

Choose certainty. Add value.

Report On

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS in accordance with FCC 47 CFR Part 24 and FCC 47 CFR Part 2 (PCS 1900)

COMMERCIAL-IN-CONFIDENCE

FCC ID: APYHRO00234

Document 75933606 Report 19 Issue 1

May 2016

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuv-sud.co.uk</u>

COMMERCIAL-IN-CONFIDENCE

REPORT ONFCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 /
B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 /
900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone
with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS in accordance
with FCC 47 CFR Part 24 and FCC 47 CFR Part 2 (PCS 1900)

Document 75933606 Report 19 Issue 1

May 2016

PREPARED FOR

Sharp Telecommunications of Europe Ltd Inspired Easthampstead Road Bracknell Berkshire RG12 1NS

PREPARED BY

Natalie Bennett Senior Administrator, Project Support

APPROVED BY

and

Simon Bennett Authorised Signatory

DATED

05 May 2016

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 24 and FCC 47 CFR Part 2. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

M Toubella

Desument 75000000 Desert

H Zuy

Document 75933606 Report 19 Issue 1

Page 1 of 48

COMMERCIAL-IN-CONFIDENCE

CONTENTS

Section

Page No

1	REPORT SUMMARY	. 3
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Brief Summary of Results Product Technical Description Product Information Test Conditions Deviations from the Standard Modification Record	.5 .6 .6 .6
2	TEST DETAILS	.7
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Spurious Emissions at Band Edge Maximum Conducted Output Power Frequency Stability Emission Limitations for Broadband PCS Equipment 26 dB Bandwidth Spurious Emissions at Antenna Terminals Modulation Characteristics	11 13 15 27 30
3	TEST EQUIPMENT USED	43
3.1 3.2	Test Equipment Used	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	47
4.1	Accreditation, Disclaimers and Copyright	48

SECTION 1

REPORT SUMMARY

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS In accordance with FCC 47 CFR Part 24 and FCC 47 CFR Part 2 (PCS 1900)

1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS to the requirements of FCC 47 CFR Part 24 and FCC 47 CFR Part 2.

Objective	To perform FCC Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.
Manufacturer	Sharp Corporation
Serial Number(s)	IMEI 004401115723286 IMEI 004401115723823
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 24 (2015) FCC 47 CFR Part 2 (2015)
Disposal Reference Number Date	Held Pending Disposal Not Applicable Not Applicable
Order Number Date	10749 15 February 2016
Start of Test	23 March 2016
Finish of Test	8 April 2016
Name of Engineer(s)	M Toubella M Russell T Guy
Related Document(s)	ANSI C63.4 (2014) ANSI TIA-603-D (2010)

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 24 and FCC 47 CFR Part 2 is shown below.

Section	Specificati	ion Clause	Test Description		Comments/Base Standard
Section	Part 24	Part 2		Result	Comments/Dase Standard
PCS 1900					
2.1	24.229 and 24.238	2.1051	Spurious Emissions at Band Edge	Pass	
2.2	24.232	2.1046	Maximum Conducted Output Power	Pass	
2.3	24.235	2.1055	Frequency Stability	Pass	
2.4	24.238	2.1053	Emission Limitations for Broadband PCS Equipment	Pass	
2.5	24.238	2.1049 (h)	26 dB Bandwidth	Pass	
2.6	24.238 (a)	2.1051	Spurious Emissions at Antenna Terminals	Pass	
2.7	-	2.1047 (d)	Modulation Characteristics	-	Customer Declaration

1.3 PRODUCT TECHNICAL DESCRIPTION

Refer to Model Description APYHRO00234 Rev 4.0 document.

1.4 **PRODUCT INFORMATION**

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS. A full technical description can be found in the manufacturer's documentation.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 4.0 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard were made during testing.

1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

SECTION 2

TEST DETAILS

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS In accordance with FCC 47 CFR Part 24 and FCC 47 CFR Part 2 (PCS 1900)

2.1 SPURIOUS EMISSIONS AT BAND EDGE

2.1.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.229 and 24.238 FCC 47 CFR Part 2, Clause 2.1051

2.1.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.1.3 Date of Test

31 March 2016

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

2.1.6 Environmental Conditions

Ambient Temperature21.0°CRelative Humidity33.6%

2.1.7 Test Results

4.0 V DC Supply

PCS 1900, Circuit-Switched (Voice), GMSK, Spurious Emissions at Band Edge Results

Dioak Edgo	Frequency	Block (MHz)
Block Edge A :1850 MHz – 1865 MHz C :1895 MHz		C :1895 MHz – 1910 MHz
Lower Channel: 512 - 1850.2 MHz -		-
Upper	-	Channel: 810 1909.8 MHz

PCS 1900, Circuit-Switched (Voice), GMSK, Frequency Block A, Spurious Emissions at Band Edge Plot

 Keylight Spectrum Ankyzer-Swept SA.
 Constraints
 Constraints

PCS 1900, Circuit-Switched (Voice), GMSK, Frequency Block C, Spurious Emissions at Band Edge Plot

FCC 47 CFR Part 24, Limit Clause 24.229 (a)

Mobile Transmitters:

Block A: 1850 to 1865 MHz paired with 1930 to 1945 MHz Block B: 1870 to 1885 MHz paired with 1950 to 1965 MHz

FCC 47 CFR Part 24, Limit Clause 24.238 (a)

43 + 10 log (P) dB or -13 dBm.

