

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

			<u>5)</u>		
4. Genera Ir 4.1. Test En	formation	lode			6
5. Facilities 5.1. Facilitie	and Accred	litations	<u>)</u>		
6.1. Antenna 6.2. Conduc 6.3. Radiate	a Requirement ted Emission d Emission Meas	surement	Data		
Appendix A: Appendix B:	Photograph	s of Test S			

TCT 通测检测 TESTING CENTRE TECHNOLOGY 1. Test Certification

Product:	Contour Mouse	
Model No.:	CMO-GM-S-R-WL	
Additional Model No.:	CMO-GM-M-R-WL, CMO-GM-L-R-WL, CMO-GM-M-L-WL, CMO-GM-L-L-WL, CMO-GM-S-L-WL	C
Trade Mark:	CONTOUR	
Applicant:	CONTOUR (GUANGZHOU) DESIGN, INC.	
Address:	Building B21-2F, Huachuang Animation Park, Panyu, Guangzhou, 511450 China	2
Manufacturer:	CONTOUR (GUANGZHOU) DESIGN, INC.	
Address:	Building B21-2F, Huachuang Animation Park, Panyu, Guangzhou, 511450 China	
Date of Test:	Mar. 14, 2018 – Apr. 10, 2018	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249	2

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Garen

Reviewed By:

Beryl Zhao

Tomsin

Approved By:

Apr. 10, 2018 Date: Apr. 11, 2018 Date:

Date: Apr. 11, 2018

Page 3 of 25

2. Test Result Summary

equirement ne Conducted ssion rength of mental Emissions	Ì	§15.20 §15.20 §15.249			PASS PASS	S.
ssion rength of mental	Ś		7		PASS	
mental		§15.249			17,00	
Emissions			(a)		PASS	
	§2.1053 §15.249 (a) (d)/ §15.209			S	PASS	R.C.
Band Edge 20dB Occupied Bandwidth		§2.1053 §15.249 (d)/ §15.205			PASS	
		§2.104	19		PASS	
			rd.			
	ed Bandwidth om meets the requir n does not meet the se does not apply to	ed Bandwidth om meets the requirement. In does not meet the requirement. Se does not apply to the test object	Eage §15.249 (d)/ ed Bandwidth §2.104 gen meets the requirement. §15.215 em meets the requirement. Gen and the requirement. in does not meet the requirement. Gen apply to the test object.	Edge §15.249 (d)/ §15.205 ed Bandwidth §2.1049 §15.215 (c) §15.215 (c) em meets the requirement. Image: Compare the requirement.	Edge §15.249 (d)/ §15.205 ed Bandwidth §2.1049 §15.215 (c) §15.215 (c) em meets the requirement. Image: Compare the requirement. in does not meet the requirement. State the test object.	Edge §15.249 (d)/§15.205 PASS ed Bandwidth §2.1049 PASS ed Bandwidth §15.215 (c) PASS

3. EUT Description

Product:	Contour Mouse			
Model No.:	CMO-GM-S-R-WL			
Additional Model No.:	CMO-GM-M-R-WL, CMO-GM-L-R-WL, CMO-GM-M-L-WL, CMO-GM-L-L-WL, CMO-GM-S-L-WL			
Trade Mark:	CONTOUR			
Hardware Version:	A			
Software Version:	B54			
Operation Frequency:	2402MHz~2480MHz			
Number of Channel:	79			
Modulation Technology:	GFSK			
Antenna Type:	PCB Antenna			
Antenna Gain:	0dBi			
Power Supply:	Rechargeable Li-ion battery DC 3.7V			
Remark:	All models above are identical in interior structure, electrical circuits and components, and just appearance and model names are different for the marketing requirement.			

