Page 151 of 227 Report No.: S21123100902001 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A # 3.2 <u>SENSITIVITY</u> The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. ## 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. # 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. # 3.1 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm step}$ along lines that are approximately normal to the surface: $$\mathrm{SAR}_{\mathrm{uncertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta \beta)}\right)}{\delta/2} \quad \mathrm{for} \ \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \ \mathrm{mm}$$ where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; △SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. Page 152 of 227 Report No.: S21123100902001 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). ## 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|--------------------------|-----------------------------|---------|----|-----------------------------| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Expanded uncertainty 95 % confidence level k = 2 | | | | | 14 % | ## 5 CALIBRATION MEASUREMENT RESULTS | Calibratio | n Parameters | |--------------------|--------------| | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 5.1 SENSITIVITY IN AIR | Normx dipole | | | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 0.72 | 0.66 | 0.77 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 107 | 110 | 110 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Page 153 of 227 Report No.: S21123100902001 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A Dipole 1 Dipole 2 Dipole 3 # 5.2 <u>LINEARITY</u> # Linearity 1.00 0.75 0.50 0.25 0.00 -0.25-0.50-0.75-1.00500 400 200 300 626 100 E-Field (V/m) Linearity:+/-1.90% (+/-0.08dB) Page 154 of 227 Report No.: S21123100902001 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A # 5.3 SENSITIVITY IN LIQUID | <u>Liquid</u> | Frequency
(MHz +/-
100MHz) | ConvF | |---------------|----------------------------------|-------| | HL750 | 750 | 1.49 | | HL850 | 835 | 1.50 | | HL900 | 900 | 1.61 | | HL1800 | 1800 | 1.73 | | HL1900 | 1900 | 1.91 | | HL2000 | 2000 | 1.97 | | HL2300 | 2300 | 1.92 | | HL2450 | 2450 | 1.98 | | HL2600 | 2600 | 1.87 | | HL3300 | 3300 | 1.79 | | HL3500 | 3500 | 1.85 | | HL3700 | 3700 | 1.79 | | HL3900 | 3900 | 2.07 | | HL4200 | 4200 | 2.21 | | HL4600 | 4600 | 2.25 | | HL4900 | 4900 | 2.05 | | HL5200 | 5200 | 1.80 | | HL5400 | 5400 | 2.05 | | HL5600 | 5600 | 2.16 | | HL5800 | 5800 | 2.07 | LOWER DETECTION LIMIT: 8mW/kg Page 155 of 227 Report No.: S21123100902001 # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A # 5.4 **ISOTROPY** # **HL1800 MHz** # COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A Report No.: S21123100902001 # LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------------|----------------------------|----------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | Flat Phantom | MVG | SNI_DOMOG_SAM/1/1 | Validated. No cal required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NΙΔ | | Validated. No cal
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal
required. | | Waveguide Transition | Mega Industries | 06977-158-13-701 | | Validated. No cal
required. | | Waveguide Termination | Mega Industries | 1 11647 /-158-13-/11 | Validated. No cal required. | Validated. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | Report No.: S21123100902001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.2.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 750 MHZ SERIAL NO.: SN 03/15 DIP0G750-355 ## Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 158 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21 MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JE | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | | | | | | 2021.03.0 | | | | | | 1 13:08:18 | | | | | | +01'00' | | | Customer Name | |---------------------|---------------| | | SHENZHEN NTEK | | District the second | TESTING | | Distribution: | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.2.21.MVGB.A # TABLE OF CONTENTS | I | Intro | duction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Prod | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation
measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 8 | List | of Equipment | | Ref: ACR.60.2.21.MVGB.A ## 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. # 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 750 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID750 | | | Serial Number | SN 03/15 DIP0G750-355 | | | Product Condition (new / used) | Used | | # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60.2.21 MVGB A Report No.: S21123100902001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------------|-------------------------------------| | 400 - 6000MHz | 0.08 LIN | # 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | | Page: 5/10 Page 162 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21 MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 750 | -23.80 | -20 | 56.4 Ω - 0.1 jΩ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | F 5 | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | 112 | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | 1 | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %, | i | 51.7 ±1 %. | 1.1 | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %, | 1- | 50.0 ±1 %. | 11 | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %, | | 38.5 ±1 %. | 110 | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | 11 1 | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | 11 - 12 | 3.6 ±1 %. | | Page: 6/10 Page 163 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | ## 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.8 sigma: 0.82 | | Distance between dipole center and liquid 15.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency 750750 MHz | | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ϵ_{r}) | | Conductivi | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | 41.8 | 0.89 ±10 % | 0.82 | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 164 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR.60.2.21 MVGB.A | 2100 | 39.8 ±10 % | 1.49 ±10 % | |------|------------|------------| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | 3500 | 37.9 ±10 % | 2.91 ±10 % | | | | | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|----------|-------------|----------|------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | 11 | | 450 | 4.58 | | 3.06 | | | 750 | 8,49 | 8.53 (0.85) | 5.55 | 5.56 (0.56 | | 835 | 9.56 | | 6,22 | | | 900 | 10,9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21,9 | 14 | | 2300 | 48.7 | | 23,3 | | | 2450 | 52.4 | | 24 | 1 | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | 7 | 25 | | Page 165 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.2.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test.
