	TEST REPO	RT
FCC ID :	2AF3W-1235822	(\mathcal{C})
Test Report No:	TCT250407E004	
Date of issue:	Apr. 11, 2025	
Testing laboratory: :	SHENZHEN TONGCE TEST	ING LAB
Testing location/ address:	2101 & 2201, Zhenchang Fac Fuhai Subdistrict, Bao'an Dist 518103, People's Republic of	
Applicant's name: :	AOB Products Company	
Address:	1800 North Route Z, Columbi	ia, Missouri 65202, United State
Manufacturer's name :	FUZHOU SWELL ELECTRO	NIC CO., LTD
Address:	BLDG. 4, NO. 6, ZHIHUI AVE CHINA	ENUE, NANYU TOWN, FUZHO
Standard(s):	FCC CFR Title 47 Part 15 Su	bpart C Section 15.231
Product Name: :	WIRELESS DIGITAL HYGRO	DMETER
Trade Mark :	Соскоочи	
Model/Type reference :	1235822	
Rating(s):	DC 3V (2*AAA Battery)	
Date of receipt of test item	Apr. 07, 2025	
Date (s) of performance of test:	Apr. 07, 2025 ~ Apr. 11, 2025	
Tested by (+signature) :	Onnado YE	Onnado JANGCE
Check by (+signature) :	Beryl ZHAO	Boy
Approved by (+signature):	Tomsin	Tom Strikes st

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

			Tab		ntonto		
			Tap	le of Co	ntents		
1.	General Pro						
	1.1. EUT desc	cription					3
	1.2. Model(s)	list				 	3
2.	Test Result	Summa	iry				4
3.	General Info						
	3.1. Test Envi						
	3.2. Descripti	ion of Sup	oport Units				5
4.	Facilities an	nd Accre	ditations	5			6
	4.1. Facilities						
	4.2. Location						6
	4.3. Measurer	ment Unc	ertainty			 	6
5.	Test Result						
	5.1. Antenna	Requirem	nent	\sim			7
	5.2. Conducte	ad Emiaai					~
	J.Z. Conducte	ea Emissi	on			 	8
	5.3 Radiated	Emission		ment			q
	5.3 Radiated	Emission		ment			q
		Emissior d Bandwic	n Measurer dth	ment			9 19
Ар	5.3. Radiated 5.4. Occupied	Emissior d Bandwid ssion time	n Measurer dth e and silen	ment t time			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19
	5.3. Radiated 5.4. Occupied 5.5. Transmis pendix A: Ph	Emissior d Bandwid ssion time notograp	n Measurer dth and silen ohs of Te	ment t time st Setup			9 19

TCT通测检测 1. General Product Information

Report No.: TCT250407E004

1.1.EUT description

G						
Product Name	WIREL	ESS DIGITAL H	HYGROME	TER		0
Model/Type reference	123582	2			<u></u>	
Sample Number:	TCT254	107E004-0101				
Operation Frequency	433.92	MHz				
Modulation Technology	ASK					G
Antenna Type	Spring /	Antenna				N.
Antenna Gain	0dBi					
Rating(s)	DC 3V	(2*AAA Batterie	es)			

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

None.

Page 3 of 24

2. Test Result Summary

Requirement	CFR 47 Section	Result
Conduction Emission, 0.15MHz to 30MHz	§15.207	N/A
Transmission time and silent time	15.231(e)	PASS
Radiation Emission	§15.231(e), §15.205, §15.209, §15.35	PASS
Occupied Bandwidth	§15.231(c)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

	通	测	杠	ž	汳
	TESTING	CENTR	E T	ECHI	NOL

3. General Information

3.1. Test Environment and Mode

Operating Environment:		
Condition	Radiated Emission	
Temperature:	24.1 °C	
Humidity:	51 % RH	
Test Mode:		
Operation mode:	Keep the EUT in continuous transmitting with modulation	
plane of 3m chamber. Me performed. During the test	(0.8m below 1GHz, 1.5m above 1GHz) above the ground easurements in both horizontal and vertical polarities were st, each emission was maximized by: having the EUT restigated all operating modes, rotated about all 3 axis (X, Y &	

continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	1	/	1	1

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098 Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