2.2 MAXIMUM CONDUCTED OUTPUT POWER

2.2.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.232 FCC 47 CFR Part 2, Clause 2.1046

2.2.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.2.3 Date of Test

23 March 2016

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, clause 5.2.3.

Remarks

The EUT could not be configured to transmit continuously therefore the power meter was gated so that the measurement was only performed over the active transmission burst.

The antenna gain was declared by the manufacturer as 2.0 dBi. EIRP was then calculated using the following formula:

EIRP = Pout (dBm) + ANT Gain (dBi)

2.2.6 Environmental Conditions

Ambient Temperature	23.3°C
Relative Humidity	25.6%

2.2.7 Test Results

4.0 V DC Supply

PCS 1900, Circuit-Switched (Voice), Maximum Peak Conducted Output Power Results

Frequency	Conducted Power (dBm)	Antenna Gain	EIRP (dBm)	EIRP (W)
1850.2 MHz	29.80	2.0 dBi	31.80	1.51
1880.0 MHz	29.56	2.0 dBi	31.56	1.43
1909.8 MHz	29.34	2.0 dBi	31.34	1.36

FCC 47 CFR Part 24, Limit Clause 24.232 (c)

Mobile and portable stations: 2 Watts.

2.3 FREQUENCY STABILITY

2.3.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.235 FCC 47 CFR Part 2, Clause 2.1055

2.3.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.3.3 Date of Test

8 April 2016

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Procedure

This test was performed in accordance with FCC 47 CFR Part 2, clause 2.1055.

Remarks

A radio communications test set frequency measurement function was used to measure the frequency error. The radio communications test set was configured for an uplink frequency of 1880.0 MHz and the frequency reference was set to an external 10MHz rubidium frequency standard.

2.3.6 Environmental Conditions

Ambient Temperature24.7 - 25.6°CRelative Humidity30.0 - 30.5%

2.3.7 Test Results

PCS 1900, 1880.0 MHz, Circuit-Switched (Voice), GMSK, Frequency Stability Under Temperature Variations Results

Temperature	Fundamental Measured Frequency (MHz)
-30 °C	0.032
-20 °C	0.035
-10 °C	0.031
0 °C	0.035
+10 °C	0.038
+20 °C	0.035
+30 °C	0.042
+40 °C	0.028
+50 °C	0.024

PCS 1900, 1880.0 MHz, Circuit-Switched (Voice), GMSK, Frequency Stability Under Voltage Variations Results

Voltage	Fundamental Measured Frequency (MHz)	
4.0 V DC	0.035	
3.7 V DC	0.022	

Remark

The measured frequency error over temperature and voltage extremes does not cause the fundamental emission to go outside the authorised frequency block.

FCC 47 CFR Part 24, Limit Clause 24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorised frequency block.

2.4 EMISSION LIMITATIONS FOR BROADBAND PCS EQUIPMENT

2.4.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.238 FCC 47 CFR Part 2, Clause 2.1053

2.4.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723823 - Modification State 0

2.4.3 Date of Test

2 April 2016

2.4.4 Test Equipment Used

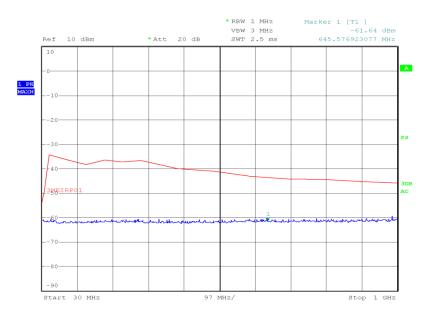
The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 5.8 and 7 and ANSI TIA-603-D, Clause 2.2.12. The EUT was configured as defined in ANSI C63.4.

2.4.6 Environmental Conditions

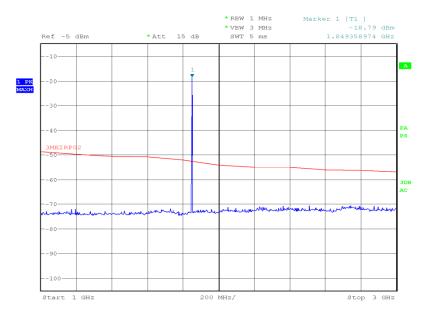
Ambient Temperature20.1°CRelative Humidity33.0%


2.4.7 Test Results

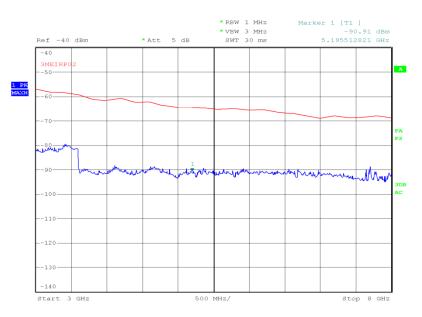
PCS 1900, 1850.2 MHz, 30 MHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Results

Frequency (MHz)	Emission Results (dBm)	
*		

*No emissions were detected within 10 dB of the limit.

