

TEST REPORT

APPLICANT : DEKA Research & Development

Corp.

PRODUCT NAME: Smart phone

MODEL NAME : 6008B

BRAND NAME: N/A

FCC ID : 2ATGA6008B

STANDARD(S) : 47 CFR Part 15 Subpart B

RECEIPT DATE : 2024-09-02

TEST DATE : 2024-09-09 to 2024-09-26

ISSUE DATE : 2024-09-27

Certification

QLOBAL SERVICE

ON System Certification

Edited by:

Chen Bilian(Rapporteur)

Chen Bilian

Approved by:

Xiao Xiong(Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

555 Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. Technical Information······
1.1. Applicant and Manufacturer Information ······
1.2. Equipment Under Test (EUT) Description
2. Test Results······
2.1. Applied Reference Documents ·······
2.2. EUT Setup and Operating Conditions ······
3. 47 CFR Part 15B Requirements ····································
3.1. Conducted Emission······
3.2. Radiated Emission ······· 10
Annex A Test Uncertainty ····································
Annex B Testing Laboratory Information 18

Change History					
Version Date Reason for Change					
1.0	2024-09-27	First edition			

Shenzhen Morlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant

1.1. Applicant and Manufacturer Information

Applicant:	DEKA Research & Development Corp.		
Applicant Address:	340 Commercial St., Manchester, NH 03101, United States		
Manufacturer:	DEKA Research & Development Corp.		
Manufacturer Address:	340 Commercial St., Manchester, NH 03101, United States		

1.2. Equipment Under Test (EUT) Description

Product Name:	Smart phone			
EUT No.:	4#	4#		
Hardware Version:	Q6006_V1.0			
Software Version:	1.0.8			
Tx Frequency:	802.11b/g/n: 241	2 MHz ~ 2472 MHz		
	802.11a/ac/n: 51	80 MHz ~ 5240 MHz; 5745 MHz ~ 5825 MHz		
	Bluetooth: 2402	MHz ~ 2480 MHz		
Rx Frequency:	802.11b/g/n: 241	2 MHz ~ 2472 MHz		
	802.11a/ac/n: 51	80 MHz ~ 5240 MHz; 5745 MHz ~ 5825 MHz		
	Bluetooth: 2402	MHz ~ 2480 MHz		
	GPS/Galileo/GL	GPS/Galileo/GLONASS/BDS: 1559 MHz ~ 1610 MHz		
Accessory:	Battery			
	Brand Name:	N/A		
	Model No.:	BTE-3402		
	Serial No.:	(N/A, marked #1 by test site)		
	Capacity:	Capacity: 3400mAh		
	Rated Voltage:	Rated Voltage: 3.8V		
	Charge Limit:	4.35V		
	Manufacturer:	Phenix New Energy(Hui Zhou)Co.,Ltd.		

Note:

 For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer.

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart B:

No.	Identity Document Title	
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination Remark
1	15.107	Conducted	2024.09.11 to	Fan Shengquan	PASS	No deviation
'	15.107	Emission	2024.09.26	Fair Shengquan		
2	15.109	Radiated	2024.09.09 to	Yuan Zihong PASS No de		No deviation
	13.109	Emission	2024.09.10	Yuan Zihong	rass	NO deviation

Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.4-2014.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 3: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

Shenzhen Morlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

2.2. EUT Setup and Operating Conditions

Note: All of the following test modes are tested in all the test items.

Test Item	1	
Radiated	ΙE	mission
Mode 1	:	EUT + Bluetooth Idle + 2.4G WLAN Idle + GPS Rx + Battery + USB Cable (Charging
		from Adapter) + Adapter + Earphone + Rear Camera Mode
Mode 2	:	EUT + Bluetooth Idle + 5G WLAN Idle + Galileo Rx + Battery + USB Cable (Charging
		from Adapter) + Adapter + Earphone + Front Camera Mode
Mode 3	:	EUT+ Bluetooth Idle + 2.4G WLAN Idle + GLONASS Rx + Battery + USB Cable
		(Charging from Adapter) + Adapter + Earphone + Play Audio Mode
Mode 4	:	EUT + Bluetooth Idle + 5G WLAN Idle + BDS Rx + Battery + USB Cable + PC +
		Earphone + Data Transfer Mode
Conduct	ed	Emission
Mode 1	:	EUT + Bluetooth Idle + 2.4G WLAN Idle + GPS Rx + Battery + USB Cable (Charging
		from Adapter) + Adapter + Earphone + Rear Camera Mode
Mode 5	:	EUT + Bluetooth Idle + 5G WLAN Idle + Galileo Rx + USB Cable + Earphone +
		PC + PC Adapter + Indirect Power Supply Mode
Remark:		

The above test mode in boldface (Mode 5) was the worst case of conducted emission test, only the test data of this mode was reported. The above test mode in boldface (Mode 4) was the worst case of radiated emission test, only the test data of this mode was reported.

