

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC	PART 15 SUBPART C TEST RE	PORT
	FCC PART 15.247	
Report Reference No FCC ID Compiled by	: 2BGA5-DS-312	Xudaya zhone
Supervised by (position+printed name+sign	ature): File administrators Xudong Zhang ature): Project Engineer Zoey Cao	restities Technology
Approved by (position+printed name+sign	ature): RF Manager Eric Wang	Evic deng
Date of issue	: Jan. 03, 2025	CTIN
Testing Laboratory Name	Shenzhen CTA Testing Technology	Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industri Fuhai Street, Baoʻan District, Shenzher	
Applicant's name	Foshan Dashi Technology Co., Ltd	
Address	No. 21-2, Deng's Family, Shuikou, Liuc Nanhai District, Foshan City, China	hao Community, Lishui Town,
Test specification	TATES	- G
Standard	: FCC Part 15.247	TESTING
This publication may be repro Shenzhen CTA Testing Tech	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial punology Co., Ltd. is acknowledged as copyright of ting Technology Co., Ltd. takes no responsibilit	owner and source of the y for and will not assume
liability for damages resulting placement and context.		
liability for damages resulting	-6	
liability for damages resulting placement and context.	: Eye Massager	
liability for damages resulting placement and context. Equipment description Trade Mark	: Eye Massager	
liability for damages resulting placement and context. Equipment description Trade Mark	: Eye Massager : FOMIX Foshan Dashi Technology Co., Ltd	STIN
liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	FOMIX Foshan Dashi Technology Co., Ltd	CTATESTIN
liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer	FOMIX Foshan Dashi Technology Co., Ltd DS-312	GA CTATESTIN
liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	FOMIX Foshan Dashi Technology Co., Ltd DS-312	GA CTATESTIN
liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	Eye Massager FOMIX Foshan Dashi Technology Co., Ltd DS-312 N/A GFSK	

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn Report No.: CTA24122401601 Page 2 of 36 TEST REPORT Equipment under Test Eye Massager • DS-312 Model /Type ÷ Listed Models N/A : Applicant Foshan Dashi Technology Co., Ltd Address No. 21-2, Deng's Family, Shuikou, Liuchao Community, Lishui Town, Nanhai District, Foshan City, China Manufacturer Foshan Dashi Technology Co., Ltd ÷ No. 21-2, Deng's Family, Shuikou, Liuchao Community, Lishui Town, Address ÷ Nanhai District, Foshan City, China Test Result: PASS The test report merely corresponds to the test sample. CTATE It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	TESTING	Contents	
1	TEST STANDARDS	STING	
	CUMMARY CTA	12	TING
<u>2</u>	<u>SUMMART</u>		<u></u>
0.4	Oswanal Demostra		-
2.1 2.2	General Remarks Product Description*		5 5 5 5 5 6 6
2.2	Equipment Under Test		5
	Short description of the Equipment	under Test (FUT)	5
2.5	EUT configuration		5
2.6	EUT operation mode		6
2.7	Block Diagram of Test Setup		6
2.8	Related Submittal(s) / Grant (s)		6
2.9	Modifications		6
-			-
•	TEATENWIDONMENT	TATES	
<u>3</u>	<u>TEST ENVIRONMENT</u>		<u></u>
			CTATES 7
3.1	Address of the test laboratory		
3.2	Test Facility		7
3.3	Environmental conditions		and the second
3.4	Summary of measurement results	_	8
3.5	Statement of the measurement unce	ertainty	8
3.6	Equipments Used during the Test		9
<u>4</u>	TEST CONDITIONS AND R	ESULTS	
67	ATA	CTATES	- NG
4.1	AC Power Conducted Emission		10
4.1	Radiated Emissions and Band Edge	- ATES	10
4.3	Maximum Peak Output Power	C/h	20
4.4	Power Spectral Density		20
4.5	6dB Bandwidth		23
4.6	Out-of-band Emissions		25
4.7	Antenna Requirement		29
SI	·		
5	TEST SETUR PHOTOS OF	THE EUT	2.0
<u>5</u>	TEST SETUP PHOTOS OF		
-	TALE.	CTATESTING	
<u>6</u>	PHOTOS OF THE EUT		<u>31</u>
			CTATESTING
		CU	STING
			TES
	CTATESTING		
	ATA		
		ESI	
	CTATES.	TES	
	G C V		[11.4 -
		TATES	