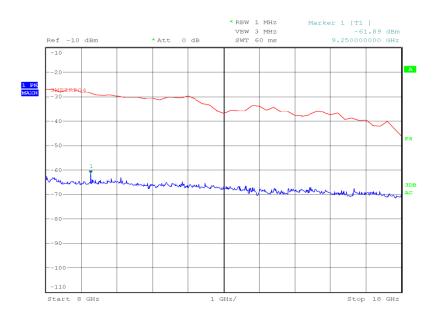

PCS 1900, 1850.2 MHz, 30 MHz to 1 GHz, Emission Limitations for Broadband PCS Equipment Results

Date: 1.APR.2016 21:02:17

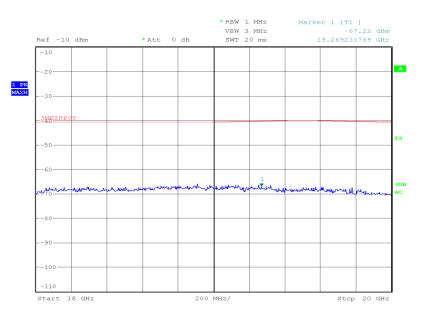


PCS 1900, 1850.2 MHz, 1 GHz to 3 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 01:12:18

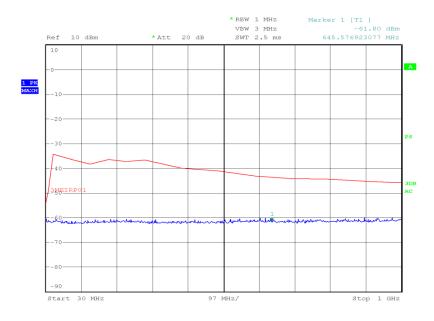

PCS 1900, 1850.2 MHz, 3 GHz to 8 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 01:34:43



PCS 1900, 1850.2 MHz, 8 GHz to 18 GHz, Emission Limitations for Broadband PCS Equipment Plot

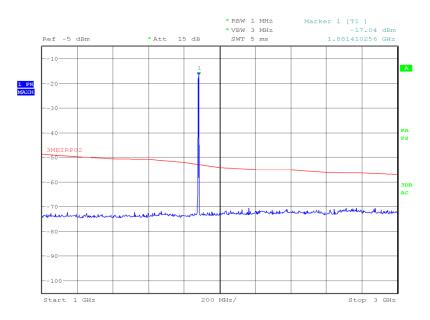
Date: 3.APR.2016 02:55:39


PCS 1900, 1850.2 MHz, 18 GHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 04:21:19

PCS 1900, 1880.0 MHz, 30 MHz to 1 GHz, Emission Limitations for Broadband PCS Equipment Results

Date: 1.APR.2016 20:57:31



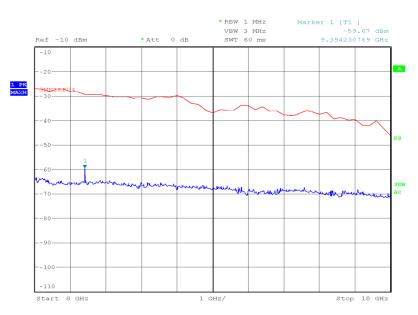
PCS 1900, 1880.0 MHz, 1 GHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Results

Frequency (MHz)	Emission Results (dBm)	
*		

*No emissions were detected within 10 dB of the limit.

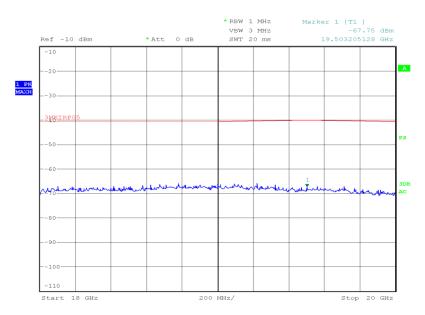
PCS 1900, 1880.0 MHz, 1 GHz to 3 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 01:09:38



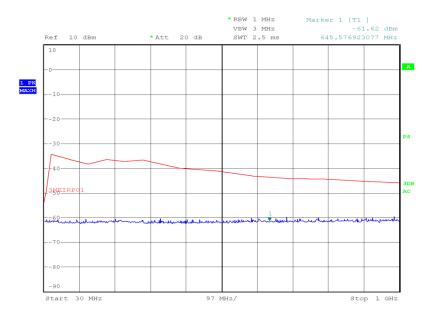
Plot *RBW 1 MHz Marker 1 [T1] -80.08 dBm 3.432692308 GHz *VBW 3 MHz SWT 30 ms Ref -40 dBm *Att 5 dB -40 3MEI RE -50 1 PK MAXH مسلمك - 9 0 myton allen por munufull mon many mark -100 -130 -140 500 MHz/ Stop 8 GHz Start 3 GHz

PCS 1900, 1880.0 MHz, 3 GHz to 8 GHz, Emission Limitations for Broadband PCS Equipment


Date: 3.APR.2016 01:31:34

PCS 1900, 1880.0 MHz, 8 GHz to 18 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 02:48:11

