

FCC Test Report

Report No.: AGC00807190507FE02

FCC ID	nce :	2AS8H-H033C
APPLICATION PURPOSE	, C	Original Equipment
PRODUCT DESIGNATION	- Tr	Bluetooth Headphones
BRAND NAME	onofGi	RCA
MODEL NAME	:	H033C
CLIENT	© .	Number One Commerce Co., LTD.
DATE OF ISSUE	:	May 31, 2019
STANDARD(S)	-mile	FCC Part 15.247
REPORT VERSION		V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 2 of 45

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		May 31, 2019	Valid	Initial Release

The results show on this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 3 of 45

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2.GENERAL INFORMATION	6
2.1PRODUCT DESCRIPTION	6
2.3 RELATED SUBMITTAL(S)/GRANT(S)	
2.4TEST METHODOLOGY	
2.5 SPECIAL ACCESSORIES	
2.6 EQUIPMENT MODIFICATIONS	7
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1 CONFIGURATION OF TESTED SYSTEM	
5.2 EQUIPMENT USED IN TESTED SYSTEM	
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE	
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3. LIMITS AND MEASUREMENT RESULT	
8. 6 DB BANDWIDTH	
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	17
9.1. MEASUREMENT PROCEDURE	17
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by / SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gent.com.

GC S E Attestation of Global Compliance

R 环 测 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02

Page	4	of	45
------	---	----	----

10.1 MEASUREMENT PROCEDURE	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
10.3 MEASUREMENT EQUIPMENT USED	
10.4 LIMITS AND MEASUREMENT RESULT	
11. RADIATED EMISSION	24
11.1. MEASUREMENT PROCEDURE	24
11.2. TEST SETUP	
11.3. LIMITS AND MEASUREMENT RESULT	
11.4. TEST RESULT	
12. FCC LINE CONDUCTED EMISSION TEST	
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	

The results shows if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at fittp://www.agc.cent.com,

1. VERIFICATION OF COMPLIANCE

Number One Commerce Co., LTD.	
ROOM 1635, 16/F., METRO CENTER 2, 21 LAM HING STREET, KOWLOON BAY, HONG KONG	
NUMBER ONE COMMERCE CO., LIMITED	
ROOM 1635, 16/F., METRO CENTER 2, 21 LAM HING STREET, KOWLOON BAY, HONG KONG	
NUMBER ONE COMMERCE CO., LIMITED	
ROOM 1635, 16/F., METRO CENTER 2, 21 LAM HING STREET, KOWLOON BAY, HONG KONG	
Bluetooth Headphones	
RCA	
H033C	
May 20, 2019 to May 31, 2019	
None A Share C C C	
Normal	
Pass	
AGCRT-US-BLE/RF	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Tested By

John Zeng

May 31, 2019

Max Zhang

Reviewed By

Max Zhang(Zhang Yi)

John Zeng(Zeng Weigiang)

May 31, 2019

Forrest in

Approved By

Forrest Lei(Lei Yonggang) Authorized Officer

May 31, 2019

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is designed as a "Bluetooth Headphones". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

2.402 GHz to 2.480GHz
7.630dBm(Max)
V 5.0
BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE ⊠GFSK 1Mbps □GFSK 2Mbps
40 Channels
PCB Antenna(Comply with requirements of the FCC part 15.203)
OdBi to the state of the state
V1.0
V1.0
DC 3.7V by battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
	GC1 GC	2404MHZ
2400~2483.5MHZ		A The State of the
	38	2478 MHZ
THE THE OF THE SCOULD	39	2480 MHZ

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc?gatt.com.

Report No.: AGC00807190507FE02 Page 7 of 45

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2AS8H-H033C filing to comply with the FCC Part 15.247 requirements.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

4. DESCRIPTION OF TEST MODES

NO.		TEST MODE DE	ESCRIPTION	
the amount of the	influence Cathering Con	Low chan	nel TX	NO
2 2 and a constraint of the second se		Middle cha	nnel TX	The Barrier
3		High chan	nnel TX	C A station of Global
2. For Radia 3. For Cond	result of the worst case was ted Emission, 3axis were ch ucted Test method, a tempo sting, the device was contro	nosen for testing for e rary antenna connect	each applicable mode tor is provided by the	e manufacture.
	BlueTest3	Software Setting		C State
GG Manine	LOOF BACK BER LOOF BACK ENABLE DUT MODE CFG FREQ CFG FREQ MS CFG FREQ MS CFG BIT ERR CFG BIT ERR CFG UAF/LAF	Test Arguments Packet Type 15 Packet Size 339	Cl. H(Exec Res	ute I II II
A the second sec	Test Results Save to file Browse for Number of the Browse for Number of the Browse for Number of the Browse for Second Stress of the Browse for the Browse for the Browse for the Stress for the Stress for the Stress for the Browse for the Browse for the Stress for the Browse for the Bro	l\QTIL\BlueTest3\testap;		Contraction of the second seco

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 10 of 45

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

EUT

5.2 EQUIPMENT USED IN TESTED SYSTEM

ltem	Equipment	Model No.	ID or Specification	Remark
1 ©	Bluetooth Headphones	H033C	2AS8H-H033C	EUT