During the measurement, the environmental conditions were within the listed ranges:

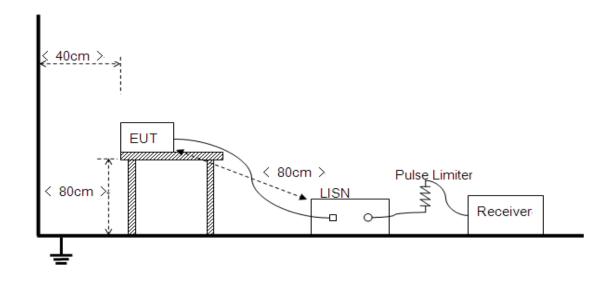
Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 - 106

3. 47 CFR Part 15B Requirements

3.1. Conducted Emission

3.1.1. Requirement

According to FCC section 15.107, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).


Frequency Range	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.1.2. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides 50Ω/50μH of coupling impedance for the measuring instrument. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

The power strip or extension cord has been investigated to make sure that the LISN integrity inma intained with respect to the impedance characteristics as prescribed in ANSI C63.4-2014 at Clause 4.3.

3.1.3. Test Result

Set RBW=9 kHz, VBW=30 kHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. All test modes are considered, refer to recorded points and plots below.

The measurement results are obtained as below:

 $\label{eq:loss_loss} \text{E}\left[\text{dB}\mu\text{V}\right] = \text{U}_{\text{R}}[\text{dB}\mu\text{V}] + \text{L}_{\text{Cable loss}}\left[\text{dB}\right] + \text{A}_{\text{Factor}}\left[\text{dB}\right]$

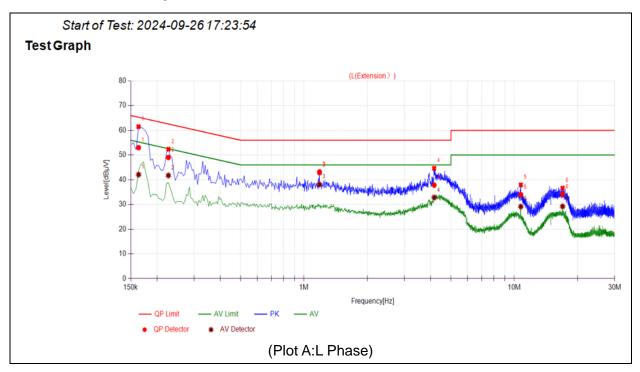
U_R: Receiver Reading

A_{Factor}: Voltage Division Factor of LISN

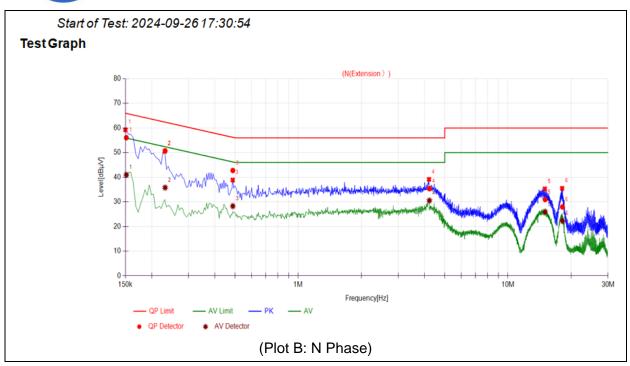
L_{Cable loss}: Correction Factor Contains Pulse Limiter and Cable

Shenzhen Morlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,


Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

During the test, the total correction Factor L_{Cable loss} and A_{Factor} were built in test software.