Operation Frequency Each of Channel

operatio								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
			<u>e</u>				×	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
G`)		S)	(G`)	(<u>G`)</u>	(20	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz		-	

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel	2402MHz	
The middle channel	2441MHz	
The Highest channel	2480MHz	

Report No.: TCT180313E018

4. Genera Information

4.1. Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	/	<u>(</u>) 1	

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5. Facilities and Accreditations

5.1.Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2.Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

±2.56dB ±0.12dB ±0.11dB
+0.11dB
±3.92dB
±4.28dB
±0.1°C
±1.0%

6. Test Results and Measurement Data

6.1. Antenna Requirement

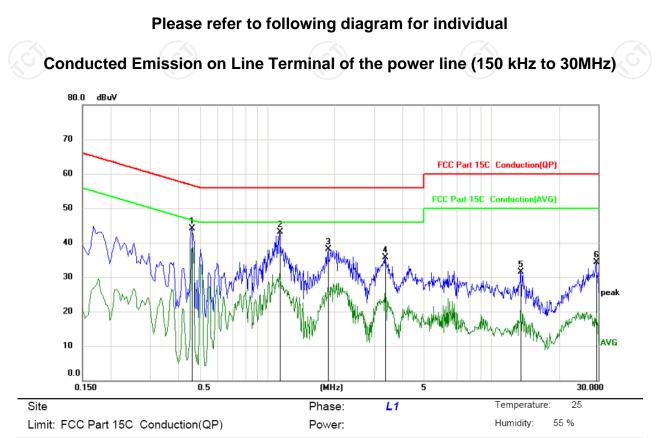
Standard requi	irement:	FCC Par	rt15 C Section	15.203 🔇		
furnished by the permanently att intentional radia	adiator shall e responsible ached anter ator, the mar d by the user	e party sha nna or of ar nufacturer r	Il be used with antenna that may design the	nat no antenna otl n the device. The uses a unique co e unit so that a bro rd antenna jack o	e use of a oupling to th oken anten	ie
E.U.T Antenna			S			S.
The EUT antenr of the antenna i		ntenna whi	ch permanent	y attached, and th	ne best cas	e gain
Antenna	30 40 50 60					
~	10 20		Rest 2014 Rest 2014 <t< td=""><td></td><td></td><td></td></t<>			
	0,	nm OF	0 30 50	0 60 50 4		
9 (1) (3)	0	nm 01	0 30 50	0 00 20 4		
	0	mm OF		0		

6.2.Conducted Emission

6.2.1. Test Specification

Receiver setup: RBW=9 H Limits: Freque Imits: 0. Imits: 0. Imits: Imits:	o 30 MHz Hz, VBW=3 ency range MHz) 15-0.5 0.5-5 5-30 Refer	30 kHz, Sweep tim Limit Quasi-peak 66 to 56* 56 60	e=auto (dBuV) Average 56 to 46* 46 50		
Receiver setup: RBW=9 H Limits: Freque Imits: 0. Imits: 0. Imits: Imits:	Hz, VBW=3 ency range MHz) 15-0.5 0.5-5 5-30 Refer	Limit Quasi-peak 66 to 56* 56	(dBuV) Average 56 to 46* 46		
Limits: Freque 0. 0. LISI AUX Equip Test Setup: Test Mode: Test Mode: Test Mode: Transmitt 1. The E. power (L.I.S.N impeda 2. The per power coupling refer to photog 3. Both set	ency range MHz) 15-0.5 0.5-5 5-30 Refer	Limit Quasi-peak 66 to 56* 56	(dBuV) Average 56 to 46* 46		
Limits: Test Setup: Test Mode: Test Mode: Test Procedure: LISI LISI LUX Equip Test H Test Mode: Transmitt 1. The E. power (L.1.S.N impeda 2. The per power coupling refer to photog 3. Both set	MHz) 15-0.5 0.5-5 5-30 Refer	Quasi-peak 66 to 56* 56	Average 56 to 46* 46		
Limits: 0. Imits: 0. Imits: 0. Imits: Imits: Imits: <td>15-0.5).5-5 5-30 Refer</td> <th>66 to 56* 56</th> <td>56 to 46* 46</td>	15-0.5).5-5 5-30 Refer	66 to 56* 56	56 to 46* 46		
Test Setup: Image: Setup for the set of the s	0.5-5 5-30 Refer	56	46		
Test Setup: Image: Constraint of the set of t	5-30 Refer				
Test Setup: Image: Setup: Setup: Image: Setup: Setup: Image: Setup: Setup: Setup: Image: Setup: Setup	Refei	60	50		
Fest Setup: AUX Fest Setup: Test t Remark: EUT: Equip LISN: Line II Test table has Fest Mode: Transmitted 1. The E. power (L.I.S.N) impeda 2. The per power coupling Fest Procedure: 3. Both set	X		50		
Fest Setup: AUX Fest Setup: Test t Remark: EUT: Equip LISN: Line II Test table has Fest Mode: Transmitted 1. The E. power (L.I.S.N) impeda 2. The per power coupling Fest Procedure: 3. Both set		rence Plane			
1. The E. power (L.I.S.N) impeda 2. The perpower coupling rest Procedure: 3. Both set	Equipment E.U.T Test table/Insulation plane EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Procedure: Test Procedure: 7. The procedure:	ng mode wi	ith modulation			
the int	hrough a lin I.). This p nce for the ripheral devi through a L g impedance the block caphs). ides of A.C	nulators are conner ne impedance state provides a 500hr measuring equipmer vices are also conner LISN that provide ce with 500hm ter chart bookm ter chart boo	bilization network m/50uH coupling nent. hected to the main s a 50ohm/50uH mination. (Please test setup and aced for maximum ind the maximum uipment and all o ged according to		
Test Result: PASS	on, the relation on, the relation				

