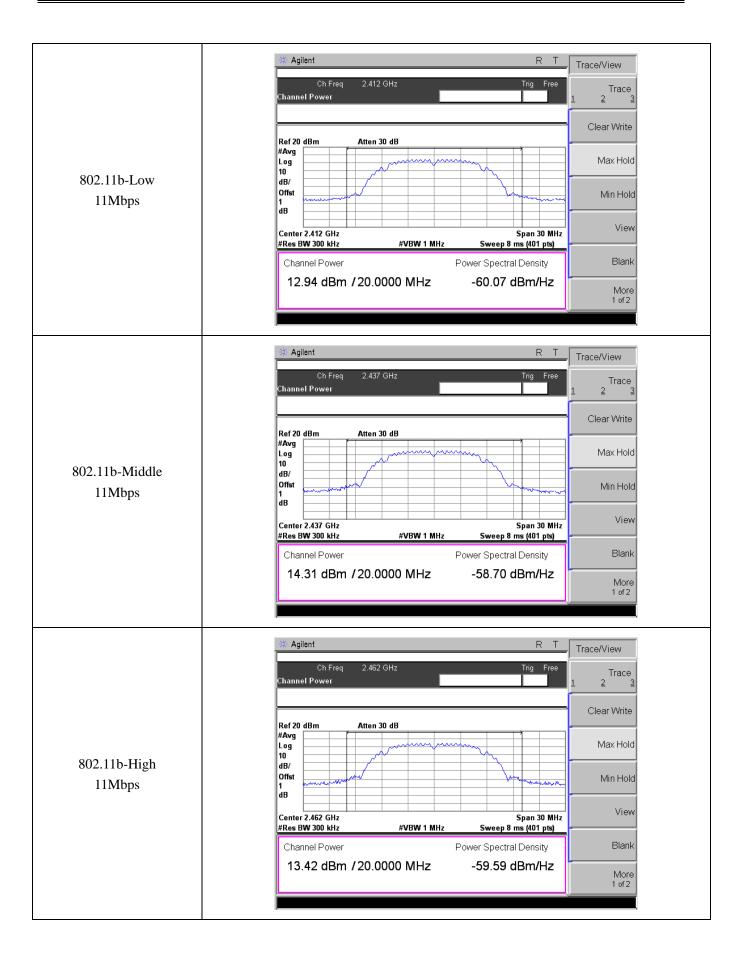
7. RF Output Power

7.1 Standard Applicable

According to 15.247(b)(3), for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

7.2 Test Procedure

According to the KDB-558074 D01 v05r02 Subclause 8.3.2.2 and ANSI C63.10-2013 Subclause 11.9.2.2, when this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth


- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW $\geq 3 \times RBW$.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

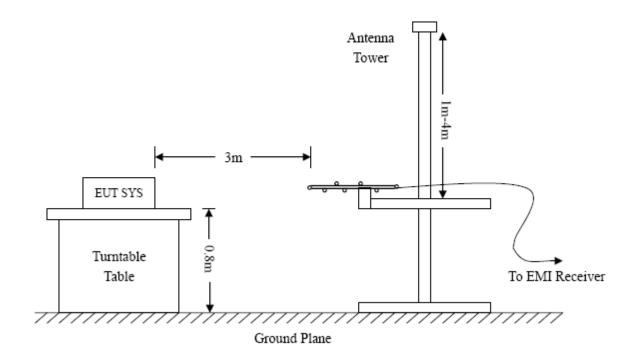
7.3 Summary of Test Results/Plots

Test Mode	Frequency MHz	Reading dBm	Output Power mW	Limit mW
	2412	12.94	19.68	1000
802.11b _ 11Mbps	2437	14.31	26.98	1000
	2462	13.42	21.98	1000

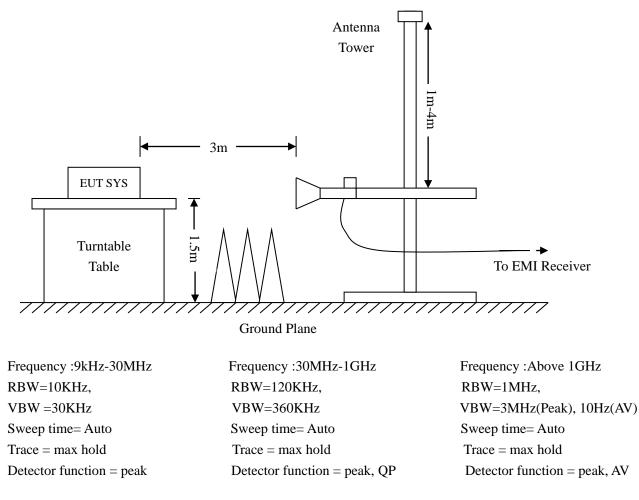
Please refer to the following test plots:

