RF Exposure evaluation

According to 447498 D04 Interim General RF Exposure Guidance v01

 $P_{\text{th}} (\text{mW}) = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^{\times} & d \le 20 \text{ cm} \\ \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$

(B.2)

where

 $x = -\log_{10}\left(\frac{60}{\delta R R_{20} \operatorname{cm} \sqrt{f}}\right)$

and / is in GHz, d is the separation distance (cm)₂ and ERP_{20m} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\text{th}}(\text{mW}) = ERP_{20 \text{ cm}}(\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B.1)

Table B.2-Example Power Thresholds (mW)

				_		Stenter	(mm)	-	_	-	-
		5	10	15	20	25	30	35	40	45	- 50
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217
	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
	1900	3	12	26	44	66	92	122	157	195	236
	2450	3	10	22	38	- 59	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

```
eirp = pt x gt = (EXd)<sup>2</sup>/30
where:
pt = transmitter output power in watts,
gt = numeric gain of the transmitting antenna (unitless),
E = electric field strength in V/m, --- 10<sup>((dBuV/m)/20)</sup>/10<sup>6</sup>
d = measurement distance in meters (m)---3m
Sopt = (EXd)<sup>2</sup>/30 x gt
```

Ant gain =2.34dBi so Ant numeric gain= 1.714

Field strength =94.91dB μ V/m @3m@2441MHz

So Pt={ $[10^{(94.91/20)}/10^6 \text{ x3}]^2/(30)$ }x1000 mW = 0.93mW <2.76 mW

Then SAR evaluation is not required