5.3. SUMMARY OF TEST RESULTS

DESCRIPTION OF TEST	RESULT
Peak Output Power	Compliant
6 dB Bandwidth	Compliant
Conducted Spurious Emission	Compliant
Maximum Conducted Output Power Density	Compliant
Radiated Emission	Compliant
Conducted Emission	N/A
	Peak Output Power 6 dB Bandwidth Conducted Spurious Emission Maximum Conducted Output Power Density Radiated Emission

Note: The EUT not can use the BT function with charging.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF RADIATED EMISSION TEST

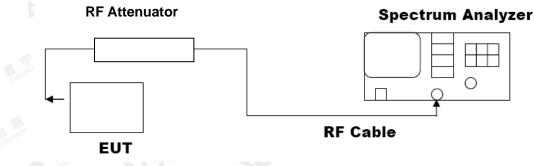
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 12 of 45

 \cap

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

The results show on this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 🖉 C, this documents and the authenticity of the reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT						
	FOR GFSK MOUDULATION					
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail			
2.402	6.384	30	Pass			
2.440	7.454	30	Pass			
2.480	7.630	30	Pass			
	CHO	The Second	Con Allestan			

 RF
 50 Ω
 AL

 2.402250000000
 GHz

 PNO: Fast IFGain:Low
 Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search Trig: Free Run #Atten: 30 dB Next Peak Mkr1 2.402 GHz 6.384 dBm 10 dB/div Ref 20.00 dBm Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→RefL More 1 of 2 Center 2.402000 GHz #Res BW 1.5 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 5.0 MHz STATUS

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

CH19

CH39

The results shown in the set report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

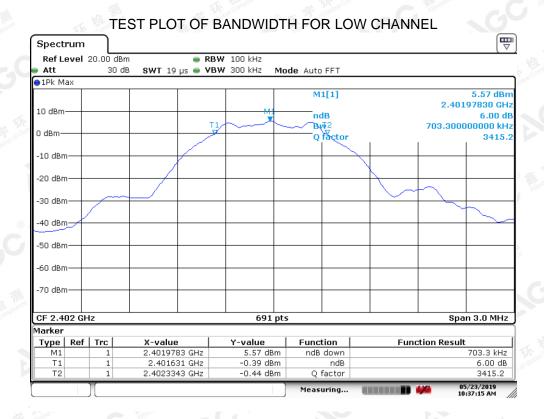
AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 15 of 45

8.6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

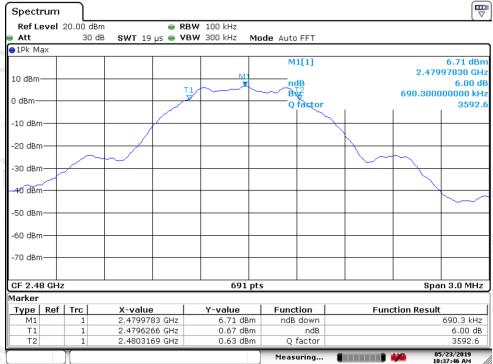

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

	LIMITS AND MEASURE	MENT RESULT				
Annlinghle Limite		Applicable Limits				
Applicable Limits	Test Data (k	Criteria				
THE REAL	Low Channel	703.3	PASS			
>500KHZ	Middle Channel	699.0	PASS			
CO Trans	High Channel	690.3	PASS			



The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.gatt.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 17 of 45

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

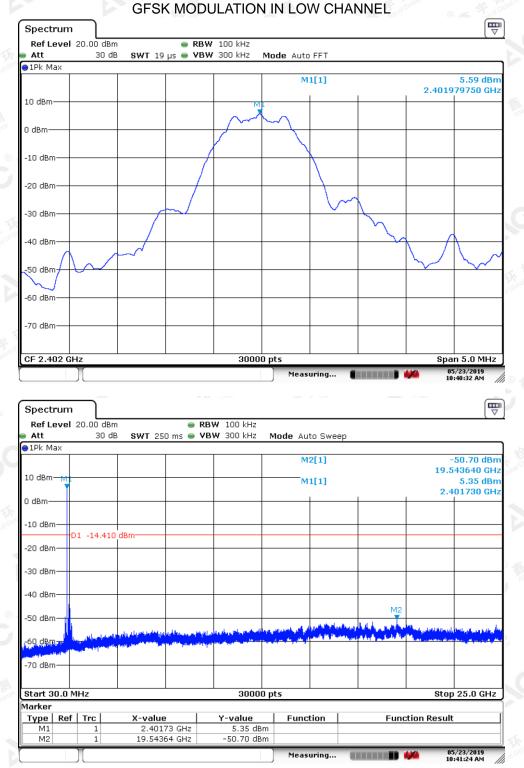
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