6.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018				
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018				
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

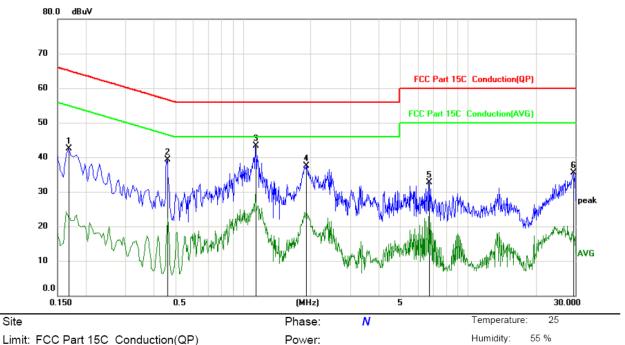
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 25

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2.3. Test data

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment	
1 *	0.4605	32.79	11.33	44.12	56.68	-12.56	peak		
2	1.1400	31.77	11.28	43.05	56.00	-12.95	peak		
3	1.8735	26.42	11.64	38.06	56.00	-17.94	peak		
4	3.3585	24.55	11.21	35.76	56.00	-20.24	peak		
5	13.5105	19.86	11.57	31.43	60.00	-28.57	peak		
6	29.2875	23.67	10.70	34.37	60.00	-25.63	peak		


Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 11 of 25

Report No.: TCT180313E018

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1680	31.07	11.49	42.56	65.06	-22.50	peak	
2	0.4605	27.98	11.33	39.31	56.68	-17.37	peak	
3 *	1.1400	32.00	11.28	43.28	56.00	-12.72	peak	
4	1.9095	25.86	11.65	37.51	56.00	-18.49	peak	
5	6.7065	21.75	10.90	32.65	60.00	-27.35	peak	
6	29.2875	24.76	10.70	35.46	60.00	-24.54	peak	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

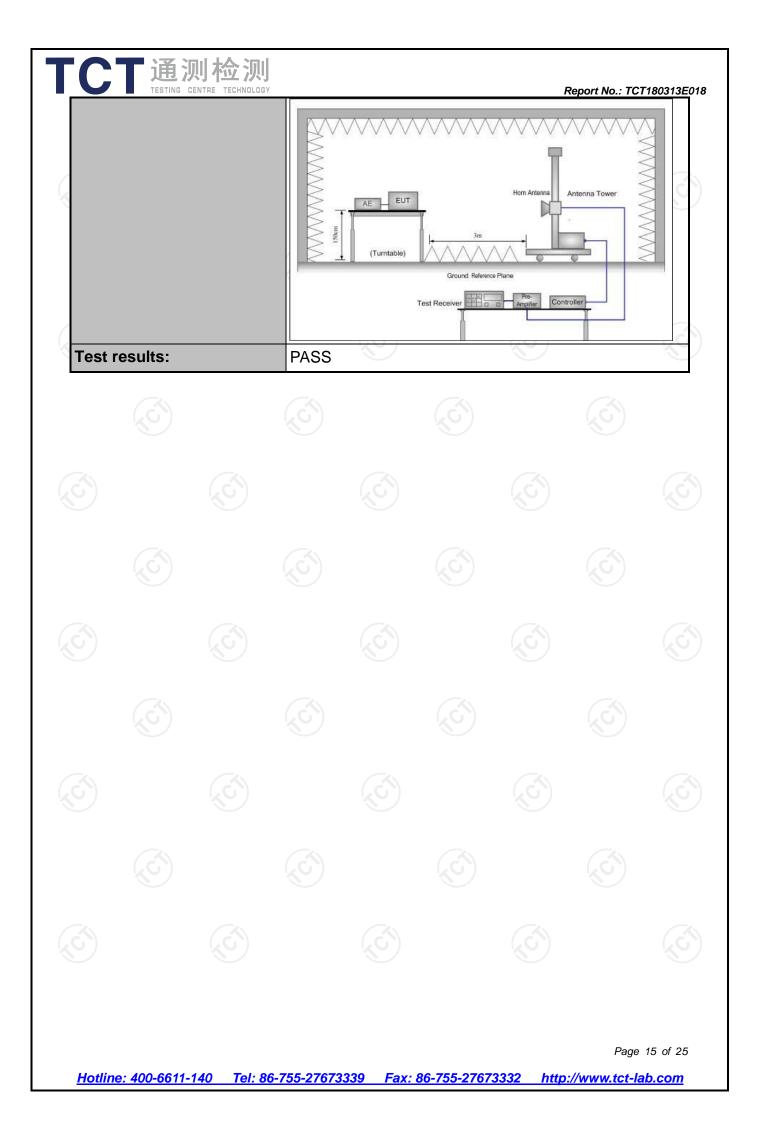
Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz



6.3. Radiated Emission Measurement

6.3.1. Test Specification

Test Requirement:	FCC Part15	5 C Section	/15.209 n	Part 2 J	Section 2.1053			
Test Method:	ANSI C63.1	0:2013						
Frequency Range:	9 kHz to 25	GHz						
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal & Vertical							
	Frequency	Detector	RBW	VBW	Remark			
Receiver Setup:	<u>9kHz- 150kHz</u> 150kHz- 30MHz	Quasi-peak Quasi-peak	200Hz 9kHz	1kHz 30kHz	Quasi-peak Value Quasi-peak Value			
	30MHz-1GHz	Quasi-peak Peak	120kHz 1MHz	300kHz 3MHz	Quasi-peak Value Peak Value			
	Above 1GHz	Peak	1MHz	10Hz	Average Value			
Limit(Field strength of the fundamental signal):	Freque 2400MHz-24		Limit (dBu\ 94. 114	00	Remark Average Value Peak Value			
	Freque 0.009-0		Limit (dBuV/m @3m) 2400/F(KHz)		Remark Quasi-peak Value			
	0.490-1	-30	24000/F(KHz) 30		Quasi-peak Value Quasi-peak Value			
Limit(Spurious Emissions):	30MHz-8 88MHz-2 216MHz-9	16MHz	40.0 43.5 46.0		Quasi-peak Value Quasi-peak Value Quasi-peak Value			
	960MHz Above	-1GHz	54.0 54.0 74.0		Quasi-peak Value Average Value Peak Value			
Limit (band edge) :	bands, exce least 50 dB general rae	ept for har below the diated em	utside of monics, s level of t ission lir	the spe shall be a he funda nits in S	cified frequency attenuated by at mental or to the Section 15.209,			
Test Procedure:	 whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table meters above the ground at a 3 meter chamber below 1GHz, 1.5m above the ground in about 1GHz. The table was rotated 360 degrees determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mount on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to fermeters above the ground to determine the maximum value of the field strength. Both horizontal a vertical polarizations of the antenna are set to mathematical polarizations of the antenna are set to mathematical polarizations. 							

CT通测检测 testing centre technology	Report No.: TCT180313
	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	For radiated emissions below 30MHz
	Distance = 3m Computer Pre - Amplifier FUT Turn table Ground Plane 30MHz to 1GHz
	Antenna Tower
Test setup:	EUT 4m Search Im 8m RF T est Receiver Im Ground Plane Im Above 1GHz Im (The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to make the measurements for emission from 1GHz to the test setup that is utilized to the test setup the tes
	the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

	Radiated Em	ission Test Sit	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	отст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2402	79.01	Н	114	-34.99
2402	77.42	V	114	-36.58
2441	78.59	н	114	-35.41
2441	75.74	V	114	-38.26
2480	80.58	H	114	-33.42
2480	74.32	V	114	-39.68