A. Test Plot and Suspicious Points:

No.	Fre.	Emission Le	evel (dBµV)	Limit (dBμV)		Power-line	Verdict
INO.	(MHz)	Quasi-peak	Average	Quasi-peak	Average	Power-line	verdict
1	0.1635	53.00	42.08	65.28	55.28		PASS
2	0.2265	49.02	41.73	62.58	52.58		PASS
3	1.1850	43.16	38.11	56.00	46.00	Lina	PASS
4	4.1597	37.84	32.82	56.00	46.00	Line	PASS
5	10.7388	33.95	29.11	60.00	50.00		PASS
6	16.9684	34.10	29.20	60.00	50.00		PASS

No.	Fre.	Emission Le	evel (dBµV)	Limit (dBµV)		Power-line	Verdict
NO.	(MHz)	Quasi-peak	Average	Quasi-peak	Average	Power-line	verdict
1	0.1515	56.06	40.98	65.92	55.92		PASS
2	0.2320	50.73	35.79	62.38	52.38		PASS
3	0.4878	42.75	28.27	56.21	46.21	Nichted	PASS
4	4.2220	35.36	30.52	56.00	46.00	Neutral	PASS
5	15.0381	30.96	25.98	60.00	50.00		PASS
6	18.1860	27.96	22.33	60.00	50.00		PASS

3.2. Radiated Emission

3.2.1. Requirement

According to FCC section 15.109 (a), the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

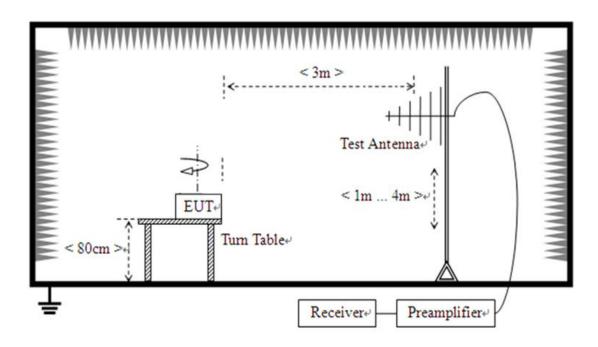
Frequency	Field Strength Limitation	Field Strength Limitation at 3m Measurement Dist		
Range (MHz)	(μV/m)	(dBµV/m)		
30.0 - 88.0	100	20log 100		
88.0 - 216.0	150	20log 150		
216.0 - 960.0	200	20log 200		
Above 960.0	500	20log 500		

As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

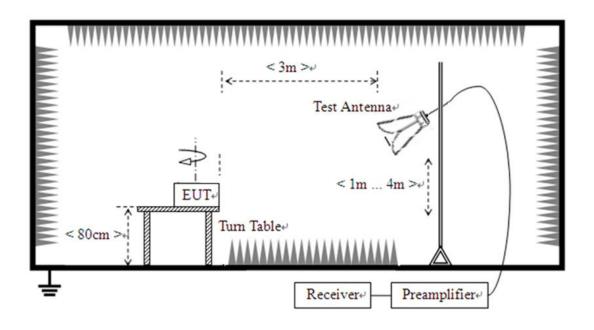
Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed indBμV/m is calculated by 20log Emission Level(μV/m).

3.2.2. Frequency Range of Measurement


According to 15.33(b)(1), the frequency range of radiated measurement for the EUT is listed in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705	30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.



3.2.3. Test Setup

1) For radiated emissions from 30MHz to1GHz

2) For radiated emissions above 1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on variable-height antenna master tower.

For the test Antenna:

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

For measurements below 1GHz the resolution bandwidth is set to 120 kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video bandwidth is set to 3MHz for peak measurements and as applicable for average measurements.

3.2.4. Test Result

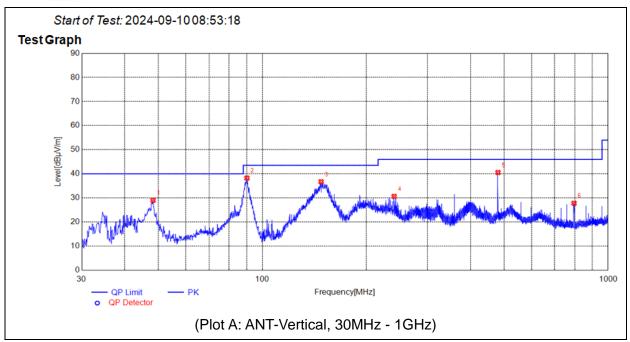
The maximum radiated emission is searched using PK, QP and AV detectors; the emission levels more than the limits, and that have narrow margins from the limits will be re-measured with AV and QP detectors. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests. All test modes are considered, refer to recorded points and plots below.

The amplitude of emissions which (6GHz-30GHz) are attenuated more than 20 dB below the permissible value need not be reported.

