

FCC - TEST REPORT

Report Number	:	60.790.22.009.01R01	Date of Issue	: _	October 27, 2022
Model	:	QTM-EAP10			
Product Type	:	Quantum RTLS POE A	nchor		
Applicant	:	ZEROKEY INC.			
Address	:	3120 12TH ST NE, CAL	GARY AB T2E 8T3,	CA	NADA
Production Facility 1	:	ZEROKEY INC.			
Address	:	3120 12TH ST NE, CAL	GARY AB T2E 8T3,	CAI	NADA
Production Facility 2	:	DYNAMIC SOURCE MA	NUFACTURING IN	С	
Address	:	6285 76 AVE SE, UNIT 130	0, CALGARY ALBERT	ΤΑΤ	2C 5L9, CANADA
Test Result	:	nPositive	○ Negative		
Total pages including Appendices	:	45			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents2
2 Description of Equipment Under Test
3 Summary of Test Standards 4
4 Details about the Test Laboratory5
4.1 Test Equipment Site List6
4.2 Measurement System Uncertainty7
5 Summary of Test Results
6 General Remarks9
7 Test Setups10
7.1 Radiated test setups Below 1GHz10
7.2 Radiated test setups Above 1GHz10
7.3 AC Power Line Conducted Emission test setups11
7.4 Conducted RF test setups11
8 Emission Test Results
8.1 Spurious Radiated Emission12
8.2 Conducted Emission at AC Power line16
8.3 6dB & 99% Bandwidth18
8.4 Peak Output Power21
8.5 Spurious Emissions at Antenna Terminals24
8.6 100kHz Bandwidth of band edges
8.7 Power Spectral Density
8.8 Antenna Requirement
9 Test setup procedure
10 Appendix A - General Product Information

2 Description of Equipment Under Test **Description of the Equipment Under Test** Product: **Quantum RTLS POE Anchor** Model no.: QTM-EAP10 2AX6LQTMEAP10 FCC ID: Input: Rating: 56VDC, 30W (POE input) Or 56VDC, 30W (DC Jack input) Output: 56VDC (POE output) Operating mode: **Enhanced Shockburst** 2402-2480MHz (Tx and Rx) Frequency: Antenna Info.: Internal Antenna, PCB antenna, 3.2dBi gain. Number of operated channels: 79, 1MHz channel space GFSK Modulation: Remark: ---

Auxiliary Equipment and Software Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO./ SPEC.	REMARK
POE Injector (AC/DC Adapter)	Phihong Technology Co., Ltd	Model: POE29U-1AT(PL) Input: 100-240VAC 0.8A 50-60Hz Output: 56VDC 0.536A, 30W	/
DC Supply (AC/DC Adapter)	Phihong Technology Co., Ltd	Model: PSAC30U-560L6 Input: 100-240VAC 0.8A 50-60Hz Output: 56VDC 0.536A	/
Personal Computer	Lenovo (Beijing) Co., Ltd	ThinkPad X240	/

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
RF Test Mode Software	Windows Command	10.0.19044.2006	/

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-21 Edition Federal Communications Commission, PART 15 — Radio Frequency Devices, Subpart C —Intentional Radiators

All the test methods were according to KDB558074 D01 v05r02 DTS Measurement Guidance and ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name:

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13 Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests				
Test Item	Test Site			
FCC Part 15 Subpart C				
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	Site 1			
FCC Title 47 Part 15.207 Conduct Emission	Site 1			
FCC Title 47 Part 15.247(a)(1) 6dB & 99% Bandwidth	Site 1			
FCC Title 47 Part 15.247(b) Peak Output Power	Site 1			
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	Site 1			
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	Site 1			
FCC Title 47 Part 15.247(e) Power Spectral Density	Site 1			
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	Site 1			

4.1 Test Equipment Site List

Radiated Emission – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	101269	2023-5-27
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2023-7-12
Horn Antenna	Rohde & Schwarz	HF907	102294	2023-6-19
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2023-8-17
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2023-5-28
Attenuator	Mini-circuits	UNAT-6+	MY39264334	2023-5-27
3m Semi-anechoic chamber	TDK	SAC-3 #1		2023-5-28
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