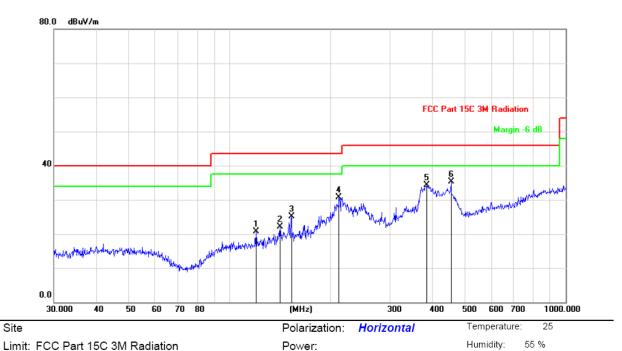
Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2402	76.82	Н	94	-17.18
2402	75.43	V	94	-18.57
2441	76.36	Н	94	-17.64
2441	74.37	V	94	-19.63
2480	78.52	н	94	-15.48
2480	71.12	V	94	-22.88

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@	ۇ3m (dBμ	IV/m)	Limit@3m (dBµV/m)
· · · · ·				

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

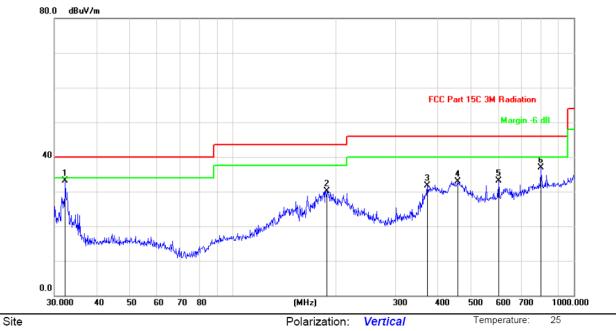

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Frequency Range (30MHz-1GHz)

Report No.: TCT180313E018

Horizontal:

TCT通测检测 TESTING CENTRE TECHNOLOGY


Limit: FCC Part 15C 3M Radiation

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		119.8556	34.93	-14.16	20.77	43.50	-22.73	peak			
2		141.3298	38.08	-15.98	22.10	43.50	-21.40	peak			
3		152.6641	40.82	-15.65	25.17	43.50	-18.33	peak			
4	2	211.5265	43.08	-12.29	30.79	43.50	-12.71	peak			
5		386.6338	40.45	-6.18	34.27	46.00	-11.73	peak			
6	* 4	455.9058	39.57	-4.29	35.28	46.00	-10.72	peak			

Page 18 of 25

Vertical:

Limit: FCC Part 15C 3M Radiation

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	32.2925	46.61	-13.57	33.04	40.00	-6.96	peak			
2		189.0743	43.53	-13.41	30.12	43.50	-13.38	peak			
3		372.0045	38.21	-6.60	31.61	46.00	-14.39	peak			
4		457.5073	37.16	-4.25	32.91	46.00	-13.09	peak			
5		601.4265	33.82	-0.75	33.07	46.00	-12.93	peak			
6		798.9797	35.05	1.88	36.93	46.00	-9.07	peak			

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

Page 19 of 25

Report No.: TCT180313E018

Humidity:

55 %

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT180313E018 Above 1GHz Low channel: 2402MHz AV **Emission Level** Peak Correction Frequency Ant. Pol. Peak limit AV limit Margin reading reading Factor Peak AV (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dBµV) (dBuV) (dB/m) (dBµV/m) (dBµV/m) 74.00 54.00 2387.50 Н 52.62 -4.2 48.28 -5.72 ---4804.00 Н 51.51 -3.94 47.41 ---74.00 54.00 -6.59 7206.00 Η 49.73 0.52 49.55 74.00 54.00 -4.45 ------------------------------------74.00 54.00 2387.50 V 50.45 -4.2 46.05 -7.95 74.00 54.00 4804.00 V 48.49 3.94 52.33 -1.67 V 74.00 54.00 -7.15 7206.00 46.20 0.52 46.85