The measurement results are obtained as below:

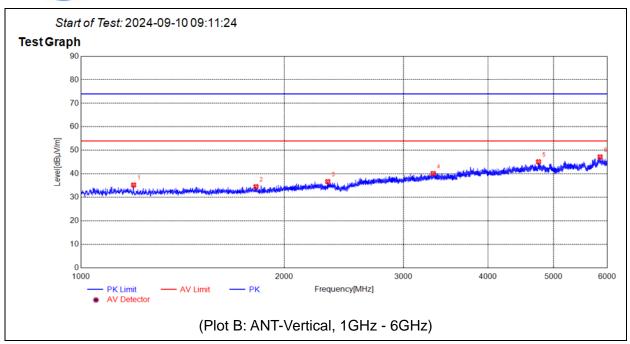
 $E \left[dB\mu V/m \right] = U_R \left[dB\mu V \right] + A_T [dB] + A_{Factor} \left[dB \right]; A_T = L_{Cable \ loss} \left[dB \right] - G_{preamp} \left[dB \right]$

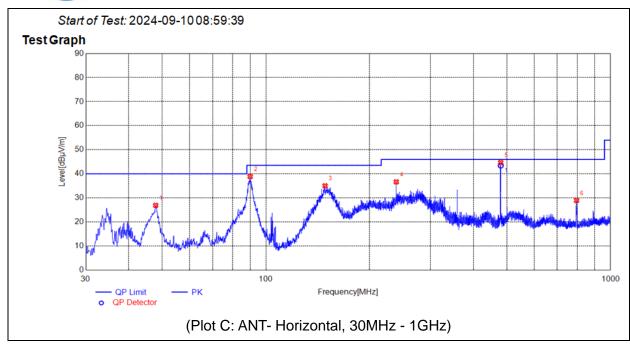
A_T: Total correction Factor except Antenna

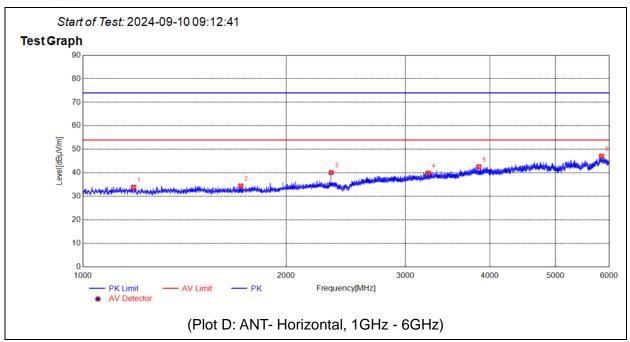

U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction, and only the worst axis test condition was recorded in this test report.




Na	Fre.	PK	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
No.	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	ANI	verdict
1	48.2378	29.02	N.A	N.A	N.A	40.00	N.A	V	PASS
2	90.1460	38.23	N.A	N.A	N.A	43.50	N.A	V	PASS
3	147.7698	36.73	N.A	N.A	N.A	43.50	N.A	V	PASS
4	240.3170	30.65	N.A	N.A	N.A	46.00	N.A	V	PASS
5	480.0280	40.56	N.A	N.A	N.A	46.00	N.A	V	PASS
6	796.5707	27.82	N.A	N.A	N.A	46.00	N.A	V	PASS


No	Fre.	PK	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
No.	MHz	dBµV/m	dΒμV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	AINI	veraict
1	1197.0000	35.28	N.A	N.A	74.00	N.A	54.00	V	PASS
2	1815.5000	34.57	N.A	N.A	74.00	N.A	54.00	V	PASS
3	2318.5000	36.72	N.A	N.A	74.00	N.A	54.00	V	PASS
4	3320.0000	40.19	N.A	N.A	74.00	N.A	54.00	V	PASS
5	4751.5000	45.15	N.A	N.A	74.00	N.A	54.00	V	PASS
6	5859.5000	47.21	N.A	N.A	74.00	N.A	54.00	V	PASS

No	Fre.	PK	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
No.	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	ANT	verdict
1	47.8498	26.92	N.A	N.A	N.A	40.00	N.A	Н	PASS
2	89.9520	38.88	N.A	N.A	N.A	43.50	N.A	Н	PASS
3	148.4488	35.02	N.A	N.A	N.A	43.50	N.A	Н	PASS
4	238.8619	36.67	N.A	N.A	N.A	46.00	N.A	Н	PASS
5	480.0280	44.68	43.40	N.A	N.A	46.00	N.A	Н	PASS
6	796.6677	28.94	N.A	N.A	N.A	46.00	N.A	Н	PASS