8. Field Strength of Spurious Emissions

8.1 Standard Applicable


According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

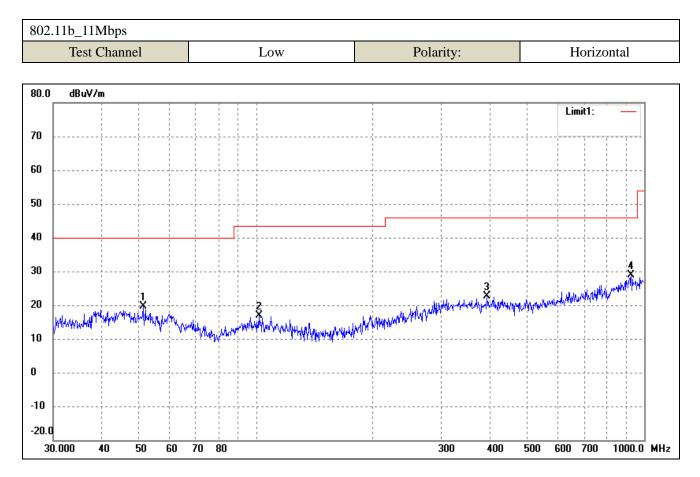
The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

8.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

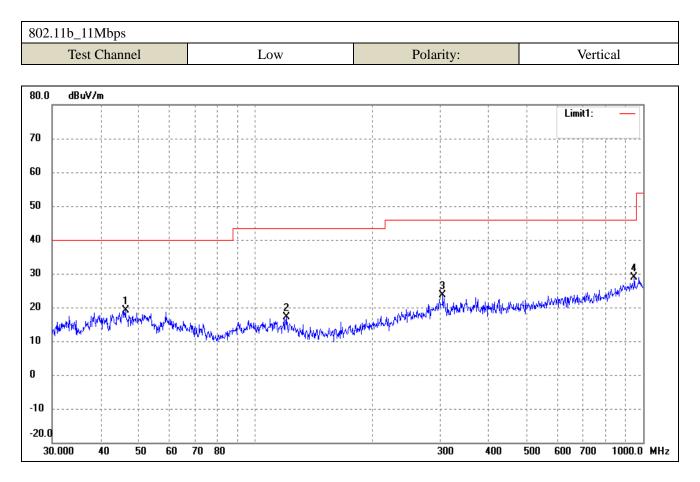
Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss – Ampl. Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