			N	/liddle chann	<u>el: 2441M</u>	Hz			
Frequency	Ant Pol	Peak	AV	Correction	Emissio	on Level	Peak limit	A\/ limit	Margin
	H/V	reading	reading	Factor	Peak	AV			(dB)
(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμν/Π)	(dBµV/m)	
4882.00	Н	52.37		-3.98	48.18	×	74.00	54.00	-5.82
7323.00	KCH)	49.41	-40	0.57	49.84	0	74.00	54.00	-4.16
						<u> </u>			
4882.00	V	51.69		-3.98	47.28		74.00	54.00	-6.72
7323.00	V	49.74		0.57	49.62		74.00	54.00	-4.38
	(<u> </u>		- (-, C)	· ·	(<u> </u>		(C)	

High channel: 2480MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	ading Factor Peak AV				AV limit (dBµV/m)	Margin (dB)
2486.58	Н	51.49		-2.38 🔍	49.47		74.00	54.00	-4.53
4960.00	Н	53.37		-3.98	49.03		74.00	54.00	-4.97
7440.00	Н	48.25		0.57	49.26		74.00	54.00	-4.74
	<u> </u>			·					
(<u>(</u>)		N N					(U)	
2486.58	V	51.15)	-2.38	48.66		74.00	54.00	-5.34
4960.00	V	51.70		-3.98	47.64		74.00	54.00	-6.36
7440.00	V	50.60		0.57	50.94		74.00	54.00	-3.06
				((2

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Band Edge Requirement

Low channel: 2402MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	g racior Peak AV		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
2400	Н	48.40		-4.2	44.20		74		-29.80
2400	Н		41.52	-4.2		37.32		54	-16.68
			(.			(\mathbf{c})		(.ĉ.	
2400	V	48.60	X	-4.2	44.4		74		-29.60
2400	V		42.08	-4.2		37.88		54	-16.12

				High channe	el: 2480MH	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	(H)	48.60	(-4.2	44.40	$(2 \oplus)$	74	(2C)	-29.60
2483.5	E Contraction of the second se		40.66	-4.2		36.46		54	-17.54
2483.5	V	48.80		-4.2	44.60		74		-29.40
2483.5	V		41.31	-4.2		37.11		54	-16.89
)))		

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak/Average)(dBµV/m)-(Peak/Average) limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6.4.20dB Occupied Bandwidth

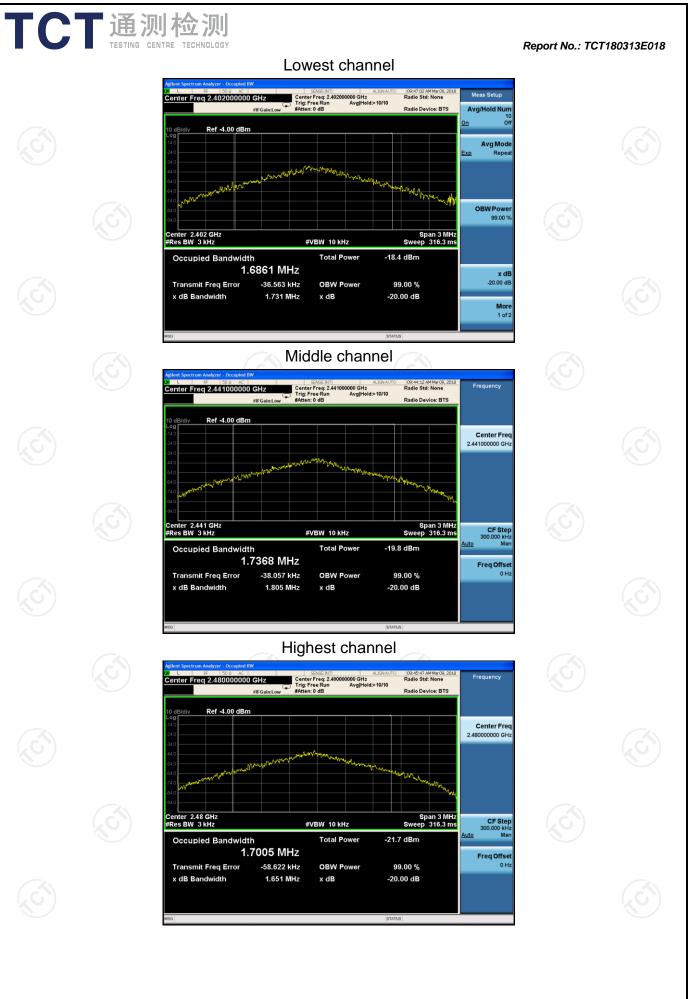
6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)/ Part 2 J Section 2.1049	R
Test Method:	ANSI C63.10: 2013	
Limit:	N/A	
	 According to the follow Test-setup, keep the relat position between the artificial antenna and the EU. Set to the maximum power setting and enable EUT transmit continuously. Use the following spectrum analyzer settings 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 bandwidth, centered on a hopping channel; RBW≥1% of the dB bandwidth; VBW≥RBW; Sweep = auto; Detector function peak; Trace = max hold. Measure and record the results in the test report. 	JT. the for dB e 20
Test setup:	Spectrum Analyzer EUT	
Test Mode:	Transmitting mode with modulation	S
Test results:	PASS	