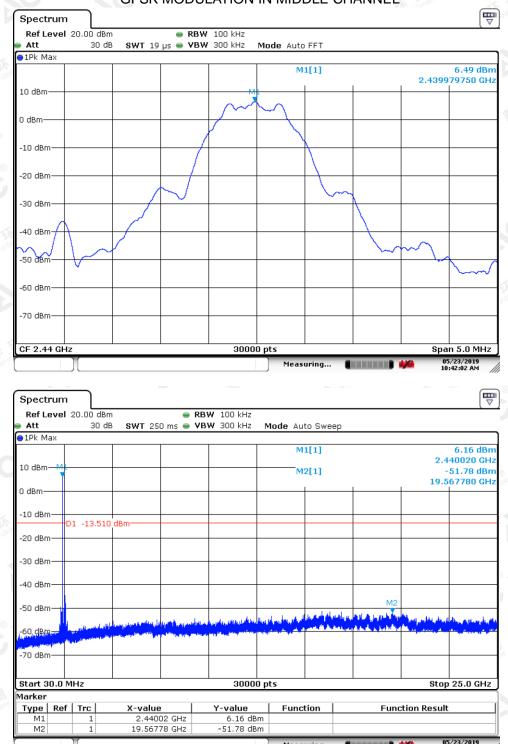
9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT					
	Measurement Re	sult			
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	level	PASS PASS			

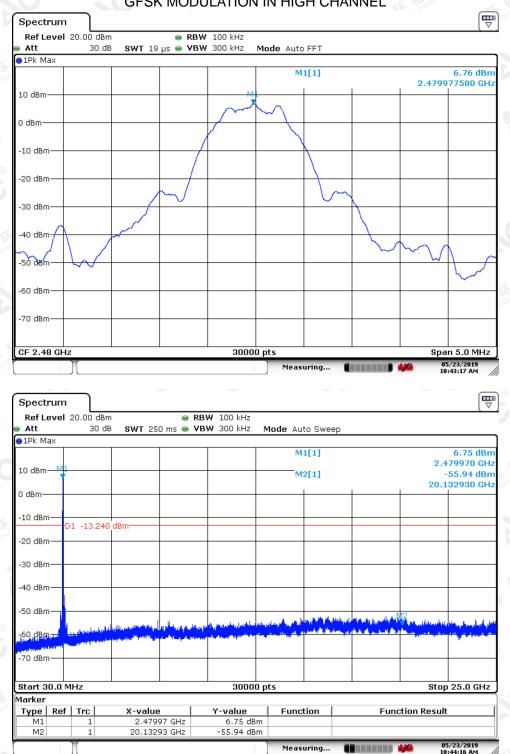
The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.



TEST RESULT FOR ENTIRE FREQUENCY RANGE

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

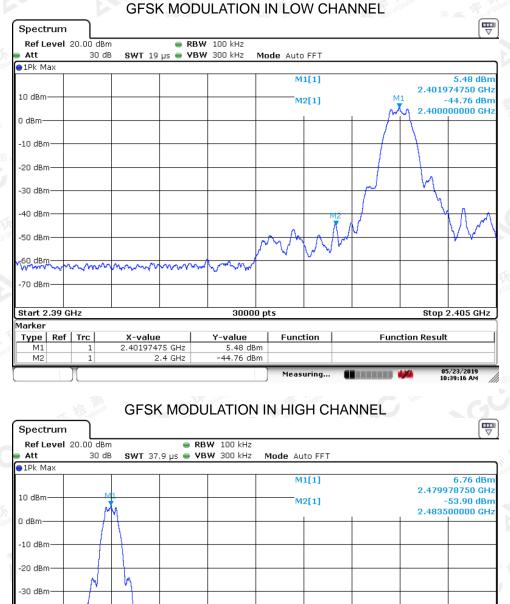
Report No.: AGC00807190507FE02 Page 19 of 45



GFSK MODULATION IN MIDDLE CHANNEL

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 20 of 45


GFSK MODULATION IN HIGH CHANNEL

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.

The results show on this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Report No.: AGC00807190507FE02 Page 21 of 45

TEST RESULT FOR BAND EDGE

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

30000 pts

Function

Measuring.

Y-value

6.76 dBm 53.90 dBm

40 dBm

0 dBr

-70 dBm

Marker

M1 M2

Start 2.475 GHz

Type Ref Trc

wy

X-value

2.47997875 GHz

2.4835 GHz

AMM

Function Result

Stop 2.5 GHz

05/23/2019

10:39:48

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 22 of 45

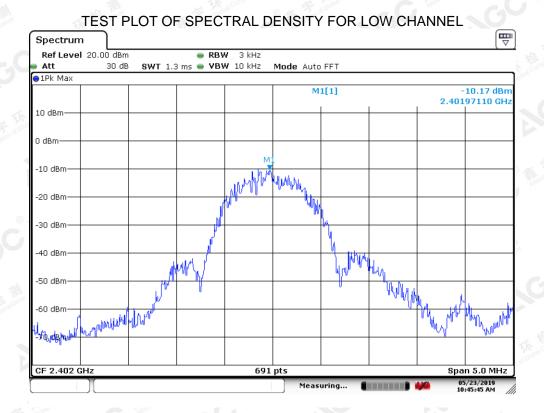
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

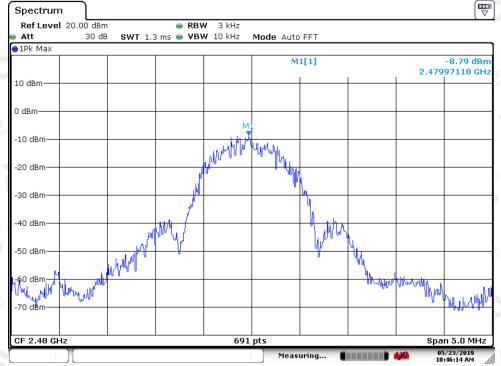

Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.