Conducted Emission Test – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2023-5-27
LISN	Rohde & Schwarz	ENV4200	100249	2023-5-27
LISN	Rohde & Schwarz	ENV432	101318	2023-5-27
LISN	Rohde & Schwarz	ENV216	100326	2023-5-27
ISN	Rohde & Schwarz	ENY81	100177	2023-5-27
ISN	Rohde & Schwarz	ENY81-CA6	101664	2023-5-27
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2023-5-27
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2023-5-31
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2025-10-15

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals, 100kHz Bandwidth of band edges, Power Spectral Density – Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2023-5-27
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2023-5-27
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2023-5-27
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2023-5-27
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2023-5-27
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2023-5-27
Power Splitter	Weinschel	1580	SC319	2023-5-28
10dB Attenuator	Weinschel	4M-10	43152	2023-5-28
10dB Attenuator	R&S	DNF	DNF-001	2023-5-27
10dB Attenuator	R&S	DNF	DNF-002	2023-5-27
10dB Attenuator	R&S	DNF	DNF-003	2023-5-27
10dB Attenuator	R&S	DNF	DNF-004	2023-5-27
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty				
Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.66dB			
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 4.26dB; Vertical: 4.25dB;			
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 4.51dB; Vertical: 4.50dB;			
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.31dB			
Uncertainty for conducted power test	1.27dB			
Uncertainty for frequency test	0.6×10 ⁻⁷			

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Те	st Resu	ult
		Pass	Fail	N/A
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	12-15			
FCC Title 47 Part 15.207 Conduct Emission	16-17	\boxtimes		
FCC Title 47 Part 15.247(a)(2) 6dB & 99% Bandwidth	18-20	\square		
FCC Title 47 Part 15.247(b) Peak Output Power	21-23	\square		
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	24-29	\square		
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	30-31	\square		
FCC Title 47 Part 15.247(e) Power Spectral Density	32-34	\boxtimes		
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	35	\square		

6 General Remarks

Remarks

EUT can be powered by 56VDC from the POE port or DC jack. Pre-test was performed for both cases, results between them have no obvious deviation, so finally DC jack power was chosen to perform the full test.

This submittal(s) (test report) is intended for **FCC ID: 2AX6LQTMEAP10**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DTS grant.

The TX and RX range is 2402MHz-2480MHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were

- n Performed
- O Not Performed
- The Equipment Under Test
 - n Fulfills the general approval requirements.
 - O **Does not** fulfill the general approval requirements.

Sample Received Date: January 12, 2022

Testing Start Date:

January 25, 2022

Testing End Date:

February 28, 2022

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

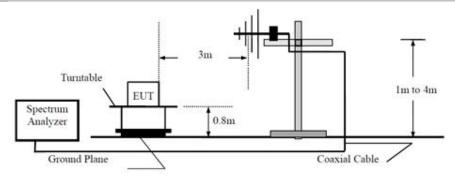
Reviewed by:

Prepared by:

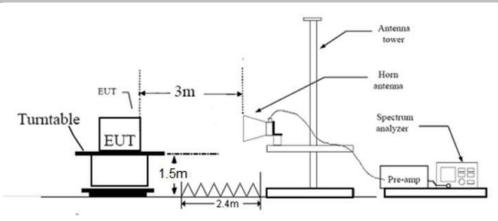
Tested by:

Eric LI EMC Project Manager

Hosea CHAN EMC Project Engineer

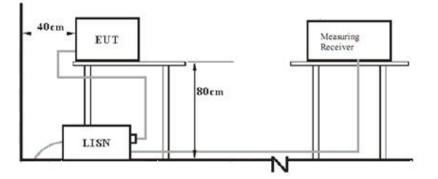

ourse Lin

Louise Liu EMC Test Engineer

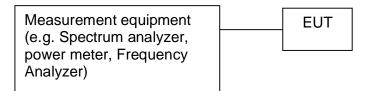


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

8 Emission Test Results

8.1 Spurious Radiated Emission

EU	T:	
Ор	Condition:	

Comment:

Remark:

Test Specification:

QTM-EAP10 Operated, TX Mode (Middle channel is the worst case) FCC15.205, 15.209 & 15.247(d) 56VDC Below 1GHz Test Result ⊠ Passed