No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | Report No.: S21123100902001 # SAR Reference Dipole Calibration Report Ref: ACR.60.3.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 03/15 DIP0G835-347 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 168 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by: | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.0 1 13:09:12 +01'00' | | Customer Name | |---------------|---------------| | Distribution: | SHENZHEN NTEK | | | TESTING | | | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | Ref: ACR.60.3.21.MVGB.A # TABLE OF CONTENTS | Intro | oduction4 | | |-------|---|--| | Dev | ice Under Test | | | Proc | luct Description | | | 3.1 | General Information | 4 | | Mea | | | | 4.1 | Return Loss Requirements | 5 | | 4.2 | Mechanical Requirements | 5 | | Mea | | | | 5.1 | Return Loss | 5 | | 5.2 | | | | 5.3 | Validation Measurement | 5 | | Cali | bration Measurement Results | | | 6.1 | Return Loss and Impedance | 6 | | 6.2 | | | | Vali | | | | 7.1 | Measurement Condition | 7 | | 7.2 | | | | 7.3 | | | | List | | | | | Dev Process 3.1 Mea 4.1 4.2 Mea 5.1 5.2 5.3 Cali 6.1 6.2 Vali 7.1 7.2 7.3 | Measurement Method .5 4.1 Return Loss Requirements | Ref: ACR.60.3.21 MVGB.A # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. # 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------|----------------------------------|--|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | | Model | SID835 | | | | Serial Number | SN 03/15 DIP0G835-347 | | | | Product Condition (new / used) | Used | | | # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR.60.3.21.MVGB.A Report No.: S21123100902001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | ## 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | | Page: 5/10 Page 172 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21 MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ## 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 835 | -25.44 | -20 | 54.4 Q - 2.9 iC | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | quency MHz L r | | m h mm | | d r | nm | |---------------|----------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | 1 | 100.0 ±1 %. | F | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | I | 89.8 ±1 %. | E === | 3.6 ±1 %. | 1-1 | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | Yi i | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | 1 | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 Page 173 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | ## 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 40.6 sigma: 0.89 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835835 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε,') | Conductiv | ity (σ) S/m | |------------------|--------------|-----------------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | 40.6 | 0.90 ±10 % | 0.89 | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 174 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A | 2100 |
39.8 ±10 % | 1.49 ±10 % | |------|------------|------------| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | 3500 | 37.9 ±10 % | 2.91 ±10 % | | | | | ## MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|----------|-------------|----------|------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | ĵ | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.84 (0.98) | 6.22 | 6.22 (0.62 | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page 175 of 227 Report No.: S21123100902001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21 MVGB.A Report No.: S21123100902001 # SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.3.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | Report No.: S21123100902001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.5.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1800 MHZ SERIAL NO.: SN 03/15 DIP1G800-349 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 178 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.0 1 13:10:48 +01'00' | | Customer Name | |---------------|---------------| | | SHENZHEN NTEK | | Distribution: | TESTING | | | TECHNOLOGY | | | CO., LTD. | | lifications | Modificat | Date | Name | Issue | |-------------|-----------------|----------|------------|-------| | | Initial release | 3/1/2021 | Jérôme Luc | A | = 1 | Ref: ACR.60.5.21.MVGB.A Report No.: S21123100902001 # TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ce Under Test | | | 3 | Prod | uct Description | | | | 3.1 | General Information | 4 | | 4 | | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | 8 | | 8 | List | of Equipment | | Ref. ACR.60.5.21.MVGB.A ## 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--|-----------------------|--| | Device Type COMOSAR 1800 MHz REFERENCE DIPOL | | | | Manufacturer | MVG | | | Model | SID1800 | | | Serial Number | SN 03/15 DIP1G800-349 | | | Product Condition (new / used) Used | | | # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR.60.5.21 MVGB.A Report No.: S21123100902001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------------|-------------------------------------|--| | 400 - 6000MHz | 0.08 LIN | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | # 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | | Page: 5/10 Page 182 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1800 | -28.85 | -20 | $47.9 \Omega + 2.9 j\Omega$ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Lmm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | 11 | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | 1 | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | 11 | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | 11 = 1 | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | 117 | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | 11 | 45.7 ±1 %. | 11 | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %, | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | - | 3.6 ±1 %. | - Y | | 1900 | 68.0 ±1 %, | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | 11 | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1
%. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 Page 183 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | ## 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.7 sigma: 1.34 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 18001800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | 43.7 | 1.40 ±10 % | 1.34 | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 184 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21 MVGB.A | 2100 | 39.8 ±10 % | 1.49 ±10 % | |------|------------|------------| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | 3500 | 37.9 ±10 % | 2.91 ±10 % | ## 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|----------|--------------|-------------------|--------------| | | required | measured | required | measured | | 300 | 2,85 | | 1.94 | | | 450 | 4.58 | | 3.06 | 11. | | 750 | 8.49 | | 5.55 | H = | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | 37.96 (3.80) | 20.1 | 19.81 (1.98) | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | 112 | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page 185 of 227 Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21 MVGB.A Report No.: S21123100902001 ## SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.5.21.MVGB.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN-13/09-SAM68 | | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | | Report No.: S21123100902001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.6.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 1900 MHZ SERIAL NO.: SN 03/15 DIP1G900-350 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 188 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.0 1 13:11:42 +01'00' | | Customer Name | | | |----------------|---------------|--|--| | Distribution : | SHENZHEN NTEK | | | | | TESTING | | | | | TECHNOLOGY | | | | | CO., LTD. | | | | ssue | Name | Date | Modifications | |------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | - 1 | | | | | | | | | | | | 4. | | | | Ref: ACR.60.6.21.MVGB.A Report No.: S21123100902001 #### TABLE OF CONTENTS | I | Intro | oduction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Proc | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | 8 | | 8 | List | of Equipment | | Ref: ACR.60.6.21 MVGB.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | Device Under Test | | | | | |---|-----------------------|--|--|--| | Device Type COMOSAR 1900 MHz REFERENCE DIPOLE | | | | | | Manufacturer | MVG | | | | | Model | SID1900 | | | | | Serial Number | SN 03/15 DIP1G900-350 | | | | | Product Condition (new / used) | Used | | | | ## 3 PRODUCT DESCRIPTION ## 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60.6.21 MVGB A Report No.: S21123100902001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical
components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ## 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.08 LIN | | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | | | Page: 5/10 Page 192 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21 MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ### CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 1900 | -24.79 | -20 | $50.8 \Omega + 5.7 i\Omega$ | ## 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h m | im | d r | nm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | J | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | III. | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | 11 | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | 1-6 | | 1450 | 89.1 ±1 %, | 1 | 51.7 ±1 %. | 1. | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | 1. | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | - + | 39.5 ±1 %. | 1.4 | 3.6 ±1 %. | 1 | | 1950 | 66.3 ±1 %, | | 38.5 ±1 %. | 111 | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %, | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/10 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | #### VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.3 sigma: 1.41 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 19001900 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | ## 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | | Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | 43.3 | 1.40 ±10 % | 1.41 | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 