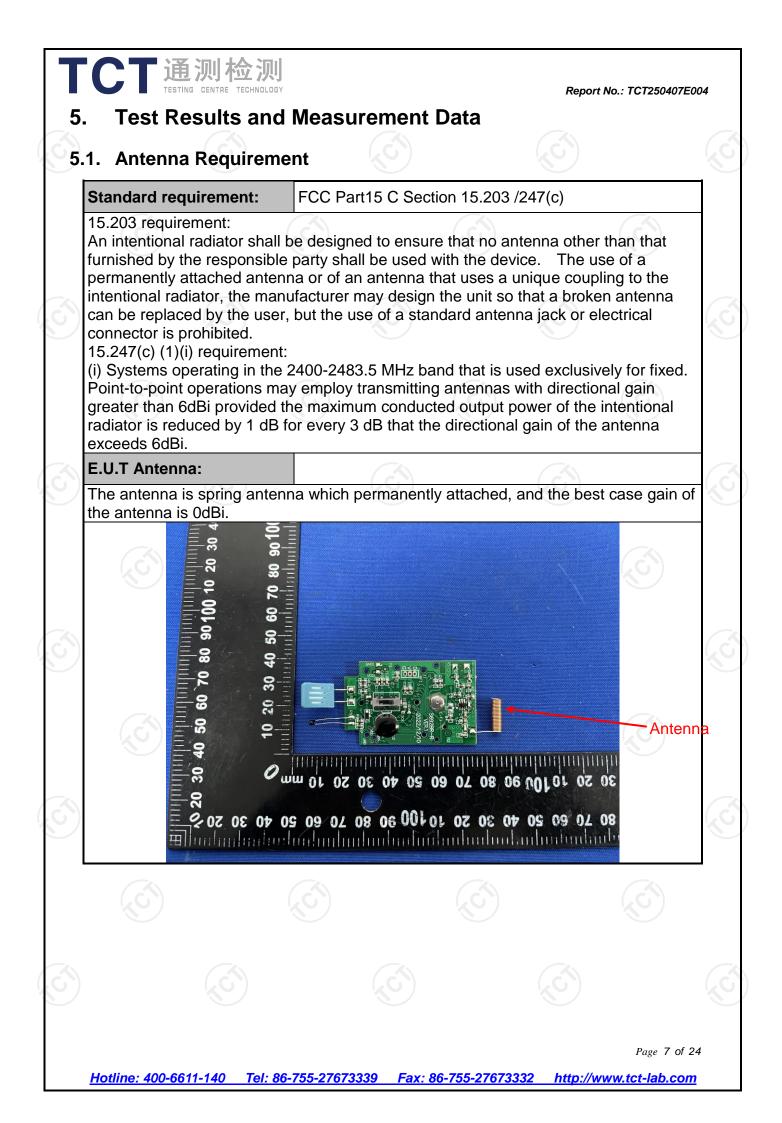
IC - Registration No.: 10668A
 SHENZHEN TONGCE TESTING LAB
 CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China


TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

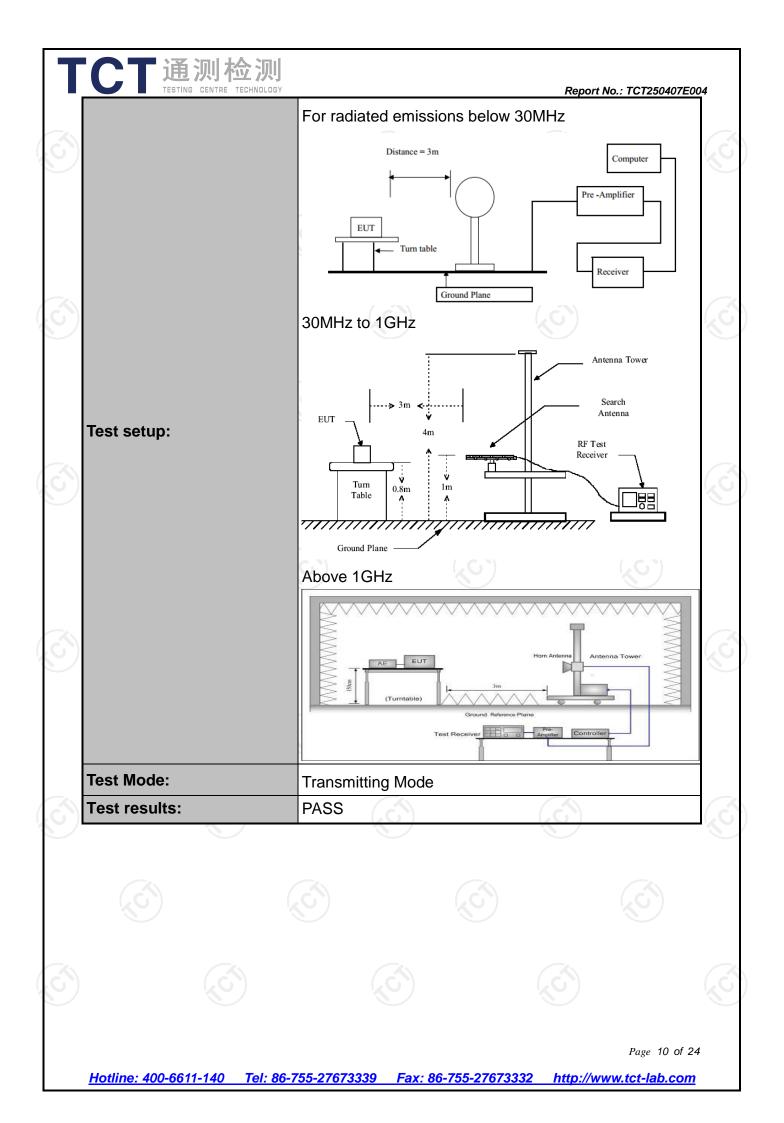
No.	Item	MU	
1	Conducted Emission	• ± 3.10 dB	(
2	RF power, conducted	± 0.12 dB	
3	Spurious emissions, conducted	± 0.11 dB	
4	All emissions, radiated(<1 GHz)	± 4.56 dB	
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB	
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB	(

