No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | 600 | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | 1.7 | | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 18.7 % (k=2) | Certificate No: Z22-60089 Page 3 of 6 Report no.: 2250816R-HP-US-P01V04 Page: 104 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.0Ω+ 3.60jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.7dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.067 ns | |---|----------| | [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | | | SPEAG | | |-----------------------|-------------|---|-------|---| | The second second | | | 10 | | | | | 1 | ¥ | | | 8 9 | | | | | ificate No: Z22-60089 | Page 4 of 6 | the transfer of the | | | | | Report no.: 2250816R-HP-US-P01V04 Page: 105 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Date: 2022-04-01 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ S/m; $\varepsilon_r = 39.52$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 \$N7307; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 2021-05-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.3% Maximum value of SAR (measured) = 21.7 W/kg 0 dB = 21.7 W/kg = 13.36 dBW/kg Certificate No: Z22-60089 Page 5 of 6 Report no.: 2250816R-HP-US-P01V04 Page: 106 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z22-60089 Page 6 of 6 Report no.: 2250816R-HP-US-P01V04 Page: 107 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 Hua YuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client Dekra-CN Certificate No: Z22-60092 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1078 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 28, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No. J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 多 | | Reviewed by: | Lin Hao | SAR Test Engineer | and the | | Approved by: | Qi Dianyuan | SAR Project Leader | 25 | | | | Issue | d: April 3, 2022 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60092 Page 1 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 108 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60092 Page 2 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 109 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | AST system comiguration, as far as | | Supplement of | |------------------------------------|--|----------------------------------| | DASY Version | DASY52 | 52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.68 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL at 5250MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.0 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.6 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60092 Page 3 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 110 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Head TSL parameters at 5600MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5600MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 24.2 % (k=2) | # Head TSL parameters at 5750MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 5.23 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL at 5750MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.61 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 75.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | 4. | | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.3 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60092 Page 4 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 111 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250MHz | Impedance, transformed to feed point | 52.3Ω- 7.53jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.3dB | | #### Antenna Parameters with Head TSL at 5600MHz | Impedance, transformed to feed point | 58.3Ω- 4.34jΩ | |--------------------------------------|---------------| | Return Loss | - 21.3dB | #### Antenna Parameters with Head TSL at 5750MHz | Impedance, transformed to feed point | 53.5Ω- 0.83jΩ | |--------------------------------------|---------------| | Return Loss | - 29.2dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.106 ns | |----------------------------------|--| | | and the second s | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. # Additional EUT Data | Manufactured by | | SPEAG | | |--------------------------|-------------|-------|-----| | 排 性 | | | 50° | | ertificate No: Z22-60092 | Page 5 of 8 | | | | | | | | Report no.: 2250816R-HP-US-P01V04 Page: 112 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Date: 2022-03-28 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.684 S/m; ϵ_r = 35.26; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.062 S/m; ϵ_r = 34.65; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.225 S/m; ϵ_r = 34.49; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(5.69, 5.69, 5.69) @ 5250 MHz; ConvF(5.1, 5.1, 5.1) @ 5600 MHz; ConvF(5.05, 5.05, 5.05) @ 5750 MHz; Calibrated: 2021-05-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.33 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 18.6 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.45 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.2% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: Z22-60092 Page 6 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 113 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.47 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.8 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 60.9% Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.88 dBW/kg Certificate No: Z22-60092 Page 7 of 8 Report no.: 2250816R-HP-US-P01V04 Page: 114 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Report no.: 2250816R-HP-US-P01V04 Page: 115 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 # **Appendix E. DAE Calibration Data** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com 中国认可国际互认 在 在 CNAS 校准 CALIBRATION CNAS L0570 | | THE RESERVE OF THE PROPERTY | Gertifica | te No: Z22-60093 | |--|--|---|--| | CALIBRATION | N CERTIFICAT | E | | | Object | DAE4 - | SN: 1220 | | | Calibration Procedure | (s) | 000 04 | | | | FF-Z11-