Not Passed

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
47.763125	29.00	40.00	11.0	Peak	Н	20.55
98.385000	34.52	43.50	8.98	Peak	Н	19.00
101.840625	32.51	43.50	10.99	Peak	Н	19.31
151.553125	32.13	43.50	11.37	Peak	Н	15.55
215.694375	28.99	43.50	14.51	Peak	Н	19.00
310.390625	35.37	46.00	10.63	Peak	Н	21.89
45.701875	36.77	40.00	3.23	Quasi-Peak	V	20.77
47.763125	35.23	40.00	4.77	Quasi-Peak	V	20.55
151.492500	39.88	43.50	3.62	Quasi-Peak	V	15.54
207.146250	33.90	43.50	9.60	Peak	V	18.78
314.573750	36.71	46.00	9.29	Peak	V	21.87
465.590625	42.34	46.00	3.66	Peak	V	25.16

Remark:

1. As the measured peak value not exceeded the Quasi-peak limit, Quasi-peak value no need to be measured.

 Result Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

								_	
C	UT: Dp Condition: est Specification:	•	10 (Mode (2402MHz) 15.209 & 15.247(d)		Test Result ⊠ Passed □ Not Passed				
C	Comment:	56VDC						_	
F	Remark:	1GHz to 25	5GHz						
	Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.		
	MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)		
	1825.000000	39.94	74.00	34.06	Peak	Н	-5.80		

1825.000000	39.94	74.00	34.06	Peak	Н	-5.80
3326.000000	44.08	74.00	29.92	Peak	Н	-1.12
4804.000000	50.05	74.00	23.95	Peak	Н	2.81
5908.500000	48.50	74.00	25.50	Peak	Н	4.95
7206.500000	43.83	74.00	30.17	Peak	Н	7.33
1375.000000	38.67	74.00	35.33	Peak	V	-8.97
3345.500000	43.21	74.00	30.79	Peak	V	-1.19
5558.500000	48.29	74.00	25.71	Peak	V	4.36
7205.000000	48.24	74.00	25.76	Peak	V	7.33
16637.000000	47.82	74.00	26.18	Peak	V	19.16

Remark:

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.

 Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Spurious Radiated Emission

EUT:QTM-EAP10Op Condition:Operated, TX Mode (2440MHz)Test Specification:FCC15.205, 15.209 & 15.247(d)Comment:56VDCRemark:1GHz to 25GHz			[Test Resu	d	
Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1610.500000	37.93	74.00	36.07	Peak	Н	-8.51
3166.000000	44.19	74.00	29.81	Peak	Н	-0.78
4506.500000	46.70	74.00	27.30	Peak	Н	2.23
7319.500000	40.21	74.00	33.79	Peak	Н	7.48
9850.500000	44.06	74.00	29.94	Peak	Н	11.64
1284.500000	38.54	74.00	35.46	Peak	V	-8.41
4881.000000	46.56	74.00	27.44	Peak	V	3.32
5980.500000	48.94	74.00	25.06	Peak	V	5.12
7319.000000	43.51	74.00	30.49	Peak	V	7.48

Remark:

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.

 Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

Δnt

Spurious Radiated Emission

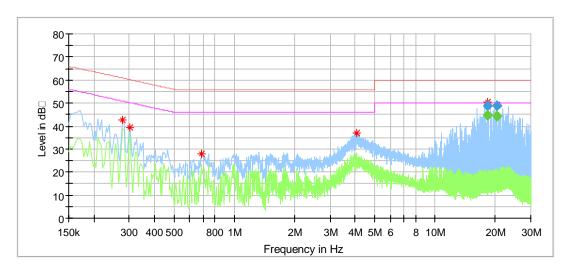
Op Condition: Operated, TX Mode (2480MHz) Seased	n: FCC15.205, 15.209 & 15.24 56VDC	Test Result
--	---------------------------------------	-------------

Frequency	Result	Limit	Margin	Detector	Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
1300.000000	37.17	74.00	36.83	Peak	Н	-8.39
1938.000000	40.36	74.00	33.64	Peak	Н	-4.77
4267.000000	46.64	74.00	27.36	Peak	Н	1.54
5826.000000	48.84	74.00	25.16	Peak	Н	4.85
7163.500000	40.51	74.00	33.49	Peak	Н	7.23
4533.500000	47.52	74.00	26.48	Peak	V	2.22
5905.000000	49.07	74.00	24.93	Peak	V	4.95
7687.500000	40.93	74.00	33.07	Peak	V	8.31
9790.000000	43.11	74.00	30.89	Peak	V	10.60

Remark:

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.