Report No.: TCT250407E004

		Rep	oort No.: TCT250407E00
2. Conducted Emiss			
Test Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.10:2020		
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ner Test table height=0.8m	EMI Receiver] AC power
Test Mode:	Charging + Transmittin	g Mode	
Test Procedure:	 The E.U.T is connect line impedance stal provides a 500hm/5 measuring equipmer The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2020 c 	bilization network 50uH coupling im- nt. ses are also conner SN that provides with 50ohm term diagram of the line are checken nce. In order to fir e positions of equi- s must be change	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH hination. (Please test setup and d for maximum d the maximum ipment and all of ed according to

Page 8 of 24

Page 9 of 24


Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

5.3. Radiated Emission Measurement

TCT通测检测 TCT通测检测

Test Requirement:	FCC Part15 C	C Section 2	15.231(e) and 15	.209
Test Method:	ANSI C63.10	:2020	~		
Frequency Range:	9 kHz to 5 GHz				
Measurement Distance:	3 m				
Antenna Polarization:	Horizontal &	Vertical			
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
	 meters at below 1G 1GHz. The determine 2. The EUT interference on the top 3. The antenin meters ab value of vertical pot the measure 4. For each s to its wors heights from table was find the m 5. The test-restriction Hold Mode 6. If the emiss 10dB lower be stopped reported. C 	bove the g Hz, 1.5m he table the position f was second of a varial of a varial ha height ove the gr the field plarizations urement. uspected es to case and from 1 meter turned from aximum re- eceiver sy and Specter sion level than the level the sec than the level than the level than the level the sec the sec than the level the sec than the sec than the level the sec than the s	ground a above was rot on of the et 3 m g anten ble-heigh is varied ound to o strength s of the a emission d then th er to 4 m om 0 deg eading. ystem w ified Ban of the E limit spec be re-te average r	the a 3 m the gra tated 30 highest eters a na, which antenn from on determin antenna , the EU e antenn atenna , the EU e antenn aters ar grees to as set t ndwidth EUT in p cified, the es of the sted one method a	way from the

Report No.: TCT250407E004

5.3.2. Limit

Fundamental Frequency (MHz)		
40.66-40.70	1000	100
70-130	500	50
130-174	500 to 1500*	50 to 150*
174-260	1500	150
260-470	1500 to 5000*	150 to 500*
Above 470	5000	500

*Linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

For the band 130-174 MHz, μ V/m at 3 meters = 22.7273(F) – 2454.5455;

for the band 260-470 MHz, μ V/m at 3 meters = 16.6667(F) - 2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

For EUT

Fundamental Frequency (MHz)	Filed Strength of Fundamental (microvolts/meter)	Filed Strength of Spurious Emission(dBµV/m)	
433.92	72.87	52.87	

Note:

1. Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions.

2.According to 15.35, on any frequency or frequencies below or equal to 1000 MHz, the limits Shown are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths, unless otherwise specified the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test.

3. According to 15.231(b), The limits on the field strength of the spurious emissions in the above table is based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits one higher field strength.