10.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-10.17	8 6	Pass
Middle Channel	-9.08	8	Pass
High Channel	-8.79	8	Pass


The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.ago.gott.com.

Report No.: AGC00807190507FE02 Page 23 of 45

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

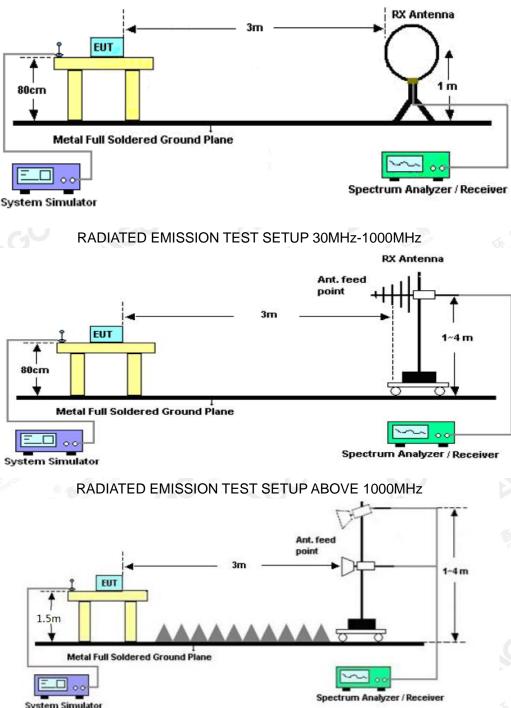
The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 24 of 45

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The results spow(off this) est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cont.com.

11.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	0 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a	30	
30~88	100	3	
88~216	150	3	
216~960	200	0 St. Januar 3	
Above 960	500	3	

Note: All modes were tested For restricted band radiated emission.

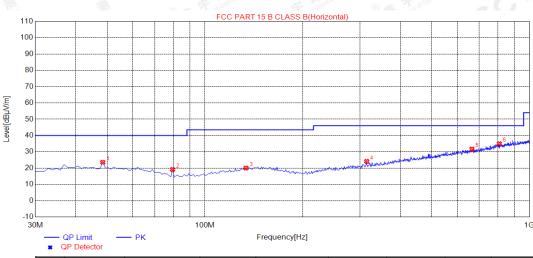
The test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

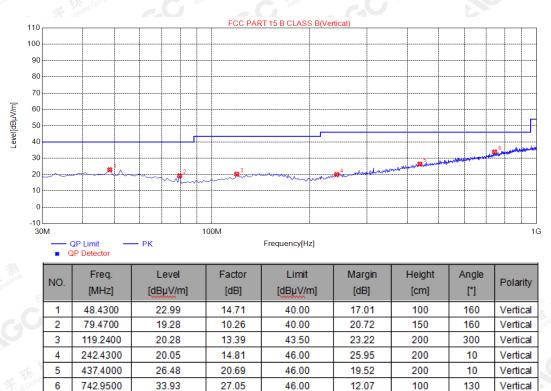


Report No.: AGC00807190507FE02 Page 27 of 45

EUT	Bluetooth Headphones	Model Name	H033C		
Temperature	25° C	Relative Humidity	55.4%		
Pressure	960hPa	Test Voltage	Normal Voltage		
Test Mode	Mode 1	Antenna	Horizontal		

RADIATED EMISSION BELOW 1GHZ

NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Delesity
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	48.4300	23.54	14.71	40.00	16.46	100	40	Horizo
2	79.4700	19.16	10.26	40.00	20.84	200	90	Horizo
3	133.7900	20.04	14.42	43.50	23.46	200	110	Horizo
4	315.1800	24.11	16.48	46.00	21.89	150	150	Horizo
5	665.3500	31.69	25.39	46.00	14.31	100	110	Horizo
6	807.9400	34.96	28.60	46.00	11.04	150	40	Horizo


RESULT: PASS

The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

		Alles	
EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 29 of 45

EUT	Bluetooth Headphones	Model Name H033C				
Temperature	25° C	Relative Humidity	55.4%			
Pressure	960hPa	Test Voltage	Normal Voltage			
Test Mode	Mode 1	Antenna	Horizontal			

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.000	47.23	0.08	47.31	74	-26.69	peak
4804.000	40.85	0.08	40.93	54	-13.07 🎻	AVG
7206.000	46.33	2.21	48.54	74	-25.46	peak
7206.000	41.57	2.21	43.78	54	-10.22	AVG
The Honol Glou	a FolGoba	C tation of C.				
Attest	Allestatu	Aller				-11
Remark:					A Lance	The the moular
-actor = Ante	enna Factor + Ca	able Loss –	Pre-amplifier.	the second	Clobal Come	Francisco State
			T. Anolla	(C) Alter into	27	The stan