<u>TEST STANDARD</u>S 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

2 SUMMARY

General Remarks 2.1

TATE			
2.1 General Remarks			
Date of receipt of test sample		Dec. 24, 2024	
Testing commenced on	Co.	Dec. 24, 2024	and a second
Testing concluded on	:	Jan. 03, 2025	ALL HARDERS

2.2 Product Description*

Testing commenced on	: Dec. 24, 2024
Testing concluded on	i Jan. 03, 2025
2.2 Product Desc	ription*
Product Description:	Eye Massager
Model/Type reference:	DS-312
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA241224016-1# (Engineer sample) CTA241224016-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	-0.68 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under					TATES.	
Power supply system u	tillseu				GV	
Power supply voltage	:	0	230V / 50 Hz	There exists	○ 120V / 60Hz	0 14
		Ο	12 V DC	(O 24 V DC	6
TING			Other (specified in b	lank belo	w)	

2.4 Short description of the Equipment under Test (EUT)

This is an Eye Massager.

For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

⊖ Adapter	-NG	Model: EP-TA20CBC
	ESTIN	Input: AC 100-240V 50/60Hz
	ATES	Output: DC 5V 2A
		TEST III

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
TESTIN	:
37	G 2476
38	2478
39	2480

2.7 Block Diagram of Test Setup

G	DC 5.0V From Adapter	
	GA CTATESTI	

Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 Modifications

No modifications were implemented to meet testing criteria. GA CTATESTING

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

	e main e emalence i tee ingr	
	Temperature:	24 ° C
	-16	
1	Humidity:	47 %
	.(
	Atmospheric pressure:	950-1050mbar

	Aunospheric pressure.	950-1050mbai]
С	onducted testing:	TEST	TING
	Temperature:	24 ° C	TESI
	Constant of the second s		(A)
	Humidity:	46 %	
	-		
	Atmospheric pressure:	950-1050mbar	

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
G	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes	INC
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	-=51
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	
Output Peak power	30MHz~18GHz	0.55 dB	(1)	
Power spectral density	/	0.57 dB	(1)	
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	

RF Test Software

Tonscend

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

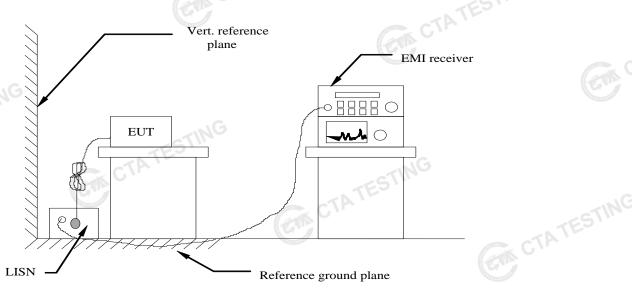
3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
		CV			STIN
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	S Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	T	T00 104400	0.1.10	N1/A	N1/A

TS®JS1120

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

3.1.46


N/A

N/A

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

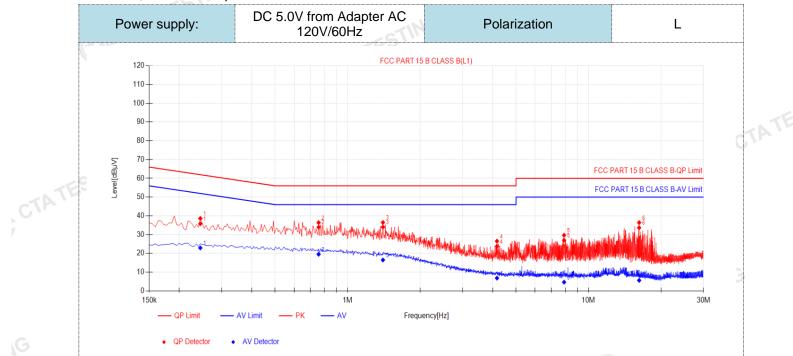
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (d	dBuV)
Frequency range (IMI Iz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
• Design of the design of the state of the s		•

Decreases with the logarithm of the frequency.