Frequencies in restricted band are complied to limit on Paragraph 15.209

Frequency Range (MHz)	Distance (m)	Field strength (dBµV/m)
0.009-0.490	3	20log 2400/F (kHz) + 80
0.490-1.705	3	20log 24000/F (kHz) + 40
1.705-30	3 (6)	20log 30 + 40
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

TCT通测检测 TESTING CENTRE TECHNOLOGY

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

4. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

5. If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)

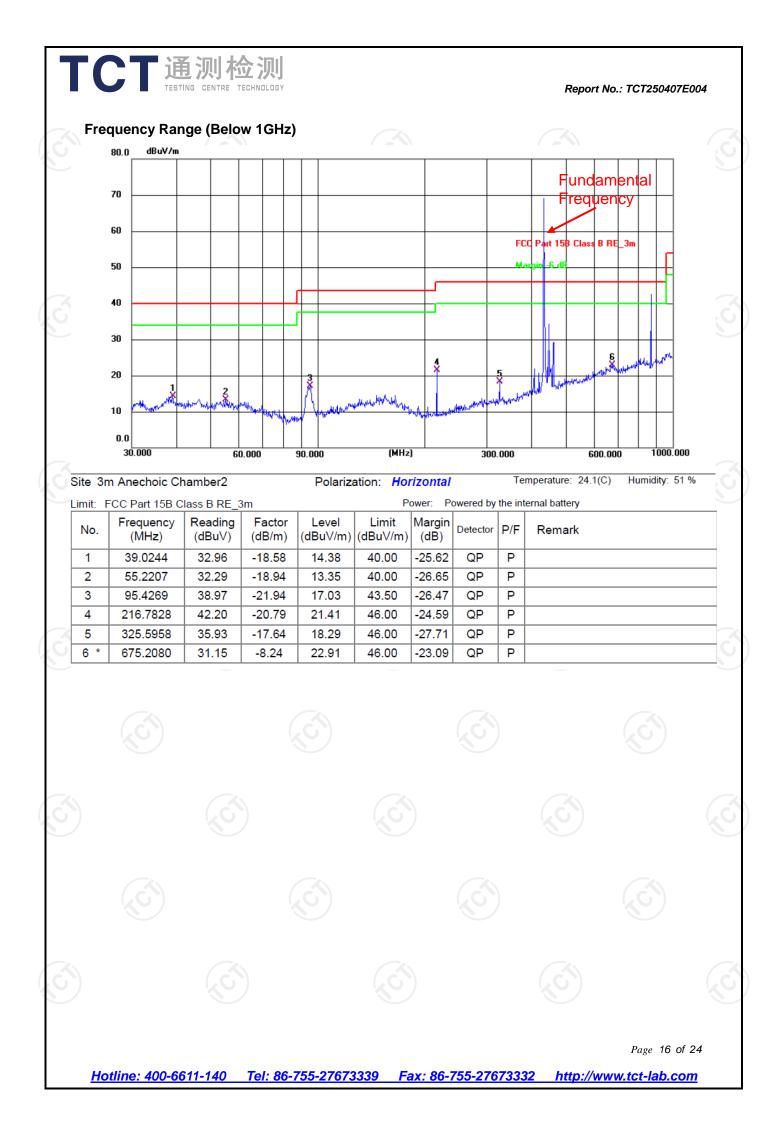
Page 12 of 24 $\,$

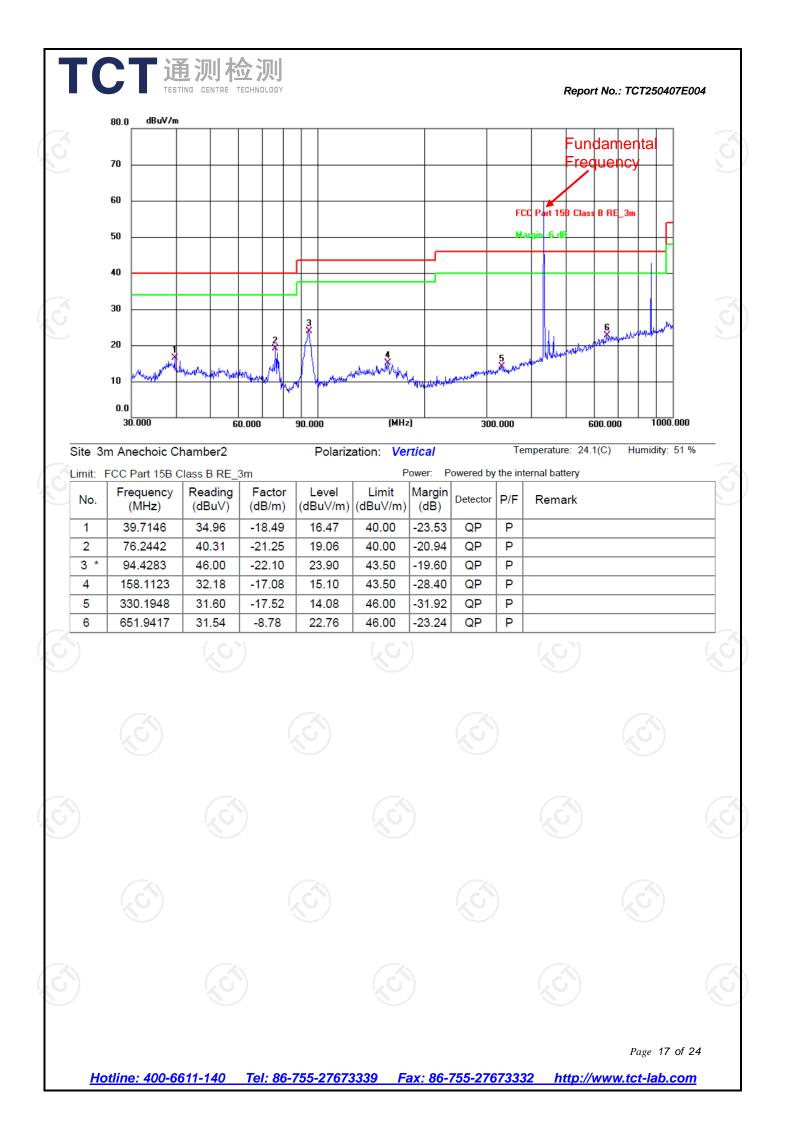
5.3.3. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)							
Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date		
EMI Test Receiver	R&S	ESCI7	100529	Jan. 21, 2025	Jan. 20, 202		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 27, 2024	Jun. 26, 202		
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 21, 2025	Jan. 20, 202		
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Jan. 21, 2025	Jan. 20, 202		
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024	Jun. 26, 202		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 27, 2024	Jun. 26, 202		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 29, 2024	Jun. 28, 202		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 29, 2024	Jun. 28, 202		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 23, 2025	Jan. 22, 202		
Coaxial cable	SKET	RE-03-D	/	Jun. 27, 2024	Jun. 26, 202		
Coaxial cable	SKET	RE-03-M		Jun. 27, 2024	Jun. 26, 202		