 Consequence Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

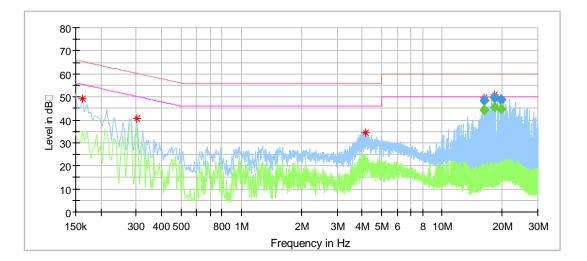


⊠ Passed

Not Passed

8.2 Conducted Emission at AC Power line

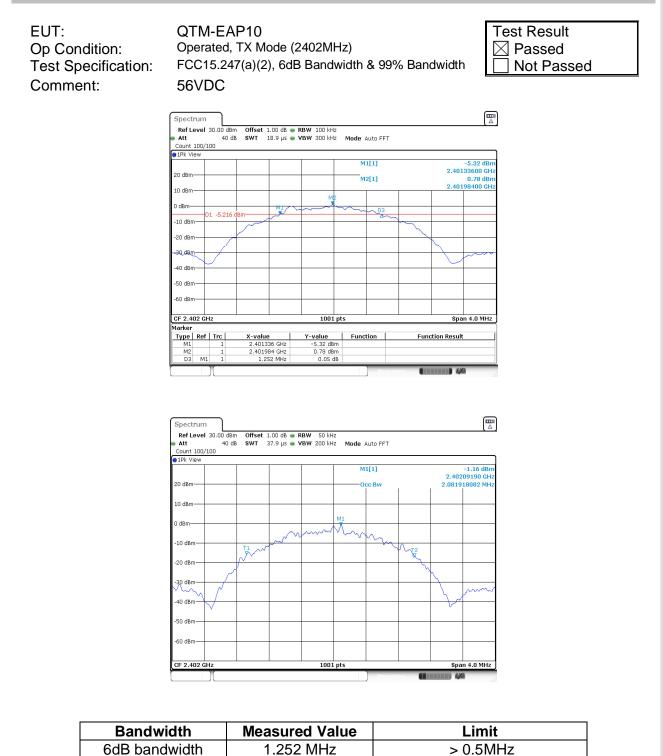
EUT: Op Condition: Test Specification: Comment: Remark: QTM-EAP10 Operated, TX Mode FCC15.207 AC mains, 120V AC, 60Hz, L line, Powered by DC supply This is the worst case of the two power supply modes


Frequency	MaxPeak	Average	Limit	Margin	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)
0.278000	42.54		60.88	18.34	9.22
0.302000	39.39		60.19	20.80	9.22
0.686000	27.73		56.00	28.27	9.20
4.094000	36.81		56.00	19.19	9.28
18.245500		44.83	50.00	5.17	9.43
18.245500	48.96		60.00	11.04	9.43
20.257500		44.37	50.00	5.63	9.47
20.257500	48.69		60.00	11.31	9.47

Conducted Emission Test

EUT: Op Condition: Test Specification: Comment: Remark: QTM-EAP10 Operated, TX Mode FCC15.207 AC mains, 120V AC, 60Hz, N Line, Powered by DC supply This is the worst case of the two power supply modes

Test Result ⊠ Passed ☐ Not Passed



Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Corr. (dB)
0.162000	49.09		65.36	16.27	9.41
0.302000	40.52		60.19	19.67	9.39
4.174000	34.46		56.00	21.54	9.47
16.229500		44.35	50.00	5.65	9.65
16.229500	48.52		60.00	11.48	9.65
18.241500		45.63	50.00	4.37	9.71
18.241500	49.64		60.00	10.36	9.71
19.709500		44.54	50.00	5.46	9.75
19.709500	48.74		60.00	11.26	9.75

8.3 6dB & 99% Bandwidth

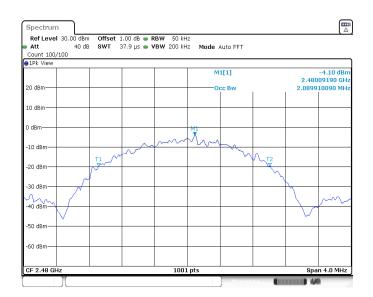
99% OCB

2.082 MHz

NA

6dB & 99% Bandwidth

Bandwidth	Measured Value	Limit
6dB bandwidth	1.252 MHz	> 0.5 MHz
99% OCB	2.086 MHz	NA