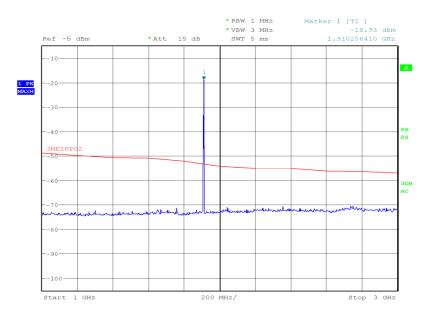


PCS 1900, 1880.0 MHz, 18 GHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 04:18:15

PCS 1900, 1909.8 MHz, 30 MHz to 1 GHz, Emission Limitations for Broadband PCS Equipment Results

Date: 1.APR.2016 21:07:10



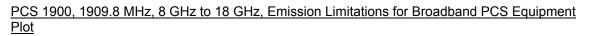
PCS 1900, 1909.8 MHz, 1 GHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Results

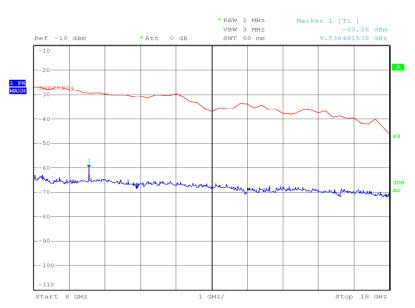
Frequency (MHz)	Emission Results (dBm)	
*		

*No emissions were detected within 10 dB of the limit.

PCS 1900, 1909.8 MHz, 1 GHz to 3 GHz, Emission Limitations for Broadband PCS Equipment Plot

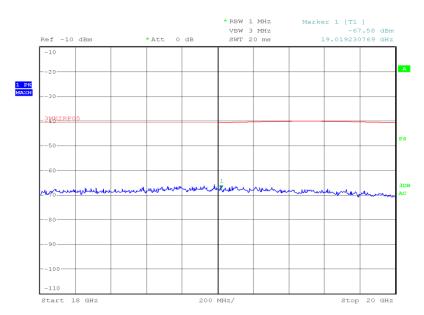
Date: 3.APR.2016 01:14:54


PCS 1900, 1909.8 MHz, 3 GHz to 8 GHz, Emission Limitations for Broadband PCS Equipment



* RBW 1 MHz Marker 1 [T1] -91.74 dBm 3.817307692 GHz *VBW 3 MHz SWT 30 ms Ref -40 dBm *Att 5 dB -40 3MEI RE -50-1 PK MAXH -Aller - 9 0 1 the MAA ym manyman well. man -100 -120 -130 -140 500 MHz/ Stop 8 GHz Start 3 GHz

Date: 3.APR.2016 01:25:16


Plot

Date: 3.APR.2016 02:58:27

PCS 1900, 1909.8 MHz, 18 GHz to 20 GHz, Emission Limitations for Broadband PCS Equipment Plot

Date: 3.APR.2016 04:23:22

FCC 47 CFR Part 24, Limit Clause 24.238 (a)

43 + 10 log (P) dB or -13 dBm.

2.5 26 dB BANDWIDTH

2.5.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.238 FCC 47 CFR Part 2, Clause 2.1049 (h)

2.5.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.5.3 Date of Test

1 April 2016

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 4.1.

2.5.6 Environmental Conditions

Ambient Temperature21.0°CRelative Humidity33.6%

2.5.7 Test Results

4.0 V DC Supply

PCS 1900, Circuit-Switched (Voice), 26 dB Bandwidth Results

1850.2 MHz	1880.0 MHz	1909.8 MHz
kHz	kHz	kHz
319.1	313.5	315.2

Keysight Spectrum Analyzer - Occupied BW			IGN AUTO		
ef Value 45.00 dBm	#IFGain:Low	Center Freq: 1.85020000	12:40:02 PM Mar 31, 2 Radio Std: None Radio Device: BTS		
dB/div Ref 45.00 dBm			_		
g .0		× dB BW -26.0 dBm			
.0		-20.0 upin			
0			m han		
0					
»ر س	North Contraction			v	
0 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm				Munner	
nter 1.85 GHz es BW 5.1 kHz		#VBW 16 kHz		Span 1 MI Sweep 36.67 n	
Occupied Bandwidth	1	Total Power	37.7 dBm		
2/	15.32 kHz				
24					
	-466 Hz	% of OBW Power	r 99.00 %		
Z- Transmit Freq Error x dB Bandwidth		% of OBW Power x dB	99.00 % -26.00 dB		
Transmit Freq Error	-466 Hz				
Transmit Freq Error	-466 Hz				


PCS 1900, 1850.2 MHz, Circuit-Switched (Voice), 26 dB Bandwidth Plot

	CORREC		SN AUTO	12:41:11 PM Mar 31, 20 Radio Std: None
enter Freq 1.880000000	GHZ #IFGain:Low	Center Freq: 1.880000000 Trig: Free Run #Atten: 40 dB	GHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
Def 45 00 dBm				
dB/div Ref 45.00 dBm				
5.0		×dB BW		
5.0		-26.0 dBm		
5.0		August and Market		
00			7~	
00			- <u>\</u>	
.0	wwwww		mon	
5.0	w			NA
10 has non month with the				monteres
5.0				
enter 1.88 GHz				Onon 4 Mil
Res BW 5.1 kHz		#VBW 16 kHz		Span 1 MH Sweep 36.67 n
Occupied Bandwidth		Total Power	36.5 dBm	
24	5.69 kHz			
Transmit Freq Error	-108 Hz	% of OBW Power	99.00 %	
x dB Bandwidth	313.5 kHz	x dB	-26.00 dB	