Coaxial cable	SKET	RE-03-L	1	Jun. 27, 2024	Jun. 26, 202		
Coaxial cable	SKET	RE-04-D	/	Jun. 27, 2024	Jun. 26, 202		
Coaxial cable	SKET	RE-04-M	1	Jun. 27, 2024	Jun. 26, 202		
Coaxial cable	SKET	RE-04-L	1	Jun. 27, 2024	Jun. 26, 202		
Antenna Mast	Keleto	RE-AM	/	/	/		
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/			

uty Cycle Test Data: Total time (ms)	100 (ms)	Duty Cycle	AV Factor(dB)
38.40	100	0.384	-8.31
lote: Duty Cycle = Ton time/100 Ton time = 48*0.80(ms)= 38.4 So, Duty cycle = 38.40% AV Factor = 20 log(Duty Cyc	40(ms), T period =100ms	ever is less	
		G	
800 1 MHz *VDW 1 MHz	Delta 1 (71) -0.02 dm		
Ref 20 dBm *Att 20 dB SHT 100 mm -10	01.282051 pm Marke / 111 2 -67.55 dBm -160.255 dBm		
	300		
-10 -10 -10 Center 433,92 Mirz 10 ms/			
) Date: 11.AFR.2025 11:04:00			


TESTING CENTRE TECHNOLOGY Report No.: TCT250407E004 Field Strength of Fundamental Limits PK **Emission PK** Horizontal Frequency Margin (dBuV/m) /Vertical (dB) (MHz) (dBuV/m) 433.92 -23.77 69.10 Н 92.87 V 433.92 59.78 92.87 -33.09 Emission Emission AV Horizontal Limits AV Frequency Margin PK AVG (MHz) Factor(dB) /Vertical (dBuV/m) (dB) (dBuV/m) (dBuV/m) 433.92 69.10 -8.31 H 60.79 72.87 -12.08 V 433.92 59.78 -8.31 51.47 72.87 -21.40


Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)Level@3m (dBµV/m)Limit@3m (dBµV/m)Remark: The margin for All level in this frequency band is > 20dB form
Limit, so not listed in report. It is deemed to comply with the requirement

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor Page 15 of 24

Frequency Range (1GHz–5GHz)