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	er Reading Factor Emission Level Limit		Limits	Margin	Value Tures	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4804.000	46.89	0.08	46.97	74	-27.03	peak	
4804.000	41.03	0.08	41.11	54	-12.89	AVG	
7206.000	45.93	2.21	48.14	74	-25.86	peak	
7206.000	40.44	2.21	42.65	🧆 54	-11.35	AVG	
	4	inter a	50	Compliance	The Compile	W Station	
			all clob	(R) the			

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 30 of 45

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	47.41	0.14	47.55	74	-26.45	🧄 peak
4880.000	39.78	0.14	39.92	54	-14.08	AVG 🔍
7322.000	46.27	2.36	48.63	74	-25.37	peak
7322.000	40.11	2.36	42.47	54	-11.53	AVG
Front Globa	Global C	C The stion of GI				
Attestation	Attestation	Alless				110:
emark:						the phance
actor = Ante	enna Factor + Ca	able Loss – P	Pre-amplifier.	- 3	1 al comp	F Global
						NOV.

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading		Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB) 🛛 🧃	(dBµV/m)	(dBµV/m)	(dB)	value Typ	
4880.000	46.43	0.14	46.57	74	-27.43	peak	
4880.000	40.89	0.14	41.03	54	-12.97	AVG	
7322.000	44.62	2.36	46.98	74	-27.02	peak	
7322.000	40.23	2.36	42.59	54	-11.41	AVG	
	The completion	# Coloral Consulation	C the station of the	R) Allest	and Con		
emark:	tion of Giv	e station of		G			
actor = Ante	enna Factor + C	able Loss – F	Pre-amplifier				

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 31 of 45

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

	120L					
Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Typ	
45.78	0.22	46	74	-28	< peak	
38.98	0.22	39.2	54	-14.8	AVG 🔍	
43.55	2.64	46.19	74	-27.81	peak	
39.78	2.64	42.42	54	-11.58	AVG	
O T T of Global C.	C The stion of Gi		. 6			
Attestation	Allean				100	
				1111	the polance	
enna Factor + Ca	ble Loss – P	re-amplifier.	1	hal Comp	F Global Ca	
	(dBµV) 45.78 38.98 43.55 39.78	(dBµV) (dB) 45.78 0.22 38.98 0.22 43.55 2.64 39.78 2.64	(dBµV) (dB) (dBµV/m) 45.78 0.22 46 38.98 0.22 39.2 43.55 2.64 46.19	(dBµV) (dB) (dBµV/m) (dBµV/m) 45.78 0.22 46 74 38.98 0.22 39.2 54 43.55 2.64 46.19 74 39.78 2.64 42.42 54	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 45.78 0.22 46 74 -28 38.98 0.22 39.2 54 -14.8 43.55 2.64 46.19 74 -27.81 39.78 2.64 42.42 54 -11.58	

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

eter Reading (dBµV) 46.23	Factor (dB) 0.22	Emission Level (dBµV/m) 46,45	Limits (dBµV/m)	Margin (dB)	Value Type
46.23	. ,		(dBµV/m)	(dB)	value Type
	0.22	46.45			
00.00		40.40	74	-27.55	peak
38.88	0.22	39.1	54	-14.9	AVG
42.76	2.64	45.4	74	-28.6	peak
37.67	2.64	40.31	54	-13.69	AVG
Compliance	the the state	C atton of cloth	R Allest	and Give	
	estation	0	GV -		
	THE COMMUNIC	And the second s	37.67 2.64 40.31		

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

RESULT: PASS

Note: Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit. The "Factor" value can be calculated automatically by software of measurement system.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00807190507FE02 Page 32 of 45

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Q.	ΡK

Att	evel .	116.00 de 20		 RBW 1 MHz VBW 3 MHz 	Mode A	uto FFT			
●1Pk Ma	эx								
110 dBµ						M1[1]			98.69 dBµ
110 UBL						M2[1]			21380 GI I3,93 dBj
100 dBµ	iv—					MZ[1]		2.39	00000 GI
90 dBµ\	,								
80 dBµV	,								
00 000			1.000 dBuV						
70 dBµ\		-02 74				_			
60 dBµV	,								
		1 54.000	dBuV						
50 dBµ\					M2	-		<u></u>	
40 dBµ\	~~~				~~~~	$\rightarrow \sim$			
30 dBµ\									
20 dBµ\	,								
Start 2	.37 GI	Hz		69	1 pts			Stop 2	2.405 GH
Marker									
Туре	Ref		X-value	Y-value		ction	Fund	tion Result	
M1 M2		1	2.402138 GH 2.39 GH						
	_		2.09 (01)			suring		05	j/23/2019