PCS 1900, 1880.0 MHz, Circuit-Switched (Voice), 26 dB Bandwidth Plot

PCS 1900, 1909.8 MHz, Circuit-Switched (Voice), 26 dB Bandwidth Plot

FCC 47 CFR Part 24, Limit Clause 24.238

The emission bandwidth is defined as the width of the signal between two points, one below the carrier centre frequency and one above the carrier centre frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

2.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

2.6.1 Specification Reference

FCC 47 CFR Part 24, Clause 24.238 (a) FCC 47 CFR Part 2, Clause 2.1051

2.6.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.6.3 Date of Test

31 March 2016

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

2.6.6 Environmental Conditions

Ambient Temperature21.0°CRelative Humidity33.6%

2.6.7 Test Results

4.0 V DC Supply

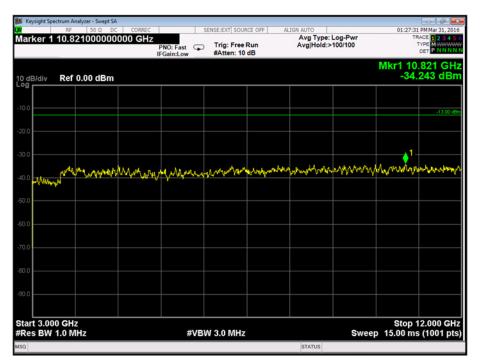
PCS 1900, 1850.2 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 10 dB of the limit.

PCS 1900, 1850.2 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot

Keysight Spectrum Analyzer - Swept SA				
		SENSE:EXT SOURCE OFF	ALIGN AUTO Avg Type: Log-Pwr	01:17:43 PM Mar 31, 201 TRACE 1 2 3 4 5
arker 1 835.001485000 MHz	PNO: Fast G	Trig: Free Run Atten: 6 dB	Avg Hold:>100/100	TYPE MWWWW DET P NNNN
Ref Offset 27.9 dB dB/div Ref 10.00 dBm				Mkr1 835.0 MH -55.974 dBr
g				
00				
				-13.00 dB
.0				
.0				
0.0				
.0				↓ 1
0.0 marty south and a state of the souther of the s	opportunity opportunity	montaneorganite	the second states and the se	wellentermentermenter
.0				
.0				
art 0.0 MHz	#\ /D			Stop 1.0000 GH
Res BW 100 kHz	#vB	W 300 kHz	Swe	ep 3.267 ms (1001 pts


Note: For 9 kHz to 1 GHz frequency range, the limit line is to be reduced to -23 dBm. A correction factor of 10 log (1000/100) was applied as only a 100 kHz bandwidth was used.

Keysight Sp	ectrum Analyzer - Swept									
		DC		SE	NSE:EXT SOUR	RCE OFF A	LIGN AUTO			8 PM Mar 31, 20
larker 1	1.852000000	000 GHz	PNO: Fast IFGain:Low	Ţ	Trig: Free #Atten: 20		Avg Type: Avg Hold:>			ACE 234 TYPE MWWW DET PNNN
0 dB/div	Ref Offset 27.9 Ref 36.00 dB	dB m							Mkr1 1 29.	.852 GH 946 dBi
^{og}					• ¹					
6.0										
6.0										
.00										
.00										
4.0				_						-13.00 d
4.0										
4.0	hundersonaliter	a a Mathadar	a later showing the	while	munue	writeculours	Nalmernar	and the second second	ntimum	malanterall
frait (10	Manager									
4.0										
4.0										
L	0 GHz								Stop	3.000 GH
	1.0 MHz		#	VBW	3.0 MHz			Sweep	1.333 ms	s (1001 pt
G							STATUS			

PCS 1900, 1850.2 MHz, 1 GHz to 3 GHz, Spurious Emissions at Antenna Terminals Plot

PCS 1900, 1850.2 MHz, 3 GHz to 12 GHz, Spurious Emissions at Antenna Terminals Plot

		NO: Fast 😱	Trig: Free		Avg Hold:>	100/100		YPE MWWW
	IF	Gain:Low	#Atten: 10	dB				
tef 0.00 dBm							-27.	549 dBi
								-13.00 d
ALL LAN AM	marker	MARINE A	h	a de a se	Mula	mentanon	munk	yhigh
and the she is the		ALC: NO.	or and a start and a straig of	ومروبه والمريحة والأسرية	Vww.			
							tef 0.00 dBm	

PCS 1900, 1850.2 MHz, 12 GHz to 20 GHz, Spurious Emissions at Antenna Terminals Plot

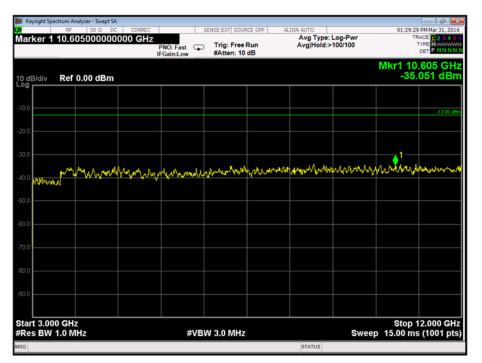
PCS 1900, 1880.0 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 10 dB of the limit.