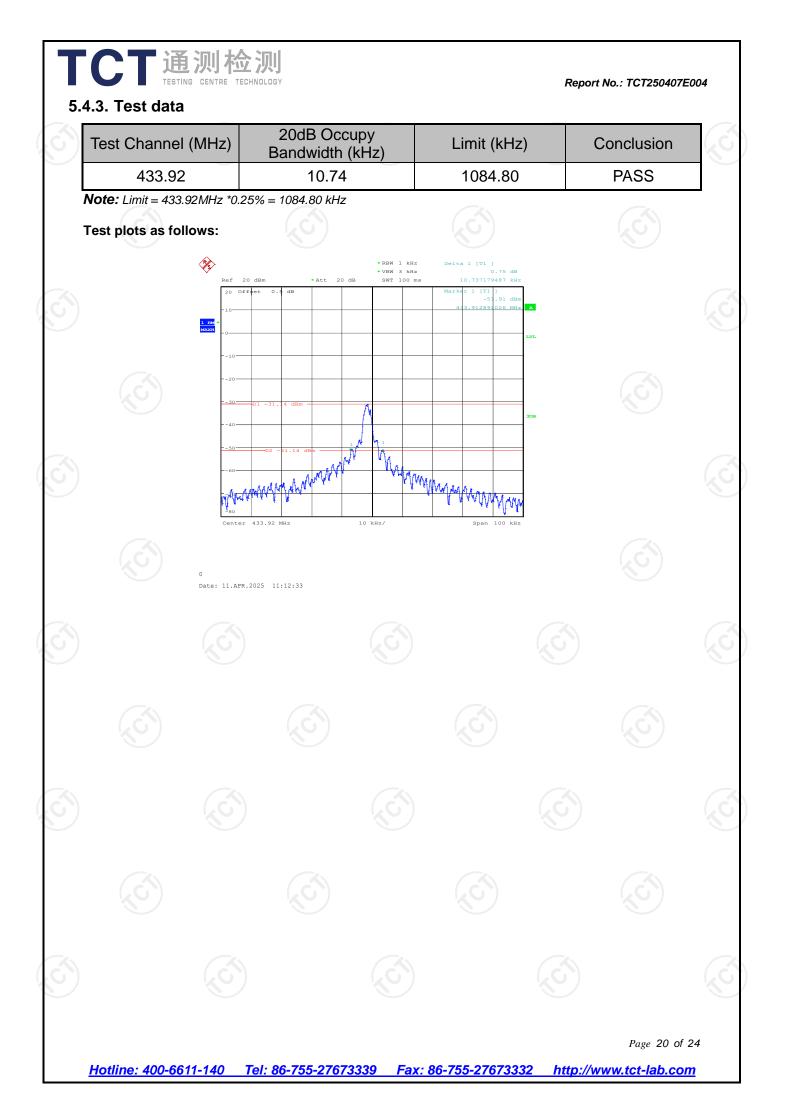
Frequency (MHz)	Emission Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)	Remark	Result	
1301.76	36.24	Н	74.0	Peak	PASS	
1735.68	34.63	н	74.0	Peak	PASS	
1301.76	40.19	V	74.0	Peak	PASS	
1735.68	32.81	V	74.0	Peak	PASS	(é

Note: Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor Because the peak measurement value is lower than the limit of 54dBuV/m for the average value, the average measurement value is not listed