194 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21 MVGB.A | 2100 | 39.8 ±10 % | 1.49 ±10 % | |------|------------|------------| | 2300 | 39.5 ±10 % | 1.67 ±10 % | | 2450 | 39.2 ±10 % | 1.80 ±10 % | | 2600 | 39.0 ±10 % | 1.96 ±10 % | | 3000 | 38.5 ±10 % | 2.40 ±10 % | | 3500 | 37.9 ±10 % | 2.91 ±10 % | ### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2,85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8,49 | | 5,55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6,99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 40.37 (4.04) | 20.5 | 20.48 (2.05) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21,9 | | | 2300 | 48.7 | | 23,3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | - | | 3500 | 67.1 | | 25 | | Page 195 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21 MVGB.A Certificate #4298.01 Page 196 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.6.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | Report No.: S21123100902001 # **SAR Reference Dipole Calibration Report** Ref: ACR.60.8.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP2G450-352 ## Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 198 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | Name | Function | Date | Signature | |--------------|--------------------------|--|---| | Jérôme LUC | Technical Manager | 3/1/2021 | JES | | Jérôme LUC | Technical Manager | 3/1/2021 | Jes | | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | | | Jérôme LUC
Jérôme LUC | Jérôme LUC Technical Manager Jérôme LUC Technical Manager | Jérôme LUC
Technical Manager 3/1/2021 Jérôme LUC Technical Manager 3/1/2021 | 13:13:40 +01'00' | | Customer Name | |----------------|---------------| | Distribution : | SHENZHEN NTEK | | | TESTING | | | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|----------------|----------|-----------------| | A | Jérôme LE GALL | 3/1/2021 | Initial release | | | | | | | | | | | | | 11 | | | Ref: ACR.60.8.21.MVGB.A ## TABLE OF CONTENTS | l | Intro | duction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Prod | luct Description | | | | 3.1 | General Information | 4 | | 1 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements_ | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement_ | 5 | | 5 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | | | 7 | Vali | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | | | | 7.3 | Measurement Result | | | 3 | List | of Equipment | | Ref: ACR.60.8.21.MVGB.A ### INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID2450 | | | Serial Number | SN 03/15 DIP2G450-352 | | | Product Condition (new / used) | Used | | #### 3 PRODUCT DESCRIPTION #### GENERAL INFORMATION 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 8 21 MVGB A Report No.: S21123100902001 #### MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ## 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| |-------------|----------------------| Page: 5/10 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ### CALIBRATION MEASUREMENT RESULTS ## 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2450 | -23.18 | -20 | 56.3 Ω - 2.9 ίΩ | ### 6.2 MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h mm | | d r | mm | |---------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | 11 | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %, | | 51.7 ±1 %. | 1 - | 3.6 ±1 %. | 1 | | 1500 | 80.5 ±1 %, | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %, | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | 1.4 | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %, | | 38.5 ±1 %. | 110 | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | 110 | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | 1911 | 3.6 ±1 %. | 179.0 | Page: 6/10 Page 203 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.9 sigma: 1.88 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 24502450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | ### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ε _r ') | | ity (σ) S/m | |------------------|--------------|--|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 204 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21 MVGB.A | | 39.8 ±10 % | | 1.49 ±10 % | | |---|------------|------|------------|------| | | 39.5 ±10 % | | 1.67 ±10 % | | | | 39.2 ±10 % | 41.9 | 1.80 ±10 % | 1.88 | | | 39.0 ±10 % | - | 1.96 ±10 % | | | | 38.5 ±10 % | | 2.40 ±10 % | | | | 37.9 ±10 % | | 2.91 ±10 % | | | _ | | | | | ## 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|----------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2,85 | | 1.94 | | | 450 | 4.58 | | 3.06 | 110 | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | 114 | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21,9 | | | 2300 | 48.7 | | 23,3 | | | 2450 | 52.4 | 53.69 (5.37) | 24 | 23.94 (2.39) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | J. T | | 3500 | 67.1 | | 25 | | Page 205 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21 MVGB.A Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT
Ref: ACR.60.8.21.MVGB.A ## LIST OF EQUIPMENT | | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | Report No.: S21123100902001 # SAR Reference Dipole Calibration Report Ref: ACR.60.9.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2600 MHZ SERIAL NO.: SN 03/15 DIP2G600-356 ### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 208 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21 MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | | | | | | 2021.03.0 | 13:14:51 +01'00' | | Customer Name | | | |---------------|---------------|--|--| | Distribution: | SHENZHEN NTEK | | | | | TESTING | | | | | TECHNOLOGY | | | | | CO., LTD. | | | | Name | Date | Modifications | |------------|--|---| | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | The second secon | T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Ref: ACR.60.9.21.MVGB.A ## TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|-----------------------------|---| | 2 | Dev | rice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | 8 | | 8 | List | of Equipment | | Ref: ACR.60.9.21.MVGB.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |--|---------|--|--|--| | Device Type COMOSAR 2600 MHz REFERENCE DIPOL | | | | | | Manufacturer | MVG | | | | | Model | SID2600 | | | | | Serial Number SN 03/15 DIP2G600-356 | | | | | | Product Condition (new / used) Used | | | | | ## 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR.60.9.21.MVGB.A Report No.: S21123100902001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | #### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume Expanded Uncertainty | |----------------------------------| |----------------------------------| Page: 5/10 Page 212 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ### CALIBRATION MEASUREMENT RESULTS #### RETURN LOSS AND IMPEDANCE 6.1 | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------| | 2600 | -21.15 | -20 | 52.7 Ω - 8.3 jΩ | ## 6.2 MECHANICAL DIMENSIONS | Frequency MHz L mm | | nm | h mm | | d mm | | |--------------------|-------------|----------|-------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1
%. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | _ | | 835 | 161.0 ±1 %. | | 89.8 ±1 %, | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | 11 | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %, | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %, | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %, | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | - | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %, | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | 5 | Page: 6/10 Page 213 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT | Ref: ACR.60.9.21.MVGB.A | |-------------------------| | | | 2600 | 48.5 ±1 %. | - | 28.8 ±1 %. | - | 3.6 ±1 %. | - | |------|------------|---|------------|---|-----------|---| | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | ### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.5 sigma: 2.03 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 26002600 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | #### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Page 214 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21 MVGB.A | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | |------|------------|------|------------|------| | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | 41.5 | 1.96 ±10 % | 2.03 | | 3000 | 38,5 ±10 % | | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | ## MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power, In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR | (W/kg/W) | 10 g SAR | (W/kg/W) | |------------------|----------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2,85 | | 1,94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16,8 | | | 1640 | 34.2 | | 18,4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55,3 | 55.83 (5.58) | 24.6 | 24.19 (2.42) | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page 215 of 227 Report No.: S21123100902001 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A Certificate #4298.01 Page 216 of 227 Report No.: S21123100902001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.9.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | # **SAR Reference Waveguide Calibration Report** Ref: ACR.60.10.21.MVGB.A Report No.: S21123100902001 # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA SATIMO COMOSAR REFERENCE WAVEGUIDE > FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA33 ## Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr #### Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page 218 of 227 Report No.: S21123100902001 ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by : | Jérôme Luc | Technical Manager | 3/1/2021 | JES | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | 2021.03.0 1 13:15:44 +01'00' | | Customer Name | |----------------|---------------| | Distribution : | SHENZHEN NTEK | | | TESTING | | | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | 1.00 | | 11 | | | | | | | | | | | Ref: ACR.60.10.21.MVGB.A #### TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|-----------------------------|---| | 2 | Dev | ice Under Test | | | 3 | Prod | luct Description | | | | 3.1 | General Information | 4 | | | | surement Method | | | | 4.1 | Return Loss