AV

				A	V				
Spectrum									
Ref Level	116.00 dB	ΨV		RBW 1 MHz					
Att	20	dB SWT	5.7 µs 🖷	VBW 3 MHz	Mode Au	to FFT			
1Rm AvgPw	r								
					M	1[1]			96.77 dBµV
110 dBµV									19360 GHz
and driver					M	2[1]			37.19 dBµV 00000 GHz
100 dBµV						1	1	2.39	
90 dBuV								· · · · · · · · · · · · · · · · · · ·	()
o uppv									
30 dBµV									
o dopv									
70 dBuV		.000 dBµV-							
o appr									
60 dBuV									
	1 54.000	deux/							
50 dBµV	1 34.000								
40 dBµV					M2				
$ \longrightarrow $	\sim	\sim	<u> </u>	\sim		\sim	-		
30 dBµV			-						
20 dBµV									
Start 2.37 G	iHz			691	pts	1		Stop	2.405 GHz
1arker									
	Trc	X-valu		Y-value	Func	tion	Fund	tion Result	
M1	1		936 GHz	96.77 dBj					
M2	1	2	.39 GHz	37.19 dBj	JV				
					Meas	uring		6/10	5/23/2019 :16:40 AM

RESULT: PASS

The results show on the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 33 of 45

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical
	Pk	The Man of the State	

certify a					N X				
Spectrum Ref Level	116.00 dB		•	RBW 1 MHz					
Att 1Pk Max	20	dB SWT	5.7 µs 🖷	VBW 3 MHz	Mode Aut	OFFT			
110 dBµV-					м	1[1]			96.78 dE
100 dBµV					M	2[1]	1		42.27 di 00000 (
90 dBµV								- /	\square
80 dBµV									\rightarrow
70 dBµV		.000 dBµV							
50 dBµV	01 54.000	dBµV							
50 dBµV	~~~		\sim		M2		\sim		
30 dBµV									
20 dBµV									
Start 2.37 (GHz			691	pts			Stop 2	2.405 G
1arker Type Ref	Tuel	X-value	. 1	Y-value	Func	tion 1	F	tion Result	
M1 M2	1	2.4021		96.78 dBj 42.27 dBj	JV VL		Fund	CIUM Result	
][Meas	uring		00 10	5/23/2019 :17:01 AM

Ref Le Att	vel 1	16.00 de 20			RBW 1 MHz /BW 3 MHz	Mode Au	ito FFT			
1Rm A	/gPwr									
110 dBµ	v—					, n	11[1]			95.95 dBµ\ 19860 GH;
						N	12[1]			34.71 dBµ\
100 dBµ	v—						1	1	2.39	
90 dBµV	_								,	\cap
80 dBµV									/	
70 dBuV		—D2 74	.000 dBµV							
50 dBuV										
о авру		L 54.000	dBuild							
50 dBµV		1 34.000								
ŧ0 dBµV	_					MZ				
30 dBµV	\rightarrow			\sim						
20 dBµV										
Start 2.	37 GI	lz			691	pts			Stop	2.405 GHz
1arker										
	Ref		X-value		Y-value		ction	Fund	tion Result	:
M1 M2		1	2.40198	9 GHZ	95.95 dB 34.71 dB					

RESULT: PASS

The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

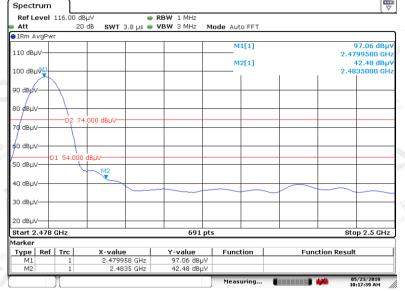
Report No.: AGC00807190507FE02 Page 34 of 45

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

								[,
.6.00 dBµ			RBW 1 MHz					
20 d	1B SWT 3	.8 µs 🖷 '	VBW 3 MHz	Mode Au	to FFT			
				M	1[1]		11	00.96 dBj
					111			97990 G
				M	2[1]			49.71 dBj
							2.48	35000 G
-D2 74.0	лоо автл							
$\langle \rangle$								
54.000 d	IBµV M2							
	~							
		~	+ +	\sim	\sim	+		\sim
lz			691	pts			Sto	p 2.5 GH
		0.011-			tion	Fune	ction Result	:
	20 d	20 dB SWT 3	20 dB SWT 3.8 μs	20 dB SWT 3.8 μs VBW 3 MHz	20 dB SWT 3.8 µs ● VBW 3 MHz Mode Au Mode Au M M M M M M M M M M M M M	20 dB SWT 3.8 μs VBW 3 MHz Mode Auto FFT M1[1] M2[1] M2[1] <td>20 dB SWT 3.8 μs • VBW 3 MHz Mode Auto FFT M1[1] M2[1] -D2 74.000 dBμV -D2 74.000 dBμV</td> <td>20 dB SWT 3.8 μs VBW 3 MHz Mode Auto FFT M1[1] 11 M2[1] 2.47 M2[1] 2.48 M2[1] 2.48</td>	20 dB SWT 3.8 μs • VBW 3 MHz Mode Auto FFT M1[1] M2[1] -D2 74.000 dBμV -D2 74.000 dBμV	20 dB SWT 3.8 μs VBW 3 MHz Mode Auto FFT M1[1] 11 M2[1] 2.47 M2[1] 2.48 M2[1] 2.48