 \boxtimes Passed

Not Passed

6dB & 99% Bandwidth

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2480MHz) FCC15.247(a)(2), 6dB Bandwidth & 99% Bandwidth 56VDC

Spectr	um									
		30.00 di	Bm Offset	1.00 dB	RBW 100 kH;	,				
Att		40 40			VBW 300 kH;		Auto FF1	т		
Count 1	100/1					nouo	10100111			
1Pk Vie	ew.									
						M	1[1]			-8.36 dBn
20 dBm-									2.47	930400 GH;
20 asm-						M	2[1]			-2.35 dBn
10 dBm-									2.47	998400 GH
LO UDIII										
) dBm—					M	2				
5 GDIII				M1 /	m	m	D3			
10 dBm	D	1 -8.35	4 dBm				20			-
			~	-						
-20 dBm	-		1	_	_					
								×	5	
-30 dBm	-	-/-								1.00
	\neg	1								~~~ v
40 dBm	_	-								
-50 dBm										
SU UBIII										
-60 dBm										
00 0011										
CF 2.48	GHZ				1001	pts			Sp	an 4.0 MHz
1arker		-				1 =		-		
Type M1	Ref	Trc 1	X-val	ue 9304 GHz	<u>Y-value</u> -8.36 dBi	Func	tion	Fund	tion Resul	τ
M1 M2		1		9304 GHZ 9984 GHZ	-8.36 dBi -2.35 dBi					
D3	M1	1		1.32 MHz	-2.35 ubi					
							<u> </u>			

Bandwidth	Measured Value	Limit
6dB bandwidth	1.320 MHz	> 0.5 MHz
99% OCB	2.090 MHz	NA

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, 518052 Shenzhen, CHINA

8.4 Peak Output Power

Conducted Output Power	Limit
3.44 dBm	< 30dBm

⊠ Passed

Not Passed

Peak Output Power

EUT:
Op Condition:
Test Specification:
Comment:

QTM-EAP10 Operated, TX Mode (2440MHz) FCC15.247(b) 56VDC

		Mode A	uto Sweep			
		Ρ	41[1]		2.440	2.96 dB 264720 GI
		M1				
 		_				
	0001	nte			0	an 6.0 MH
		0 dB SWT 8 ms • VBW 5 MHz	0 dB SWT 8 ms • VBW 5 MHz Mode A	0 dB SWT 8 ms • VBW 5 MHz Mode Auto Sweep	0 dB SWT 8 ms • VBW 5 MHz Mode Auto Sweep	O dB SWT B ms VBW 5 MHz Mode Auto Sweep M1[1] 2.440 M1 4 M2 4 M2 4 M3 4 M3 4 M3 4 M3 4 M3 4 M3

Date: 28.JAN.2022 09:50:0	07
---------------------------	----

Conducted Output Power	Limit
2.96 dBm	< 30dBm

⊠ Passed

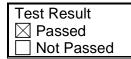
Not Passed

Peak Output Power

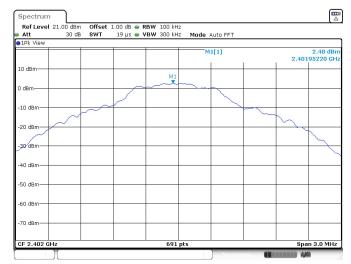
EUT:
Op Condition:
Test Specification:
Comment:

QTM-EAP10 Operated, TX Mode (2480MHz) FCC15.247(b) 56VDC

Att 40 dB SWT 1	ms - VBW 5 MHz	Mode Auto Sweep		
Count 100/100		Mode Auto Sweep		
1Pk View				
		M1[1]	0.4706	2.19 dB
0 dBm			 2.4790	73040 G
0 dBm				
	M1			
dBm			 	
10 dBm				
				/
20 dBm				
30 dBm				-
10 dBm				
50 dBm				
JU UDIII				
50 dBm				
F 2.48 GHz	800:	1 ptc	Pna	in 6.0 MH


Date:	28. JAN. 2022	09:58:22	
-------	---------------	----------	--

Conducted Output Power	Limit
2.19 dBm	< 30dBm



8.5 Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2402MHz) FCC2.1051 & 15.247(d) 56VDC