Requirements | 4 | | | 4.2 | Mechanical Requirements | | | | | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 5 | Cali | bration Measurement Results | | | | 6.1 | Return Loss | 5 | | | 6.2 | Mechanical Dimensions | | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | Measurement Result | 8 | | | | of Equipment11 | | Ref: ACR.60.10.21.MVGB.A Report No.: S21123100902001 ### INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | | Device Under Test | |--------------------------------|---| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | Manufacturer | MVG | | Model | SWG5500 | | Serial Number | SN 13/14 WGA33 | | Product Condition (new / used) | Used | #### PRODUCT DESCRIPTION 3 #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. #### MEASUREMENT METHOD The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The waveguide used for SAR system
validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.2 MECHANICAL REQUIREMENTS The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. A direct method is used with a ISO17025 calibrated caliper. Ref: ACR.60.10.21.MVGB.A #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.08 LIN | | ### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 <u>RETURN LOSS</u> Page: 5/11 Ref: ACR.60.10.21.MVGB.A | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -9.15 | -8 | $21.17 \Omega + 13.26 j\Omega$ | | 5400 | -13.75 | -8 | $68.57 \Omega + 6.68 j\Omega$ | | 5600 | -16.65 | -8 | 35.76 Ω - 2.15 jΩ | | 5800 | -14.30 | -8 | $54.74 \Omega + 18.27 j\Omega$ | ## 6.2 MECHANICAL DIMENSIONS | Frequency L (mm) | | W (mm) | | Lf (mm) | | Wf (mm) | | | |------------------|--------------|----------|--------------|----------|--------------|----------|--------------|----------| | (MHz) | Required | Measured | Required | Measured | Required | Measured | Required | Measured | | 5800 | 40.39 ± 0.13 | | 20.19 ± 0.13 | - | 81.03 ± 0.13 | 1 18 | 61.98 ± 0.13 | 3 | Figure 1: Validation Waveguide Dimensions #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. Page 223 of 227 Report No.: S21123100902001 #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A #### Measurement Condition | Software | OPENSAR V5 | | | | |--|--|--|--|--| | Phantom | SN 13/09 SAM68 | | | | | Probe | SN 41/18 EPGO333 | | | | | Liquid | Head Liquid Values 5200 MHz: eps':34.06 sigma: 4.70
Head Liquid Values 5400 MHz: eps':33.39 sigma: 4.91
Head Liquid Values 5600 MHz: eps':32.77 sigma: 5.13
Head Liquid Values 5800 MHz: eps':32.40 sigma: 5.34 | | | | | Distance between dipole waveguide and liquid | 0 mm | | | | | Area scan resolution | dx=8mm/dy=8mm | | | | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | | | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | | | | Input power | 20 dBm | | | | | Liquid Temperature | 20 +/- 1 °C | | | | | Lab Temperature | 20 +/- 1 °C | | | | | Lab Humidity | 30-70 % | | | | Page 224 of 227 Report No.: S21123100902001 #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A ### 7.1 HEAD LIQUID MEASUREMENT | Relative peri | mittivity (ε _r ') | Conductivity (σ) S/m | | | |---------------|--|---|--|--| | required | measured | required | measured | | | 36.2 ±10 % | | 4.45 ±10 % | | | | 36.1 ±10 % | | 4.56 ±10 % | | | | 36.0 ±10 % | 34.06 | 4.66 ±10 % | 4.70 | | | 35.9 ±10 % | | 4.76 ±10 % | | | | 35.8 ±10 % | 33.39 | 4.86 ±10 % | 4.91 | | | 35.6 ±10 % | | 4.97 ±10 % | | | | 35.5 ±10 % | 32.77 | 5.07 ±10 % | 5.13 | | | 35.4 ±10 % | | 5.17 ±10 % | | | | 35.3 ±10 % | 32.40 | 5.27 ±10 % | 5.34 | | | 35.2 ±10 % | | 5.38 ±10 % | | | | 35.1 ±10 % | | 5.48 ±10 % | | | | | required 36.2 ±10 % 36.1 ±10 % 36.0 ±10 % 35.9 ±10 % 35.8 ±10 % 35.5 ±10 % 35.4 ±10 % 35.3 ±10 % 35.2 ±10 % | 36.2 ±10 % 36.1 ±10 % 36.0 ±10 % 35.9 ±10 % 35.8 ±10 % 35.5 ±10 % 35.5 ±10 % 35.3 ±10 % 35.3 ±10 % 35.2 ±10 % | required measured required 36.2 ±10 % 4.45 ±10 % 36.1 ±10 % 4.56 ±10 % 36.0 ±10 % 34.06 4.66 ±10 % 35.9 ±10 % 4.76 ±10 % 35.8 ±10 % 33.39 4.86 ±10 % 35.6 ±10 % 4.97 ±10 % 35.5 ±10 % 32.77 5.07 ±10 % 35.4 ±10 % 5.17 ±10 % 35.3 ±10 % 32.40 5.27 ±10 % 35.2 ±10 % 5.38 ±10 % | | ## 7.2 MEASUREMENT RESULT At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by Satimo, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. | Frequency (MHz) | 1 g SA | R (W/kg) | 10 g SA | R (W/kg) | | | |-----------------|----------|----------------|----------|--------------|--|--| | | required | measured | required | measured | | | | 5200 | 159.00 | 162.34 (16.23) | 56.90 | 55.42 (5.54) | | | | 5400 | 166.40 | 168.48 (16.85) | 58.43 | 57.03 (5.70) | | | | 5600 | 173.80 | 174.92 (17.49) | 59.97 | 58.63 (5.86) | | | | 5800 | 181.20 | 178.89 (17.89) | 61.50 | 59.32 (5.93) | | | Report No.: S21123100902001 #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A ## SAR MEASUREMENT PLOTS @ 5400 MHz ## SAR MEASUREMENT PLOTS @ 5600 MHz Page: 9/11 Template ACR.DDD.N. FY.MVGB.ISSUE SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 226 of 227 Report No.: S21123100902001 #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A ## SAR MEASUREMENT PLOTS @ 5800 MHz Ref: ACR.60.10.21.MVGB.A ## 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | | Flat Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | | | Page: 11/11