Calibrat
(DAEx) | ion Procedure for the Data Acqu | uisition Electronics | | Calibration date: | March 2 | 24, 2022 | | | measurements(SI). The pages and are part of the pages and are part of the pages and are part of the pages and are are pages and are pages and are pages and are pages and are page | e measurements and t
the certificate. | raceability to national standards, whe uncertainties with confidence prome closed laboratory facility: environments | obability are given on the followin | | | | r calibration) | | | | | Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Primary Standards Process Calibrator 753 | ID# Cal | | Scheduled Calibration Jun-22 | | Primary Standards | ID# Cal | Date(Calibrated by, Certificate No.) 15-Jun-21 (CTTL, No.J21X04465) | Jun-22 | | Primary Standards Process Calibrator 753 | ID# Cal | Date(Calibrated by, Certificate No.) | 8 10 10 10 10 10 10 10 10 10 10 10 10 10 | | Primary Standards Process Calibrator 753 Calibrated by: | ID# Cal | Date(Calibrated by, Certificate No.) 15-Jun-21 (CTTL, No.J21X04465) Function | Jun-22 | | Primary Standards | ID# Call 3 1971018 1 Name Yu Zongying | Date(Calibrated by, Certificate No.) 15-Jun-21 (CTTL, No.J21X04465) Function SAR Test Engineer | Jun-22 | Certificate No: Z22-60093 Page 1 of 3 Report no.: 2250816R-HP-US-P01V04 Page: 116 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60093 Page 2 of 3 Report no.: 2250816R-HP-US-P01V04 Page: 117 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & \mbox{-100...} + 300 \mbox{ mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & \mbox{-1.....} + 3m\mbox{V} \\ \mbox{DASY measurement parameters:} \mbox{Auto Zero Time: 3 sec; Measuring time: 3 sec} \end{array}$ | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.230 ± 0.15% (k=2) | 404.947 ± 0.15% (k=2) | 404.181 ± 0.15% (k=2) | | Low Range | 3.97741 ± 0.7% (k=2) | 3.99459 ± 0.7% (k=2) | 3.98572 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | | 177.5° ± 1 ° | |---|-----|--------------| | Connector Angle to be used in DAST System | 5 5 | 1/7.5° ± 1° | Certificate No: Z22-60093 Page 3 of 3 Report no.: 2250816R-HP-US-P01V04 Page: 118 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Dekra-CN Certificate No: DAE4-1220 Mar23 Accreditation No.: SCS 0108 | GALIBITATION | CERTIFICATE | | | |---|--|--|---| | Object | DAE4 - SD 000 D | 04 BM - SN: 1220 | | | Calibration procedure(s) | QA CAL-06.v30
Calibration proces | lure for the data acquisition elect | ronics (DAE) | | | | | | | Calibration date: | March 20, 2023 | | | | This calibration certificate docum | ents the traceability to nation | nal standards, which realize the physical unit | s of measurements (SI). | | | | bability are given on the following pages and | | | All calibrations have been conduc | cted in the closed laboratory | facility: environment temperature (22 \pm 3) $^{\circ}$ C | and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Kaithlau Multimatar Tuna 2001 | SN: 0810278 | 29-Aug-22 (No:34389) | | | Keithley Multimeter Type 2001 | | , | Aug-23 | | Secondary Standards | ID# | Check Date (in house) | Aug-23 Scheduled Check | | | SE UWS 053 AA 1001 | | | | Secondary Standards Auto DAE Calibration Unit | SE UWS 053 AA 1001 | Check Date (in house) 27-Jan-23 (in house check) | Scheduled Check In house check: Jan-24 | | Secondary Standards Auto DAE Calibration Unit | SE UWS 053 AA 1001 | Check Date (in house) 27-Jan-23 (in house check) | Scheduled Check In house check: Jan-24 | | Secondary Standards Auto DAE Calibration Unit | SE UWS 053 AA 1001
SE UMS 006 AA 1002 | Check Date (in house) 27-Jan-23 (in house check) 27-Jan-23 (in house check) | Scheduled Check In house check: Jan-24 In house check: Jan-24 | | Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | SE UWS 053 AA 1001
SE UMS 006 AA 1002 | Check Date (in house) 27-Jan-23 (in house check) 27-Jan-23 (in house check) Function | Scheduled Check In house check: Jan-24 In house check: Jan-24 | Certificate No: DAE4-1220_Mar23 Page 1 of 5 Report no.: 2250816R-HP-US-P01V04 Page: 119 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1220_Mar23 Page 2 of 5 Report no.: 2250816R-HP-US-P01V04 Page: 120 of 123 No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.226 ± 0.02% (k=2) | 404.947 ± 0.02% (k=2) | 404.178 ± 0.02% (k=2) | | Low Range | 3.98026 ± 1.50% (k=2) | 3.99722 ± 1.50% (k=2) | 3.98896 ± 1.50% (k=2) | # **Connector Angle** | Connector Angle to be used in DASV system | 175.5 ° ± 1 ° | |---|---------------| | Connector Angle to be used in DASY system | 175.5 1 | Certificate No: DAE4-1220_Mar23 Page 3 of 5 Report no.: 2250816R-HP-US-P01V04 Page: 121 of 123