Page 18 of 24

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.4. Occupied Bandwidth


TCT 通测检测 TESTING CENTRE TECHNOLOGY

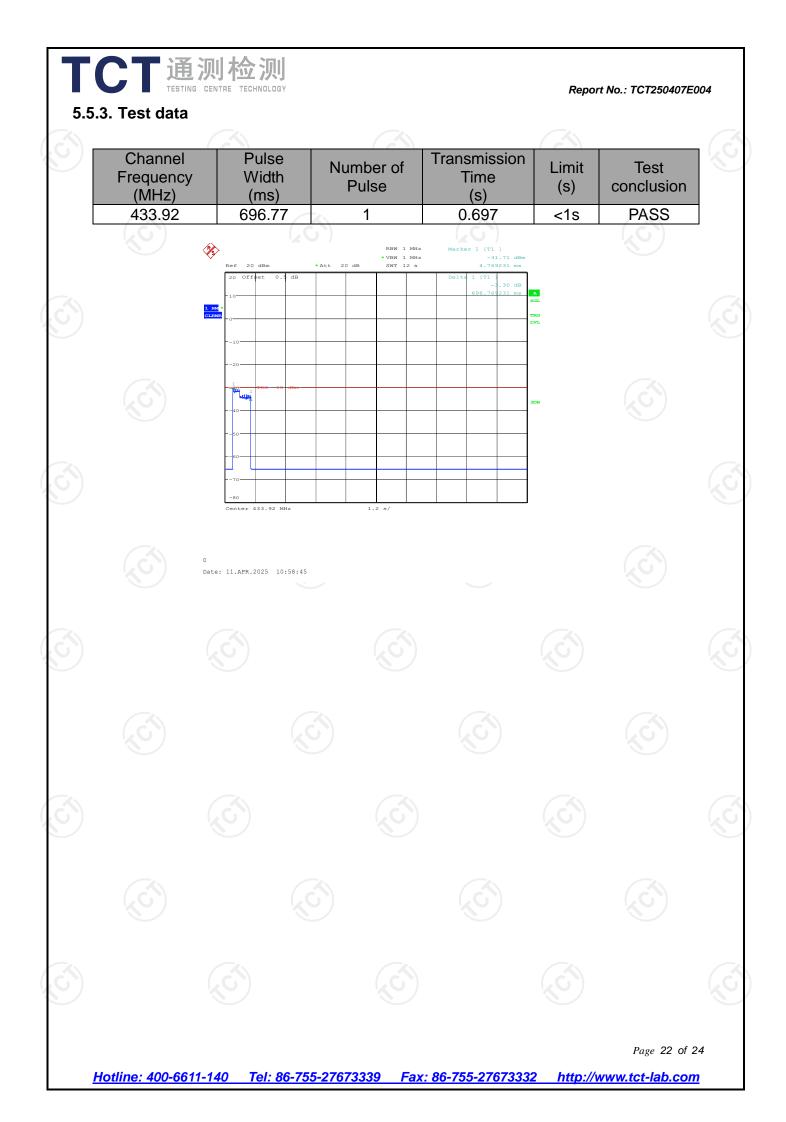
5.4.1. Test Specification

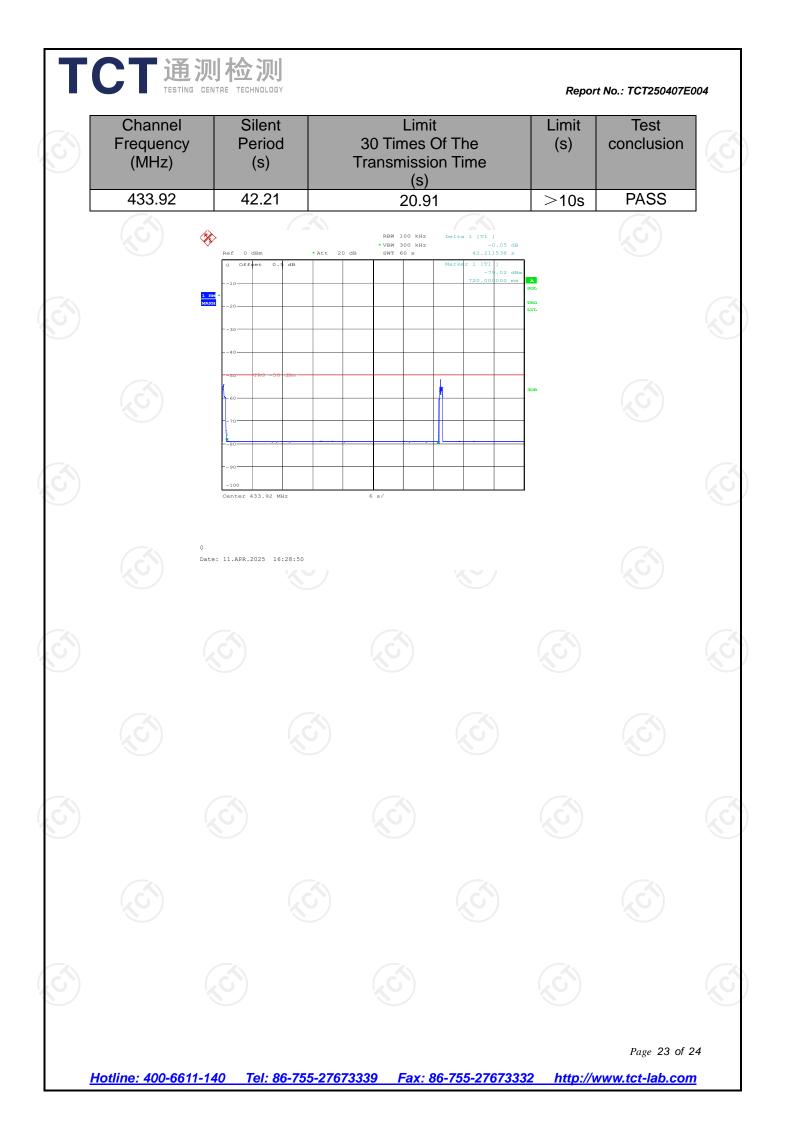
Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10:2020
Limit:	According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = 100KHz, centered on a hopping channel; RBW=1KHz; VBW=3KHz; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting Mode
Test results:	PASS
(xG*)	