	20	ВµV	RBW 1 MHz VBW 3 MHz	Mode Auto FFT		
1Rm AvgPw	/r					
110 dBuV				M1[1]		99.08 dBµ\ 2.4799900 GH
100 dBµV z				M2[1]		43.77 dBµ\ 2.4835000 GH:
	\setminus					
	\rightarrow					
70 dBµV	D2 74	4.000 dBµV				
i0 dBµV	-+					
iO dBµV-	01 54.000	M2				
ю dBµV						
30 dBµV						
20 dBµV						
Start 2.478	GHz		691	pts		Stop 2.5 GHz
larker Type Ref	Tun	X-value	V	Function	F	tion Result
Type Ref M1	1 1	2.47999 GHz	Y-value 99.08 dBj		Func	LIUN KESUIL

RESULT: PASS


The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 35 of 45

EUT	Bluetooth Headphones	Model Name	H033C
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

110 dBµV 2.4797990 M1 M2[1] 50.19 dl		RBW 1 MHz			
M1[1] 98.57 dl 2.47979900 100 dBµV M2[1] 50.19 dl 2.4835000 90 dBµV 2.4835000 90 dBµV 2.4835000 90 dBµV 2.4835000 90 dBµV 90 dBµV 60 dBµV 91 54.000 dBµVMC 50 dBµV 91 54.000 dBµVMC 40 dBµV 91 54.000 dBµVMC 10 dBµV 91 54.000 dBµV 10 2.479799 GHz 98.57 dBµV 11 2.4835 GHz 50.19 dBµV 11 2.4835 GHz 50.19 dBµV 11 2.4835 GHz 50.19 dBµV	3 SWI 3.8 µs 🖷	VBW 3 MHz M	ode Auto FFT		
100 dBµV M2[1] 50.19 dl 90 dBµV 2.4835000 2.4835000 90 dBµV 0 0 0 80 dBµV 02 74.000 dBµV 0 0 60 dBµV 01 54.000 dBµV 0 0 60 dBµV 01 54.000 dBµV 0 0 60 dBµV 01 54.000 dBµV 0 0 30 dBµV 01 54.000 dBµV 0 0 30 dBµV 0 0 0 0 30 dBµV 0 0 0 0 0 10 dBµV 0 0 0 0 0 0 10 dBµV 0 0 0 0 0 0 0 10 dBµV 0			M1[1]		98.57 dB
100 dBµV 2.4835000 i 20 dBµV 2.479799 GHz 691 pts Stop 2.5 G Tarker 7.4000 GHz Yu 2.479799 GHz 20.57 dBµV 1 2.4835 GHz 50.19 dBµV 1 2.4835 GHz 50.19 dBµV 1					
30 dBµV D2 74.000 dBµV D2 75.000 dBµV D			M2[1]		2.4835000 G
30 dBµV D2 74.000 dBµV D2 0 dBµV D2 74.000 dBµV D2 50 dBµV D2 D2 D2 10 dBµV D2 D2 D2 10 dBµV D2 D2 D2 20 dBµV D2 D2 D2 D2 20 dBµV D2 D2 D2 D2 30 dBµV D2 D2 D2 D2 D2 20 dBµV D2					
D2 74,000 dBµV D2 74,000 dBµV D3 0 dBµV					
O BUV D Stop 2.5 G Burker Function Function Result Function Result Stop 2.5 G BuV D					
f0 dBµV 0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
50 dBµV D1 54.000 dBµVMB D1 54.000 dBµVMB D1 50 dBµV D1 54.000 dBµVMB D1 54.000 dBµVMB D1 54.000 dBµVMB D1 54.000 dBµVMB D1 50 dBµV D1 54.000 dBµVMB D1 50 dBµV D1 50 10 D1 50 10 D1 50 10 D1 50 10 D1 10 24/27 D1 24/27	00 dBµV				
O1 54.000 dBuV/H2 Image: Constraint of the second seco					
50 dBµV 2 691 pts Stop 2.5 G 80 dBµV 20 dBµV 691 pts Stop 2.5 G Starker Trc X-value Y-value Function M1 1 2.479799 GHz 98.57 dBµV Function Function Result M1 1 2.4835 GHz 50.19 dBµV 98.57 dBµV 97/27/2019					
50 dBµV 2 691 pts Stop 2.5 G 80 dBµV 20 dBµV 691 pts Stop 2.5 G Starker Trc X-value Y-value Function M1 1 2.479799 GHz 98.57 dBµV Function Function Result M1 1 2.4835 GHz 50.19 dBµV 98.57 dBµV 97/27/2019	NU/ME				
30 dBµV 30 dBµV 691 pts Stop 2.5 G 20 dBµV 691 pts Stop 2.5 G Starker 7 7 8 M1 1 2.478799 GHz 98.57 dBµV 98.57 dBµV M2 1 2.4835 GHz 50.19 dBµV 98.27 dBµV					
30 dBµV 30 dBµV 691 pts Stop 2.5 G 20 dBµV 691 pts Stop 2.5 G Starker 7 7 8 M1 1 2.478799 GHz 98.57 dBµV 98.57 dBµV M2 1 2.4835 GHz 50.19 dBµV 98.27 dBµV		\rightarrow			
20 dBµV 691 pts Stop 2.5 G start 2.478 GHz 691 pts Stop 2.5 G larker Type Ref Trc X-value Y-value Function Function Result M1 1 2.479799 GHz 98.57 dBµV 99.57 dBµV					
Start 2:478 GHz 691 pts Stop 2:5 G Iarker Type Ref Trc X-value Y-value Function Function Result M1 1 2:479799 GHz 98:57 dBµV 99:57 dBµ					
Start 2:478 GHz 691 pts Stop 2:5 G Iarker Type Ref Trc X-value Y-value Function Function Result M1 1 2:479799 GHz 98:57 dBµV 99:57 dBµ					
Marker Y-value Function Function Result M1 1 2.479799 GHz 98.57 dBμV M2 1 2.4835 GHz 50.19 dBμV					
Type Ref Trc X-value Y-value Function Function Result M1 1 2.479799 GHz 98.57 dBµV		691 pts	;		Stop 2.5 GF
M1 1 2.479799 GHz 98.57 dBµV M2 1 2.4835 GHz 50.19 dBµV	Y-value	Y-valuo	Eunction	Euncti	on Posult
Measuring 05/23/2019			, anotion	Tunca	on Robalt
Measuring 105/23/2019	2.4835 GHz	50.19 dBµV			
			Measuring	() 🤟	05/23/2019 10:17:25 AM
		X-value 2.479799 GHz	691 pts X-value 2.479799 GHz 98.57 dbµV	M2[1] 00 dBµV	M2[1] 00 dBµV 10 dBµV 11 dBµV