PCS 1900, 1880.0 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot

Neysigin Jpr	ectrum Analyzer - Swept S RF 50 Ω D		1 1	SENSE:EXT SOUR		IGN AUTO		01:19:03	PM Mar 31, 201
arker 1	872.00115200		PNO: Fast G		Run	Avg Type: Avg Hold:>	Log-Pwr 100/100	TR/ T	ACE 12345 YPE MWWWW DET PNNNN
dB/div	Ref Offset 27.9 d Ref 10.00 dBr	B n						Mkr1 87 -55.1	72.0 MH 747 dBn
1.0									-13.00 d£
).0									
0.0									
1.0									
1.0								• • • • • • • • • • • • • • • • • • •	
1.0 manual	logong low mark home	الالالالي المروالي	and the second sec	hand make the	Anotherstown	all and the bally with	and the stand	whenter	the state of the second se
1.0									
1.0									
art 0.0 I								Stop 1	.0000 GH
tes BW	100 kHz		#VB	W 300 kHz			Swee	p 3.267 ms	(1001 pts
G						STATUS			


Note: For 9 kHz to 1 GHz frequency range, the limit line is to be reduced to -23 dBm. A correction factor of 10 log (1000/100) was applied as only a 100 kHz bandwidth was used.

	1.0 MHz		#VE	SW 3.0	MHz			Sweep	5.0p 1.333 ms	3.000 GH
tart 1.00									Stop	3.000 GH
4.0										
4.0										
4.0	الم الدواري المالية المعاديدين	dectorphoners	aderminiation	hours	with which	notrember	Angeles and the	millionsporald	and and and a second	hepan
4.0										
4.0										
.00										-13.00 d
~										
6.0										
6.0										
) dB/div	Ref 36.00 dB	m			1				29.	964 dB
	Ref Offset 27.9 d	íΒ	PGalli.Low	w cu					Mkr1 1	882 GH
arker 1	1.882000000		PNO: Fast G		: Free R en: 20 d		Avg Type: I Avg Hold:>	.og-Pwr 100/100		ACE 1 2 3 4 TYPE MWAAAAA DET P NNN
		C		SENSE:EX	T SOURC	E OFF AL	IGN AUTO			PM Mar 31, 20

PCS 1900, 1880.0 MHz, 1 GHz to 3 GHz, Spurious Emissions at Antenna Terminals Plot

PCS 1900, 1880.0 MHz, 3 GHz to 12 GHz, Spurious Emissions at Antenna Terminals Plot

tart 12.0 Res BW			#VB	W 3.0 MHz			Sween	Stop 2 13.33 ms	20.000 GH
0.0									
0.0									
0.0									
0.0									
0.0									
	makingar	and the second and a	mannen	ana yakara she	ester turburty	howwhenthe	vantuhone	Maren with the region	er an
0.0									الد و را
0.0									-13.00 (
g									
) dB/div	Ref 0.00 dBm		Guineon					Mkr1 19. -27.	.920 GH 384 dB
larker 1	19.92000000	0000 GHz	NO: Fast		Run	Avg Type: I Avg Hold:>		TR	ACE 1 2 3 4 TYPE M
	RF 50 Ω D	CORREC		SENSE:EXT SOUR		IGN AUTO		01:32:55	PM Mar 31, 20

PCS 1900, 1880.0 MHz, 12 GHz to 20 GHz, Spurious Emissions at Antenna Terminals Plot

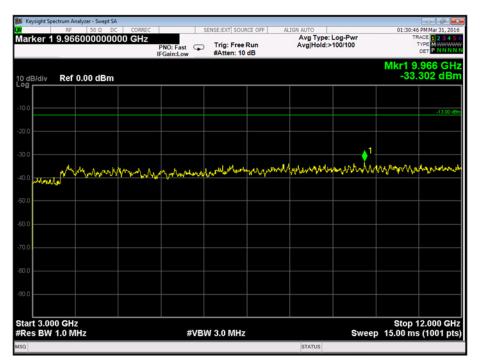
PCS 1900, 1909.8 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 10 dB of the limit.