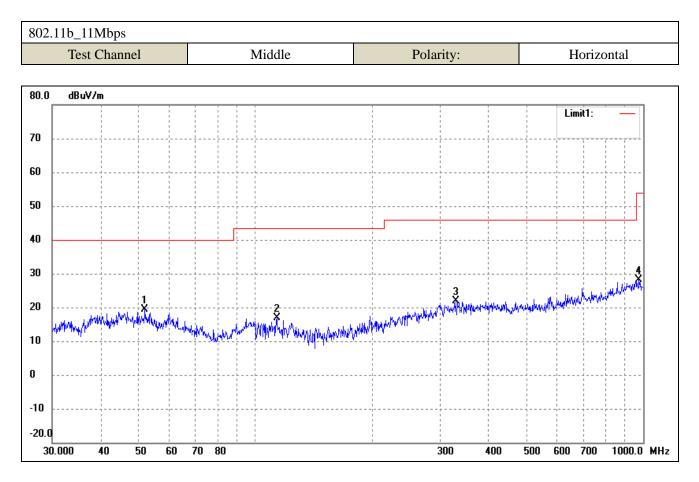

Margin = Corr. Ampl. – FCC Part 15 Limit

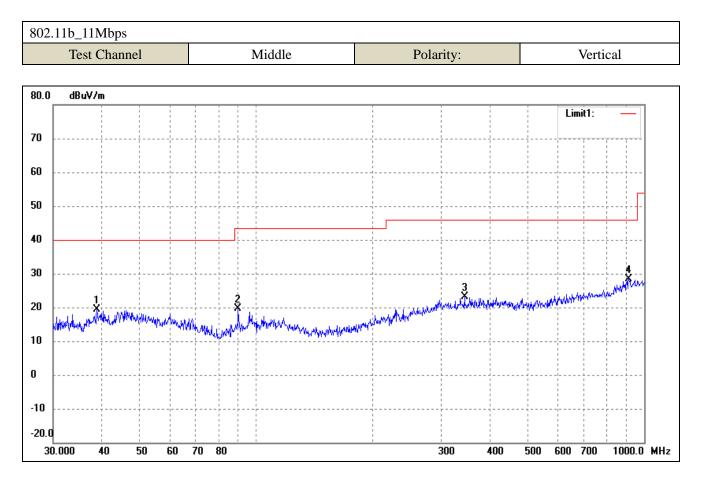
8.4 Summary of Test Results/Plots

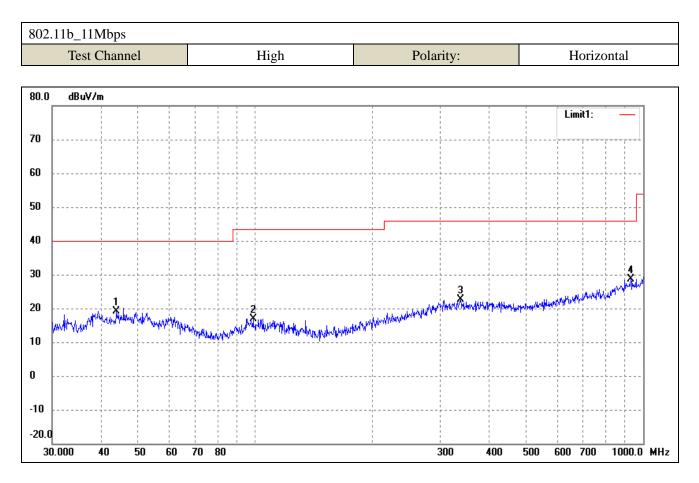
Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported. All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

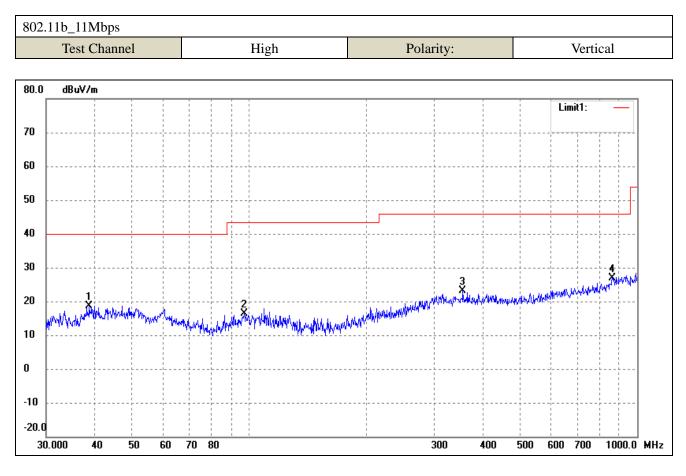


Spurious Emissions Below 1GHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	51.1209	33.46	-13.95	19.51	40.00	-20.49	-	-	peak
2	101.6443	31.74	-14.90	16.84	43.50	-26.66	-	-	peak
3	393.4724	30.60	-7.89	22.71	46.00	-23.29	-	-	peak
4	925.7563	29.67	-0.79	28.88	46.00	-17.12	-	-	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	46.3402	33.06	-13.86	19.20	40.00	-20.80	-	-	peak
2	120.6991	32.87	-15.82	17.05	43.50	-26.45	-	-	peak
3	304.6100	31.60	-7.95	23.65	46.00	-22.35	-	-	peak
4	948.7610	30.11	-1.14	28.97	46.00	-17.03	-	-	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	52.0251	33.54	-14.22	19.32	40.00	-20.68	-	-	peak
2	113.7143	32.05	-15.10	16.95	43.50	-26.55	-	-	peak
3	329.0390	30.16	-8.34	21.82	46.00	-24.18	-	-	peak
4	975.7529	28.98	-0.92	28.06	54.00	-25.94	-	-	peak