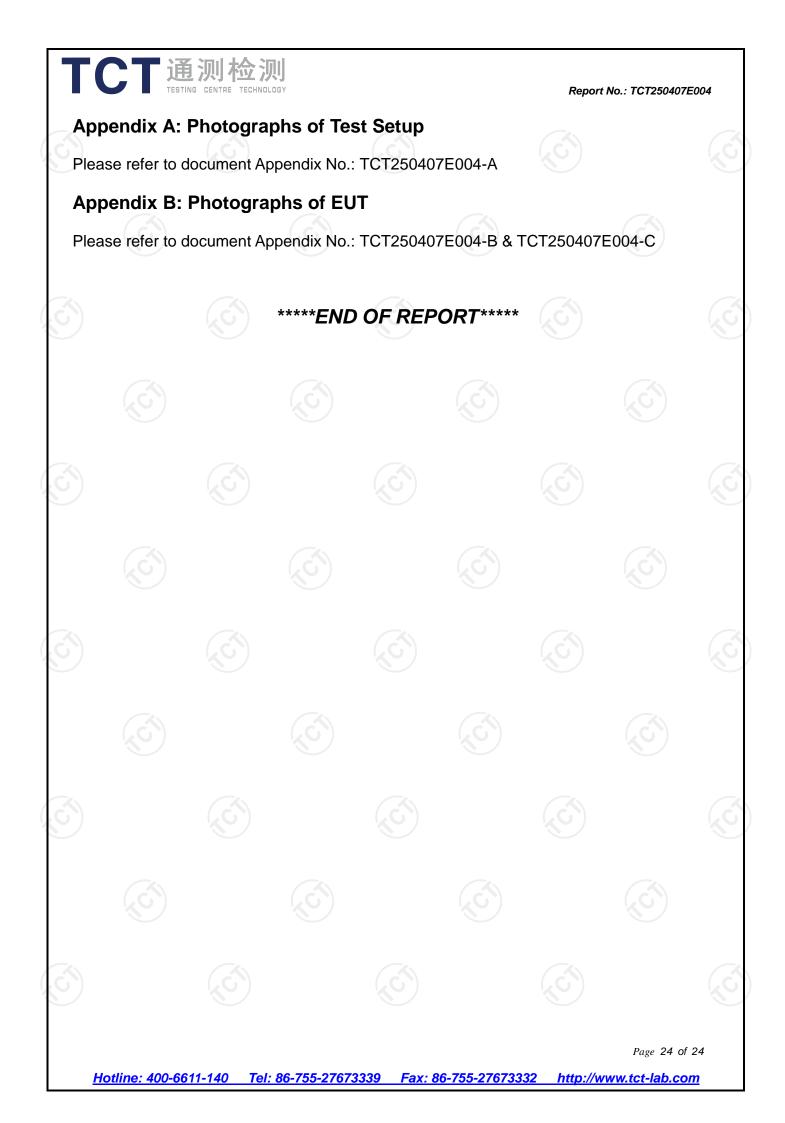
5.4.2. Test Instruments

6	Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
	Spectrum Analyzer	R&S	FSU	200054	Jun. 27, 2024	Jun. 26, 2025

5.5. Transmission time and silent time


5.5.1. Test Specification


TCT通测检测 TECTING CENTRE TECHNOLOGY


Test Requirement:	FCC Part15 C Section 15.231(e)
Test Method:	ANSI C63.10:2020
Limit:	According to 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously.
	 Use the following spectrum analyzer settings. For transmission time:
	Span = 0MHz, centered on a declared channel; RBW=1MHz; VBW≥RBW; Detector function = peak, record the transmission time.
	 For silent time: Span = 0MHz, centered on a declared channel; RBW=1MHz; VBW≥RBW; Sweep = as necessary to capture at least two periodic time; Detector function = peak, record the silent time. 4. Measure and record the results in the test report.
Test setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting Mode
Test results:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	R&S	FSU	200054	Jun. 27, 2024	Jun. 26, 2025

