FCC 47 CFR MPE REPORT

Zhongshan City Richsound Electronic Industrial Ltd.

2.1CH Soundbar with Wireless Subwoofer

Model Number: CINEMA SB160

Additional Model: CINEMA SB260

FCC ID: Z8M-SB160

Prepared for:	Zhongshan City Richsound Electronic Industrial Ltd.			
	Qunle Industrial Area, East ShaGang Road, Gang Kou, Zhongshan, China			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R1909164		
Date of Test:	Aug. 26~Sep. 30, 2019		
Date of Report:	Oct. 09, 2019		

EST Technology Co. ,Ltd Report No. ESTE-R1909164 Page 1 of 5

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency	Peak output	Peak output	Target power	Antenna gain	
	(MHz)	power (dBm)	power (mW)	(dBm)	(dBi)	(Linear)
GFSK	2402	-0.43	0.906	-1±1	-0.68	0.855
	2441	-0.76	0.839	-1±1	-0.68	0.855
	2480	-1.18	0.762	-2±1	-0.68	0.855
π/4-DQPSK	2402	0.58	1.143	0±1	-0.68	0.855
	2441	0.33	1.079	0±1	-0.68	0.855
	2480	-0.15	0.966	-1±1	-0.68	0.855

EST Technology Co. ,Ltd Report No. ESTE-R1909164

3. Calculated Result and Limit

Mode	Target power			Power Density (S)	Limited of Power Density	Test Result	
	(dBm)	(dBi)	(Linear)	(mW/cm^2)	(S) (mW/cm^2)		
2.4G Band							
GFSK	0	-0.68	0.855	0.00017	1	Compiles	
π/4-DQPSK	1	-0.68	0.855	0.00021	1	Compiles	

For 2.4G SRD

Ant gain=3dBi

Ant numeric gain=1.995

Field strength = 84.48 dBuV/m@3m

 $P=\{\ [10^{(84.48\,/20)}\,/10^6\ *3]^2/\ (30*1.995)\ \}*1000mW=0.042mW$

Pd= (30*0.042*1.995) / (377*20^2)=0.00002<1

End of Test Report

EST Technology Co. ,Ltd Report No. ESTE-R1909164