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2402	2402	2.48	2.48		PASS
2402	30~1000	2.48	-68.13	<=-17.52	PASS
2402	1000~26500	2.48	-24.36	<=-17.52	PASS

Date: 28.JAN.2022 09:48:32

⊠ Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2402MHz) FCC2.1051 & 15.247(d) 56VDC

1Pk Max									
					M	1[1]			-68.13 dB
) dBm									
10 dBm-									
20 dBm-	D1 -17.520	dBm							
30 dBm-									
40 dBm—									
50 dBm—									
60 dBm-									
00 00									M
79. dBM								and the second	July Head
	فتحر واستأول إخراصه واستريق	data	in the mathematica datase	e o anti-fair, o materials	and a survey state of a liter	discontration and a second	(her participanticipan	and share a loader have	Spectra Hards

Date: 28.JAN.2022 09:48:38

Ref Level Att	20.00 dBm 30 dB			RBW 100 kH /BW 300 kH					
Count 9/10	30 GB	31/1	200 IIIS 👹 🎙	NDW 300 KH	~ mode /	Auto Sweep			
∋1Pk Max									
					M	1[1]			24.36 di
10 dBm-								2.3	99950 G
0 dBm									
-10 d6m									
	01 -17.520	dBm							
-20 dBm-	JI -17.520	abiii							
-30 d6m									
-40 dBm									
10 00111									
-50 d8 m									
		بالمعادية ومتلقاته	. In al manua	فاستقرب المراجع	والمارج الرادي و	Allahat Annual	والريسين المتلحسين	meneral la	and a second
-69.9 99.9		e e e e e e e e e e e e e e e e e e e	a territoria di sedita di dia di	No. 645-046	the state of the s	Mary Mary A	ورود المحص	الماسط فيشقده	ويشقوه
Logon Schenwert	ALL ST. T.								
-70 dBm									
Start 1.0 G	17			3000	1 nts			Stor	26.5 GF

Date: 28.JAN.2022 09:48:46



Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2440MHz) FCC2.1051 & 15.247(d) 56VDC

Test Result
🛛 Passed
Not Passed

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2440	2440	2.34	2.34		PASS
2440	30~1000	2.34	-67.82	<=-17.66	PASS
2440	1000~26500	2.34	-52.28	<=-17.66	PASS

Date: 28.JAN.2022 09:50:18

 \boxtimes Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2440MHz) FCC2.1051 & 15.247(d) 56VDC

		-	M1[11		-67.82 dB
				-1	22	9.2480 MH
dBm						
10 dBm-		 				
20 dBm 01	-17.660 dBm-	 				
30 dBm		 				
40 dBm		 				
50 dBm		 				
60 dBm	N11					
	The second se	 	and go go a la service			

Date: 28.JAN.2022 09:50:24

Count 8/10)								
1Pk Max					м	1[1]			-52.28 di 525950 G
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -17.660	dBm							
-30 dBm									
-40 dBm									
-50 dBm					M1				
	AL ADD AND RATES OF	and the second second	Level holder	البرسية بالبريد إمار	and a second state of	an andrida da a a a	Adda Di Addaa	بريادوس الاطارار	للتوسيعقط
-60 c 144	and the property de	dittelle geneter	all and the particular second	Part of the Second	110111111			and a second second	The Real
-70 dBm									

Date: 28.JAN.2022 09:50:32

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 56VDC

Test Result
🛛 Passed
Not Passed

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2480	2480	1.19	1.19		PASS
2480	30~1000	1.19	-68.1	<=-18.81	PASS
2480	1000~26500	1.19	-52.16	<=-18.81	PASS

Date: 28.JAN.2022 09:58:42

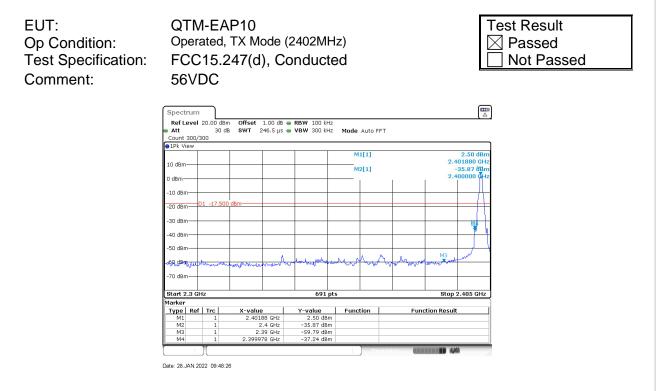
⊠ Passed

Not Passed

Spurious Emissions at Antenna Terminals

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2480MHz) FCC2.1051 & 15.247(d) 56VDC