TEST RESULTS

Remark:

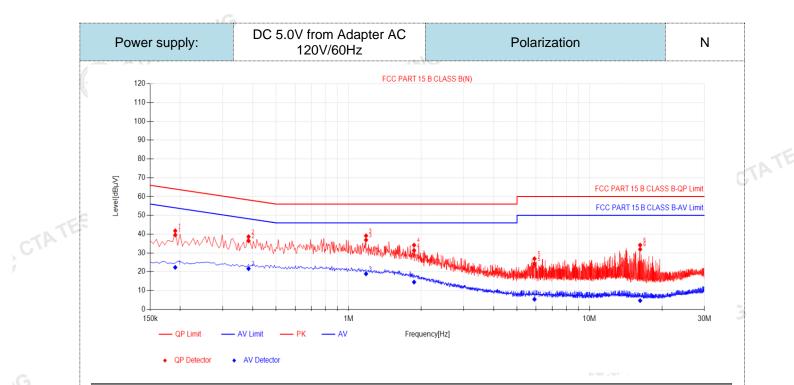
1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Page 11 of 36

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Final Data List

CTATE


NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.2445	9.95	25.86	35.81	61.94	26.13	12.98	22.93	51.94	29.01	PASS
2	0.7575	9.94	24.04	33.98	56.00	22.02	9.61	19.55	46.00	26.45	PASS
3	1.401	9.90	24.15	34.05	56.00	21.95	6.58	16.48	46.00	29.52	PASS
4	4.1685	9.93	13.87	23.80	56.00	32.20	-3.09	6.84	46.00	39.16	PASS
5	7.917	10.28	16.77	27.05	60.00	32.95	-5.60	4.68	50.00	45.32	PASS
6	16.2285	10.33	23.33	33.66	60.00	26.34	-4.70	5.63	50.00	44.37	PASS
).QP Value Factor (d	· · · /		0 (• •		,				
21		n(dD) (^				

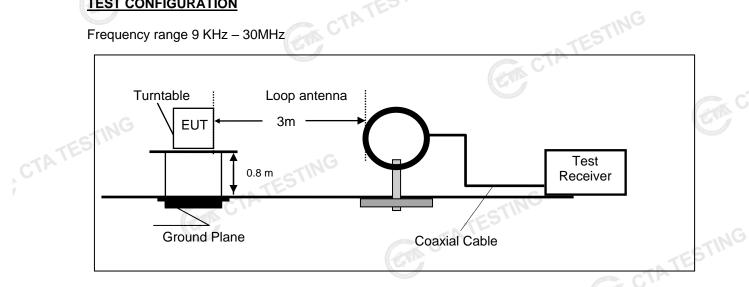
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dBµV) QP Value (dBµV)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