No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	38.8879	34.01	-14.59	19.42	40.00	-20.58	-	-	peak
2	89.9047	36.59	-16.92	19.67	43.50	-23.83	-	-	peak
3	344.3855	30.84	-7.78	23.06	46.00	-22.94	-	-	peak
4	912.8620	29.35	-0.99	28.36	46.00	-17.64	-	-	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	43.9658	33.01	-13.98	19.03	40.00	-20.97	-	-	peak
2	98.8326	32.02	-15.16	16.86	43.50	-26.64	-	-	peak
3	338.4001	30.68	-8.00	22.68	46.00	-23.32	-	-	peak
4	929.0082	29.40	-0.85	28.55	46.00	-17.45	-	-	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	38.7518	33.34	-14.64	18.70	40.00	-21.30	-	-	peak
2	97.1148	31.96	-15.50	16.46	43.50	-27.04	-	-	peak
3	355.4273	30.82	-7.66	23.16	46.00	-22.84	-	-	peak
4	863.0562	29.42	-2.49	26.93	46.00	-19.07	-	-	peak

Remark: '-'Means' the test Degree and Height is not recorded by the test software and only show the worst case in the test report.

Spurious Emissions Above 1GHz

Test Mode: 802.11b_11Mbps (worst case)

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V			
Low Channel-2412MHz									
4824.000	61.38	-3.87	57.51	74	-16.49	Н	PK		
4824.000	43.39	-3.87	39.52	54	-14.48	Н	AV		
7236.000	52.96	1.14	54.1	74	-19.9	Н	PK		
7236.000	38.64	1.19	39.83	54	-14.17	Н	AV		
4824.000	59.04	-3.86	55.18	74	-18.82	V	PK		
4824.000	41.72	-3.86	37.86	54	-16.14	V	AV		
7236.000	54.58	1.1	55.68	74	-18.32	V	РК		
7236.000	40.58	1.1	41.68	54	-12.32	V	AV		
Middle Channel-2437MHz									
4874.000	59.21	-3.74	55.47	74	-18.53	Н	PK		
4874.000	43.05	-3.74	39.31	54	-14.69	Н	AV		
7311.000	55.87	1.47	57.34	74	-16.66	Н	PK		
7311.000	40.64	1.47	42.11	54	-11.89	Н	AV		
4874.000	59.28	-3.74	55.54	74	-18.46	V	PK		
4874.000	41.3	-3.74	37.56	54	-16.44	V	AV		
7311.000	55.03	1.47	56.5	74	-17.5	V	РК		
7311.000	39.96	1.47	41.43	54	-12.57	V	AV		
			High Chann	el-2462MHz					
4924.000	60.63	-3.59	57.04	74	-16.96	Н	PK		
4924.000	41.34	-3.59	37.75	54	-16.25	Н	AV		
7386.000	52.61	1.79	54.4	74	-19.6	Н	PK		
7386.000	40.68	1.79	42.47	54	-11.53	Н	AV		
4924.000	58.6	-3.59	55.01	74	-18.99	V	PK		
4924.000	42.89	-3.59	39.3	54	-14.7	V	AV		
7386.000	54.09	1.79	55.88	74	-18.12	V	PK		
7386.000	38.93	1.79	40.72	54	-13.28	V	AV		

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

9. Out of Band Emissions

9.1 Standard Applicable

According to §15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

9.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

Sweep = auto; Detector function = peak/average; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

a) RBW = as specified in Table 9.

b) VBW \geq [3 \times RBW].

c) Detector = peak.

d) Sweep time = auto.

e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

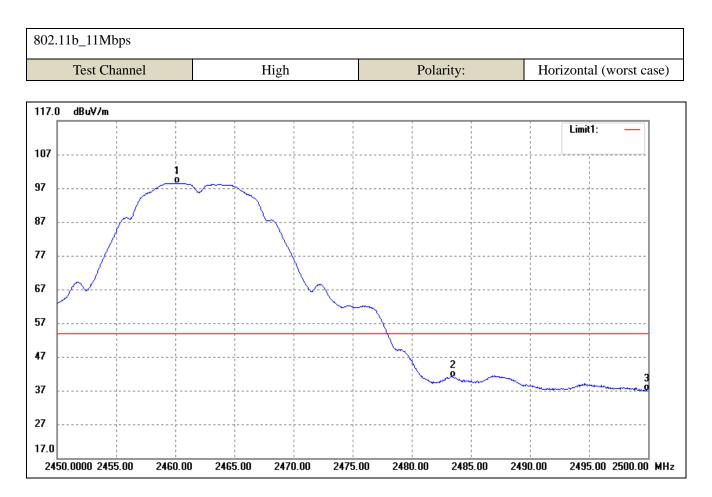
Table 9-RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 MHz to 30 MHz	9 kHz to 10 kHz
30 MHz to 1000 MHz	100 kHz to 120 kHz
>1000 MHz	1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1. Report the three highest emissions relative to the limit.