PCS 1900, 1909.8 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot

	RF 50 Ω D			SENSE:EXT SOUR	RCE OFF AL	IGN AUTO			6 PM Mar 31, 201
arker 1	906.00084600	00 MHz	PNO: Fast G	⊃ Trig: Free Atten: 6 d		Avg Type: Avg Hold:>		т	RACE 1 2 3 4 5 TYPE M
dB/div	Ref Offset 27.9 d Ref 10.00 dBr	B						Mkr1 9 -56	06.0 MH .628 dBr
00									
.0									-13.00 df
.0									
.0									
.0									
.0									A 1
0 wante	hiddanamana	Howas	and Real And International	internation	montements	al and the second second second	المهمياس فالمكالمارمين	non-baharan	when when
.0									
art 0.0 I	MHz 100 kHz		#VE	3W 300 kHz			Swee	Stop p 3.267 m	1.0000 GH
						STATUS	once		- (noon pu


Note: For 9 kHz to 1 GHz frequency range, the limit line is to be reduced to -23 dBm. A correction factor of 10 log (1000/100) was applied as only a 100 kHz bandwidth was used.

tart 1.00 Res BW	0 GHz 1.0 MHz		#VB	W 3.0 I	MHz			Swee	Stop 1.333 ms	3.000 GH (1001 pt
4.0										
4.0										
4.0	upan strand a strategic territory	and the state of the	gut the stand the	manan	withour	announ	mension	and a subscription of the second s	monum	arendunud
4.0										
4.0										-13.00 d
00										
.00										
6.0										
6.0										
dB/div	Ref Offset 27.9 d Ref 36.00 dBi	n m			1				29.	924 dB
			NO: Fast Gain:Low		Free Ru n: 20 dB		Avg Hold:>	100/100		.912 GI
arker 1	1.912000000						Avg Type:		TF	ACE 1 2 3 4
	RF 50 Ω D	C		SENSE:EXT	COURCE	0.000 41	IGN AUTO		01-22-20	PM Mar 31, 20

PCS 1900, 1909.8 MHz, 1 GHz to 3 GHz, Spurious Emissions at Antenna Terminals Plot

PCS 1900, 1909.8 MHz, 3 GHz to 12 GHz, Spurious Emissions at Antenna Terminals Plot

	RF	50 Q DC			SENSE:EXT SOUR	RCE OFF AL	IGN AUTO Avg Type: I	on-Pwr		PM Mar 31, 201
otart	Freq 12.	00000000		PNO: Fast 🖵 FGain:Low	Trig: Free #Atten: 10		Avg Hold:>		т	
0 dB/c	div Ref	0.00 dBm							Mkr1 19. -27.3	912 GH 395 dBi
°g										
0.0										-13.00 d
0.0										
~ ~										
0.0	allhange	human	phanet wash	here have here	maurhe	and produced	Mary Mary Mary	Marchard	Allenous	where where
0.0										
0.0										
0.0										
0.0										
0.0										
0.0										
	12.000 GI	Hz								0.000 GH
	BW 1.0 N				W 3.0 MHz				13.33 ms	

PCS 1900, 1909.8 MHz, 12 GHz to 20 GHz, Spurious Emissions at Antenna Terminals Plot

FCC 47 CFR Part 24, Limit Clause 24.238 (a)

43 + 10 log (P) dB or -13 dBm.

2.7 MODULATION CHARACTERISTICS

2.7.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 (d)

2.7.2 Test Results

PCS 1900, Modulation Characteristics, Customer Description

Description of Modulation Technique

The modulation scheme used in GSM is called Gaussian Minimum Shift Keying (GMSK). GMSK facilitates the use of narrow bandwidth and allows for both coherent and non coherent detection capabilities. It is a scheme in which the transitions from One to Zero or Zero to One do not occur quickly, but over a period of time. If pulses are transmitted quickly harmonics are transmitted. The power spectrum for a square wave is rich in harmonics, and the power within the side lobes is wasted, and can be a cause of potential interference.

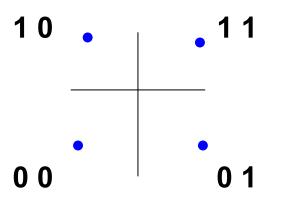
A method to reduce the harmonics is to round off the edges of the pulses thus lowering the spectral components of the signal. In GSM this is done by using a Gaussian pre-filter which typically has a bandwidth of 81.25kHz. The output from the Gaussian filter then phase modulates the carrier. As there are no dramatic phase transitions of the carrier this gives a constant envelope and low spectral component output from the transmitter.

The spectral efficiency is calculated by

bit rate / Channel bandwidth = 270.83333 kbit/s / 200 kHz = 1.354 bit/s/Hz.

The bandwidth product BT = Bandwidth x bit duration = 81.25 kHz x 3.6923 micros = 0.3

GMSK OVERVIEW


The modulation scheme used for the EUT is GMSK.

A brief overview of how GMSK works is shown below.

GMSK (Gaussian Minimum Shift Keying)

The fundamental principal behind GMSK is Phase shift keying. This splits a data stream into a series of 2-digit phase shifts, using the following phase shifts to represent data pairs.