No	Fre.	PK	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
No.	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dΒμV/m	ווי	verdict
1	1188.5000	33.87	N.A	N.A	74.00	N.A	54.00	Н	PASS
2	1712.5000	34.45	N.A	N.A	74.00	N.A	54.00	Н	PASS
3	2330.0000	40.15	N.A	N.A	74.00	N.A	54.00	Н	PASS
4	3242.0000	39.93	N.A	N.A	74.00	N.A	54.00	Н	PASS
5	3852.5000	42.60	N.A	N.A	74.00	N.A	54.00	Н	PASS
6	5849.5000	47.12	N.A	N.A	74.00	N.A	54.00	Н	PASS

Tel: 86-755-36698555

Http://www.morlab.cn

Annex A Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission Measurement

Measuring Uncertainty for	9kHz-150kHz	±3.3dB
a Level of Confidence of	150kHz-30MHz	±2.8dB
95%(U=2Uc(y))		

Uncertainty of Radiated Emission Measurement

Measuring Uncertainty for	30MHz-200MHz	±5.06dB
a Level of Confidence of	200MHz-1000MHz	±5.04dB
95%(U=2Uc(y))	1GHz-6GHz	±5.18dB
	6GHz-18GHz	±5.48dB

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Accreditation Certificate

Accredited Testing	The FCC designation number is CN1192.
Laboratory:	Test firm registration number is 226174.
	(Shenzhen Morlab Communications Technology Co., Ltd.)

4. Test Software Utilized

Model	Version Number	Producer		
TS+ -[JS32-RE]	Version 2.5.0.6	Tonscend		
TS+ -[JS32-CE]	Version 2.5.0.0	Tonscend		

5. Test Equipments Utilized

Description	Model	Serial No.	Manufacturer	Cal. Date	Due. Date
Bi-Log Antenna	VULB 9163	9163-519	SCHWARZBECK	2024/6/22	2025/6/21
Horn Antenna	BBHA 9120D	01774	SCHWARZBECK	2024/6/22	2025/6/21
Horn Antenna	BBHA9170	BBHA9170 #773	SCHWARZBECK	2024/6/22	2025/6/21
Receiver	N9038A	MY564000 93	KEYSIGHT	2024/1/25	2025/1/24
6db Attenuator	BW-N6W5+	E191001	Mini-circuits	2023/9/19	2024/9/18
6db Attenuator	BW-N6W5+	E191001	Mini-circuits	2024/9/11	2025/9/10
Preamplifier	S020180L3203	61171/611 72	LUCIX CORP.	2024/5/30	2025/5/29
Preamplifier	S10M100L3802	46732	LUCIX CORP.	2024/5/30	2025/5/29
Preamplifier	DCLNA0118-40 C-S	DS77209	Decentest	2024/5/30	2025/5/29
RF Coaxial Cable	PE330	MRE001	Pasternack	N/A	N/A
RF Coaxial Cable	CLU18	MRE002	Pasternack	N/A	N/A
RF Coaxial Cable	CLU18	MRE003	Pasternack	N/A	N/A
RF Coaxial Cable	QA360-40-KK- 0.5	22290045	Qualwave	N/A	N/A
RF Coaxial Cable	QA360-40-KKF -2	22290046	Qualwave	N/A	N/A
RF Coaxial Cable	QA500-18-NN- 5	22120181	Qualwave	N/A	N/A
RF Coaxial Cable	BNC	MRE04	Qualwave	N/A	N/A
Receiver	ESPI	101052	R&S	2024/6/3	2025/6/2
LISN	NSLK 8127	8127449	Schwarzbeck	2024/2/2	2025/2/1
10dB Pulse Limiter	VTSD 9561-F	VTSD 9561 F-B #206	SCHWARZBECK	2024/5/30	2025/5/29
System Simulator	CMW500	152038	R&S	2023/9/19	2024/9/18
System Simulator	CMW500	152038	R&S	2024/9/11	2025/9/10
System Simulator	MT8000A	62621482 49	anritsu	2024/6/30	2025/6/29

System Simulator	MT8821C	62618305 72	anritsu	2024/1/25	2025/1/24
---------------------	---------	----------------	---------	-----------	-----------

6. Ancillary Equipment Utilized

Description	Model	Serial No.	Manufacturer
Adapter	H785LBJBY16392	HW-050200C01	HUAWEI
Adapter	CYPD335U	N/A	CHENYANG
Earphone	N/A	N/A	OPPO
PC	A1370	N/A	APPLE
PC Adapter	A1374	N/A	APPLE

END OF REPORT