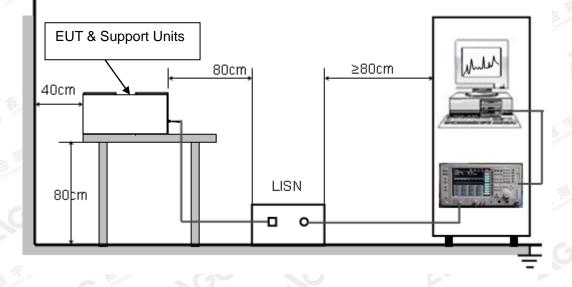
RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.gatt.com.

Actestation of Global Compliance

12. FCC LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56 × 500 × 50	46			
5MHz~30MHz	60	50			

Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results show the may est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 37 of 45

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by PC which received AC120V/60Hz power by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

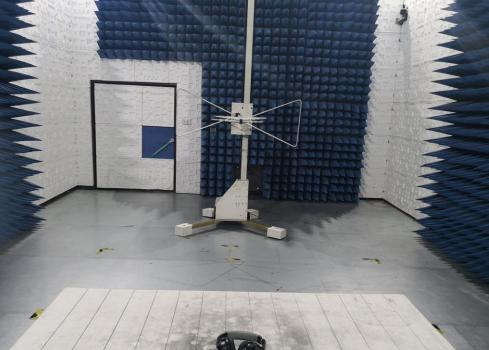
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

Note: The EUT not can use the BT function with charging.


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 38 of 45

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

Report No.: AGC00807190507FE02 Page 39 of 45

APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

Report No.: AGC00807190507FE02 Page 40 of 45

FRONT VIEW OF EUT

BACK VIEW OF EUT

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.

Report No.: AGC00807190507FE02 Page 41 of 45

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

The results show on the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 42 of 45

VIEW OF EUT (PORT)-1

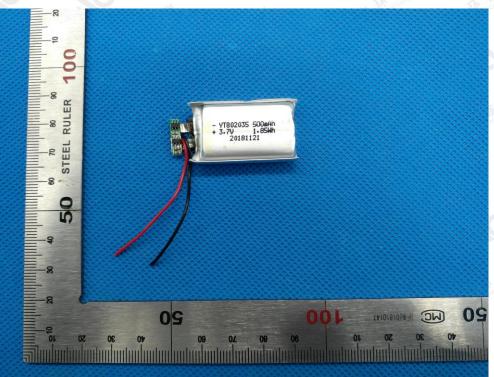
VIEW OF EUT (PORT)-2

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 43 of 45

OPEN VIEW OF EUT-1

OPEN VIEW OF EUT-2



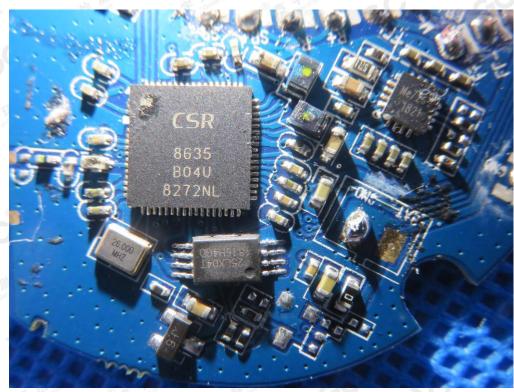
The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00807190507FE02 Page 44 of 45

VIEW OF BATTERY

INTERNAL VIEW OF EUT-1

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.



Report No.: AGC00807190507FE02 Page 45 of 45

INTERNAL VIEW OF EUT-3

--END OF REPORT----

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.