1Pk Max									
					N	11[1]			-68.10 dB 2.0960 MI
) dBm						-			
-10 dBm									
-20 dBm	D1 -18.810	dBm							
-30 dBm									
40 dBm									
50 dBm—									
60 dBm—									
70 dBm		alla in suite	in a film bit days of	to build date	ndere andre deren	ntitud lakoemet	and the state of the	M1	
	a na state na state na st	مى بىرىمە ئەتلەر مەر مەر مەر	the second second second	(as double to be			and some standards	dis source de la com	and the state


Date: 28.JAN.2022 09:58:49

					M	1[1]			52.16 dB
10 dBm								15.9	28550 G
0 dBm									
-10 dBm									
-20 dBm	D1 -18.810	dBm							
-30 dBm									
-40 dBm									
-50 dBm					M1				
			ويتباد والمراجع	La constance and	and the start of the start of the	With the partition of	helledel bertheter	and the states of	مر بالالليك
-60.0	المصبقي إيد	and Manual	energia de sera de la composición de la Referencia de la composición de la comp			Maria Branasa			

Date: 28.JAN.2022 09:58:56

8.6 100kHz Bandwidth of band edges

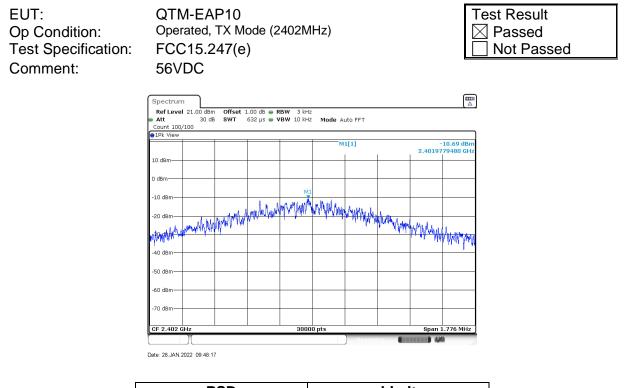
Band edges	Limit
38.37 dB	> 20dB

Passed

Not Passed

100kHz Bandwidth of band edges

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode (2480MHz) FCC15.247(d), Conducted 56VDC


Spectrur	n									
	20.00 dB		.00 dB 👄	RBW 100 kH	Iz					
Att	30 d	B SWT	1.1 ms 👄	VBW 300 kH	iz M	lode Auto	Sweep			
Count 300	/300									
1Pk View										
						M1[1]				1.12 dB
10 dBm									2.4	480010 GI
10 0011	M1					M2[1]				-51.89 dB
0 dBm	X				<u> </u>	<u> </u>			2.4	183500 GH
	14									
-10 dBm	111			-	-	-			-	
	15									
-20 dBm	D1 -18.88	U dBm								
	11									
-30 dBm										
-40 dBm	1									
-+0 0011										
-50 dBm 	M24				-					
antound	×.	mannen	M3 Martin Martin		may	the states		and a party		L
-60 dBm		- manual	a strategically	and the second second	ř	and the	and the start	Mayner Marth	on all and the provide states of the second	and south
-70 dBm										
Start 2.47	GHz			691	pts				Sto	p 2.55 GH
1arker										
Type Re	f Trc	X-value		Y-value		Function		Fun	ction Resul	t
M1	1	2.4800		1.12 d						
M2	1		5 GHz	-51.89 d			_			
M3	1		5 GHz	-57.52 d			_			
M4	1	2.48402	9 GHz	-53.53 d	3m					

Date: 28.JAN.2022 09:58:37

Band edges	Limit
53.01 dB	> 20dB

8.7 Power Spectral Density

PSD	Limit
-10.69 dBm/3kHz	< 8 dBm/3kHz

⊠ Passed

Not Passed

Power Spectral Density

EUT:
Op Condition:
Test Specification:
Comment:

QTM-EAP10 Operated, TX Mode (2440MHz) FCC15.247(e) 56VDC

Att :: Count 100/100	BO dB SWT	632 µs 👄 🖌	BW 10 kHz	Mode At	uto FFT			
1Pk View								
				M	1[1]			11.21 dB 06160 GF
10 dBm								
0 dBm								
-10 dBm			M	1				
		1 and 1	MANNA MA	MANNAM	Acres			
-20 dBm	J. J. Mahan M.	MMADANA	th in	<u> </u>	A MANAN	All she	lana -	1
Ido atta MAAAA	Wald Warmer Mill	8				er andered	MANNA.	A Han
(kaMbda ka.							1 4	nd Manu
-40 dBm								
-50 dBm								
00 0011								
-60 dBm								
-70 dBm								
-70 UBII								
CF 2.44 GHz			3000) pts			Span	1.76 MH

PSD	Limit
-11.21 dBm/3kHz	< 8 dBm/3kHz

⊠ Passed

Not Passed

Power Spectral Density

EUT:
Op Condition:
Test Specification:
Comment:

QTM-EAP10 Operated, TX Mode (2480MHz) FCC15.247(e) 56VDC

Att :: Count 100/100	30 dB SWT 6	32.1 μs 😑	VBW 10 KH	z Mode /	Auto FFT			
1Pk View				М	1[1]			11.13 dB 37380 GF
10 dBm								
0 dBm								
-10 dBm		20	and Maria	41 16				
-20 dBm	has has the	h phylip W	proving	(MA) AND	MANAMA	hall down th		
ngflafethy AMA haven	Mary M.	P .			1.55.4	an i mananana	Month Marth	Maria
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.48 GHz			3000	Ints			Snan 1	.728 MH:

PSD	Limit
-11.13 dBm/3kHz	< 8 dBm/3kHz

8.8 Antenna Requirement

EUT: Op Condition: Test Specification: Comment: QTM-EAP10 Operated, TX Mode FCC15.203 & 15.247(b) 56VDC

Test Result	
🛛 Passed	
Not Passed	

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is a pre-installed internal PCB antenna, and the maximum gain of this antenna is 3.2dBi. User is not able to open the shell to change the antenna as it is sealed with special screws. So EUT fulfill with 15.203 requirements.

9 Test setup procedure

9.1 Spurious Radiated Emission

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz a) RBW = 1MHz.

b) VBW $\setminus [3 \times RBW]$.

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] $\ RBW / 2$. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209.

 Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
 30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency MHz	QP Limit dBµV	AV Limit dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

9.3 6dB & 99% Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

9.4 Peak Output Power

Test Method

- 1. Connect the spectrum analyzer to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
For e.i r.p:			
	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤4	≤30

9.5 Spurious Emissions at Antenna Terminals

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.6 100kHz Bandwidth of band edges

Test Method

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.7 Power Spectral Density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm/3KHz]

≤8

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: 2AX6LQTMEAP10

According to FCC CFR 47 part1 §1.1310, Part 2 §2.1091, and KDB447498 D01 General RF Exposure Guidance v06, As specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)		
	(B) Limits for General Population/Uncontrolled Exposure					
0.3-1.34	614	1.63	*100	30		
1.34-30	824/f	2.19/f	*180/f ²	30		
30-300	27.5	0.073	0.2	30		
300-1,500			f/1500	30		
1,500-100,000			1.0	30		

MPE calculation method:

Pd = (P*G) / (4*Pi* R²), where Pd = power density in mW/cm² P = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416R= calculation distance in cm

- >> The limit of Power density in 2402-2480MHz band is 1 mW/cm²
- >> The antenna gain is 3.2dBi (=2.09 in linear scale). Manufacturer specified the separation distance is: 20cm The max. power (calculated power + tune up tolerance) of EUT in 2402-2483.5MHz band is: 2.21mW
- >> The calculated Pd for the EUT in 2402-2480MHz band is 0.00092mW/cm²
- >> So, the calculated Pd is smaller than the threshold of the limit. Therefore, the device is exempt from stand-alone SAR test requirements.

Appendix A

Calculated Data	
Maximum peak output power at antenna input terminal (dBm):	3.44
Maximum peak output power at antenna input terminal (mW):	2.21
Prediction distance (cm):	20
Maximum Antenna Gain, typical (dBi):	3.2
Maximum Antenna Gain (numeric):	2.09
The worst case is power density at predication frequency at 20 cm (mW/cm2):	0.00092

Reviewed by:

:

Eric LI EMC Project Manager

Prepared by:

Hosea CHAN EMC Project Engineer