Therefore for the BIT sequence 0 0 1 1 1 0 0 1 The corresponding phase shift will be used

BIT SEQUEN	CE	00	11	10	01
PHASE	225°	45°	135°	315°	

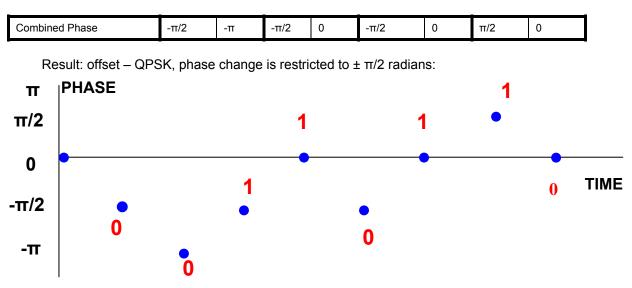
This is called QPSK (Quadratic Phase Shift Keying)

However

There is a problem with QPSK: transition from e.g. 00 to 11 gives phase shift of 180° (π radians). This has the effect of inverting the carrier waveform and this can lead to detection errors at the receiver.

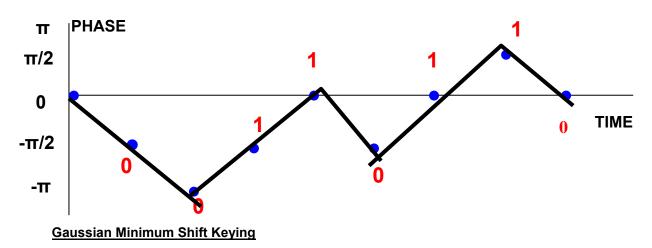
Solution: restrict phase changes to ± 90°

1. Split bitstream into 2 streams e.g.


	0 0		11		0 1		1 0	
I Stream	0		1		0		1	
Q stream		0		1		1		0

2. Modulate each stream with PSK (1 = 90° or $\pi/2$, 0 = -90° or $-\pi/2$ phase shift)

I Stream	0		1		0		1	
	-π/2		-π/2		-π/2		π/2	
Q stream		0		1		1		0
		-π/2		π/2		π/2		-π/2



3. Combine (add) the two PSK signals:

It would be preferable to have "gradual" changes in place between each pair of bits (Continuous-phase modulation). Replacing each "rectangular" shaped pulse (for 1 or 0) with a sinusoidal pulse can do this:

Result: Minimum Shift Keying (MSK):

MSK has high sidebands relative to the main lobes in the frequency domain – this can lead to interference with adjacent signals.

If the rectangular pulses corresponding to the bitstream are filtering using a Gaussian-shaped impulse response filter, we get Gaussian MSK (GMSK) – this has low sidelobes compared to MSK.

FCC 47 CFR Part 2, Limit Clause 2.1047 (d)

A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - Spurious Emissi	ons at Band Edge				
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Filter	Daden Anthony Ass	MH-1500-7SS	2778	12	5-Feb-2017
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
Section 2.2 - Maximum Condu				•	
Radio Communications Test Set	Rohde & Schwarz	CMU 200	442	12	18-Jan-2017
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
P-Series Power Meter	Agilent Technologies	N1911A	3981	12	25-Sep-2016
50 MHz-18 GHz Wideband Power Sensor	Agilent Technologies	N1921A	3983	12	25-Sep-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017
Section 2.3 - Frequency Stabi	lity	•	•	•	-
Climatic Chamber	Votsch	VT4002	161	-	O/P Mon
Attenuator 10dB/25W	Weinschel	46-10-43	400	12	18-Jun-2016
Power Supply Unit	Hewlett Packard	6253A	441	-	O/P Mon
Hygrometer	Rotronic	I-1000	2882	12	4-Nov-2016
Thermocouple Thermometer	Fluke	51	3174	12	9-Dec-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	4143	12	2-Sep-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016

COMMERCIAL-IN-CONFIDENCE

Product Service

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.4 - Emission Limitat	ions for Broadband PC	S Equipment		(
Dual Power Supply Unit	Thurlby	PL320	288	-	TU
Antenna 18-40GHz (Double Ridge Guide)	Q-Par Angus Ltd	QSH 180K	1511	24	27-Nov-2016
Pre-Amplifier	Phase One	PS04-0086	1533	12	30-Jul-2016
18GHz - 40GHz Pre-Amplifier	Phase One	PSO4-0087	1534	12	23-Dec-2016
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	11-Jun-2017
Radio Communications Test Set	Rohde & Schwarz	CMU 200	3035	12	16-Nov-2016
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	3171	12	28-Sep-2016
High Pass Filter (3GHz)	RLC Electronics	F-100-3000-5-R	3349	12	28-May-2016
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	2-Nov-2016
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	29-Dec-2016
Section 2.5 - 26 dB Bandwidth		•			
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
1 metre SMA Cable	IW Microwave	3PS-1806LC-394- 3PS	4662	12	6-Nov-2016
Section 2.6 - Spurious Emission	ons at Antenna Termina				
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	2-Nov-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
Suspended Substrate	Advance Power	11SH10-	4411	12	23-Mar-2017
Highpass Filter	Components	3000/X18000-O/O	4654	10	9. Oct 2010
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU		
Maximum Conducted Output Power	± 0.70 dB		
26 dB Bandwidth	± 9.37 kHz		
Spurious Emissions at Antenna Terminals	± 3.454 dB		
Modulation Characteristics	-		
Spurious Emissions at Band Edge	± 9.37 kHz		
Emission Limitations for Broadband PCS Equipment	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 40 GHz: ± 6.3 dB		
Frequency Stability	± 99.54 Hz		

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2016 TÜV SÜD Product Service