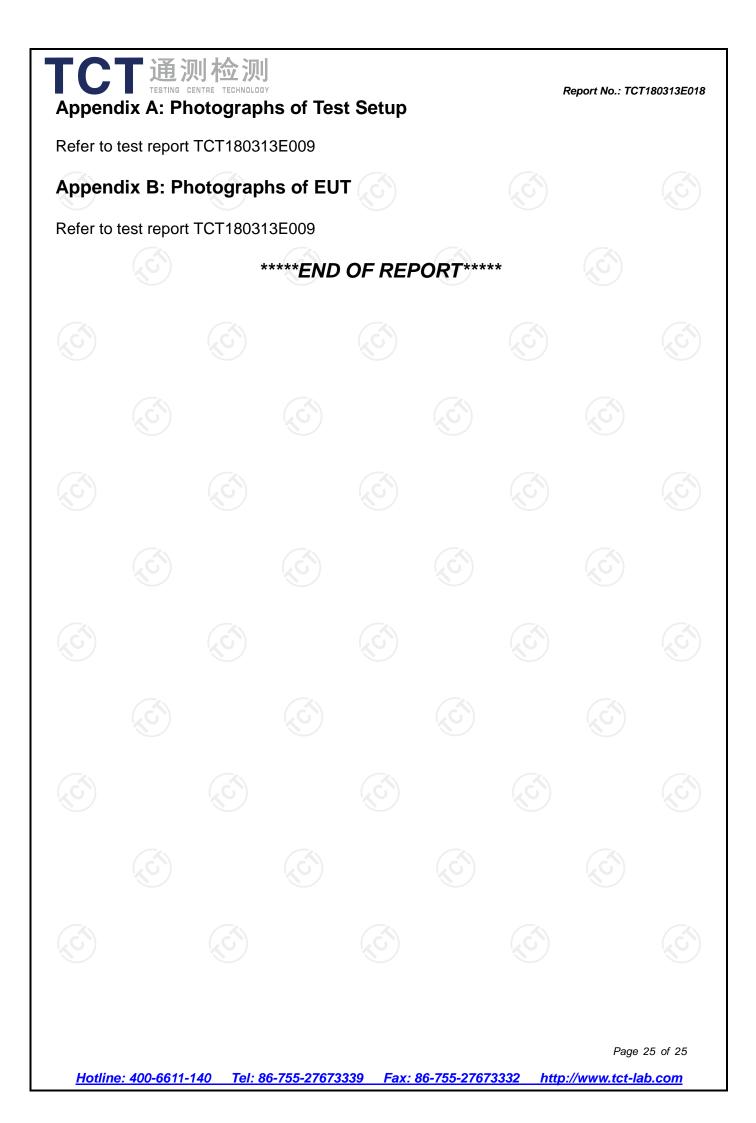
6.4.2. Test Instruments

RF Test Room									
N	Equipment	Manufacturer	Model	Serial Number	Calibration Due				
	Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


TCT 通测检测 TESTING CENTRE TECHNOLOGY

6.4.3. Test data


Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion
Lowest	1731	((3)	PASS 🔍
Middle	1805		PASS
Highest	1651		PASS
Test plots as follows:			

		()						
<u>Hotlin</u>	ne: 400-6611	-140 Tel: 8	<u>36-755-27673</u>	3339 Fax:	<u>86-755-2767</u>	<u>3332 http</u>	Page ://www.tct-la	23 of 25 1 b.com

Report No.: TCT180313E018

Page 24 of 25