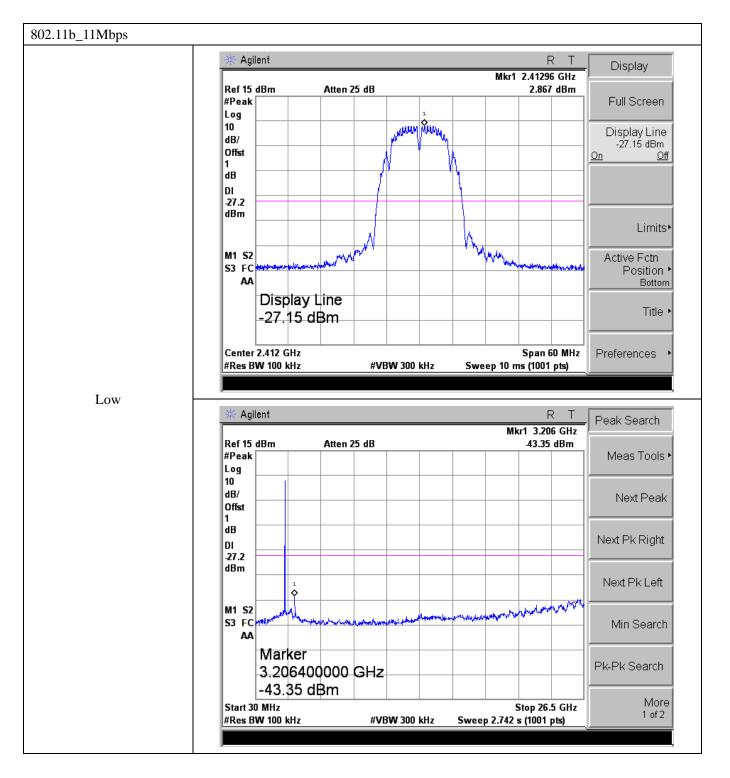
9.3 Summary of Test Results/Plots

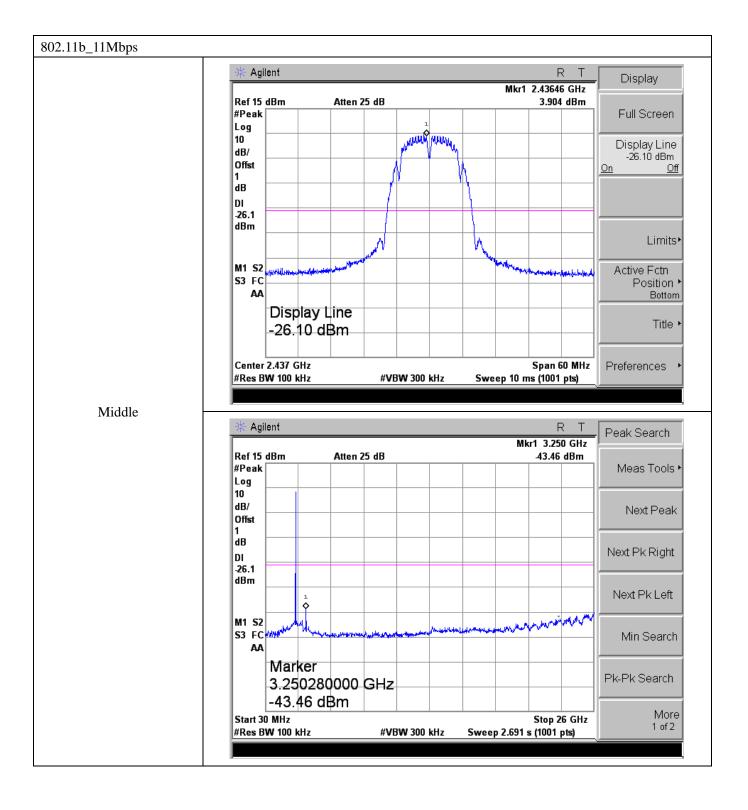


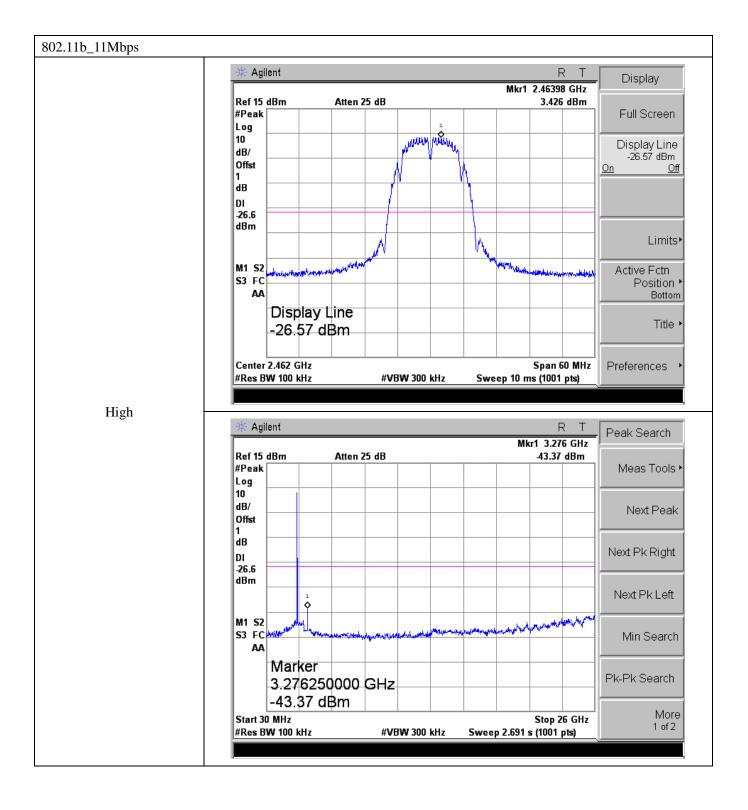
Radiated test

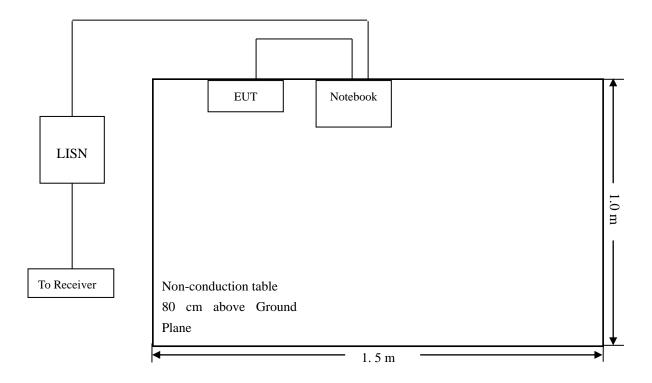
Test Channel	Low	Polarity:	Horizontal (worst ca						
17.0 dBuV/m									
107			Limit1: —						
97			4 0						
37			(
77									
57									
7									
17		29)						
37		······································							
7									

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	43.21	-9.66	33.55	54.00	-20.45	Average Detector
	2310.000	55.05	-9.66	45.39	74.00	-28.61	Peak Detector
2	2390.000	50.78	-9.50	41.28	54.00	-12.72	Average Detector
	2390.000	60.74	-9.50	51.24	74.00	-22.76	Peak Detector
3	2400.000	71.75	-9.48	62.27	Delta=35.98 dBc		Average Detector
4	2413.800	107.70	-9.45	98.25			Average Detector




No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2460.150	107.85	-9.35	98.50	/	/	Average Detector
	2460.550	112.26	-9.36	102.90	/	/	Peak Detector
2	2483.500	50.16	-9.31	40.85	54.00	-13.15	Average Detector
	2483.500	59.40	-9.31	50.09	74.00	-23.91	Peak Detector
3	2500.000	46.22	-9.28	36.94	54.00	-17.06	Average Detector
	2500.000	58.08	-9.28	48.80	74.00	-25.20	Peak Detector


Conducted test


10. Conducted Emissions

10.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.2 Basic Test Setup Block Diagram

10.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	. 150 kHz
Stop Frequency	. 30 MHz
Sweep Speed	. Auto
IF Bandwidth	. 10 kHz
Quasi-Peak Adapter Bandwidth	.9 kHz
Quasi-Peak Adapter Mode	. Normal

10.4 Summary of Test Results/Plots

Not application. Because the EUT is a Car products .

***** END OF REPORT *****