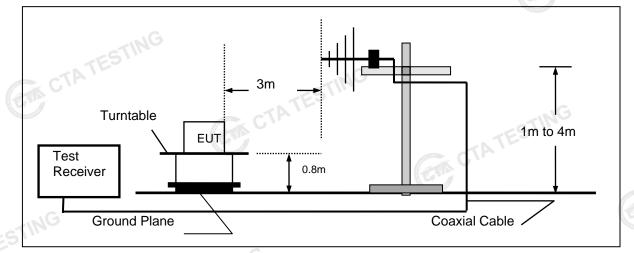
CTATESTING

Page 12 of 36

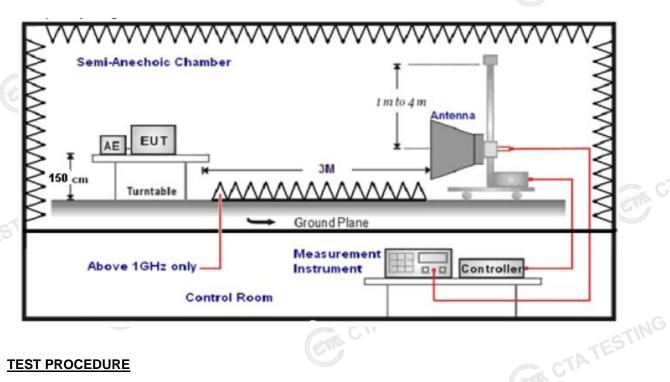
Final Data List


NO.Freq. [MHz]Factor [dB]OP Reading[dB µV]OP value [dBµV]OP Margin [dB]AV Margin [dB]AV Reading [dBµV]AV Value [dBµV]AV Margin [dBµV] </th <th>1 1110</th> <th></th>	1 1110											
20.3849.9126.5136.4258.1921.7711.7521.6648.1926.53PASS31.180510.1726.7236.8956.0019.118.7118.8846.0027.12PASS41.86910.1821.1531.3356.0024.674.3114.4946.0031.51PASS55.9110.2413.9624.2060.0035.80-4.915.3350.0044.67PASS616.228510.4521.4731.9260.0028.08-5.814.6450.0045.36PASSNote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)	NO.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.1905	9.99	29.56	39.55	64.01	24.46	12.33	22.32	54.01	31.69	PASS
4 1.869 10.18 21.15 31.33 56.00 24.67 4.31 14.49 46.00 31.51 PASS 5 5.91 10.24 13.96 24.20 60.00 35.80 -4.91 5.33 50.00 44.67 PASS 6 16.2285 10.45 21.47 31.92 60.00 28.08 -5.81 4.64 50.00 45.36 PASS lote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)	2	0.384	9.91	26.51	36.42	58.19	21.77	11.75	21.66	48.19	26.53	PASS
5 5.91 10.24 13.96 24.20 60.00 35.80 -4.91 5.33 50.00 44.67 PASS 6 16.2285 10.45 21.47 31.92 60.00 28.08 -5.81 4.64 50.00 45.36 PASS Jote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)	3	1.1805	10.17	26.72	36.89	56.00	19.11	8.71	18.88	46.00	27.12	PASS
6 16.2285 10.45 21.47 31.92 60.00 28.08 -5.81 4.64 50.00 45.36 PASS ote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)	4	1.869	10.18	21.15	31.33	56.00	24.67	4.31	14.49	46.00	31.51	PASS
ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)	5	5.91	10.24	13.96	24.20	60.00	35.80	-4.91	5.33	50.00	44.67	PASS
	6	16.2285	10.45	21.47	31.92	60.00	28.08	-5.81	4.64	50.00	45.36	PASS
2). Factor (up)=((settion) loss of LISIN (up) + Gable loss (up)			· · /		• •	• •	•					
	4	A \ /B A		X / I * / /		A \ / \ / . I						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATES



TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	La tra
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	and the second states
18GHz-25GHz	Horn Anternna	1	

7 Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

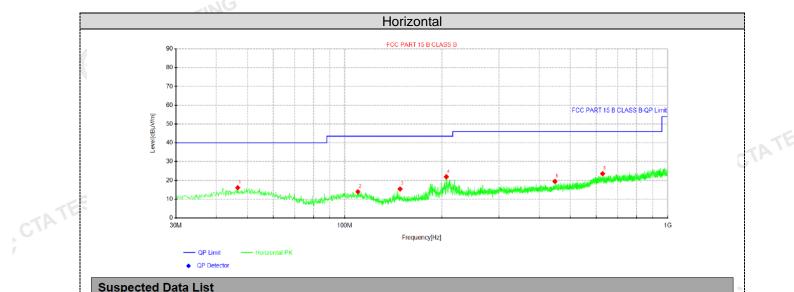
de calculation is as follows.	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(CO)
	CTA'
Shenzhen CTA Testin	a Technoloay Co., Ltd.

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.05	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

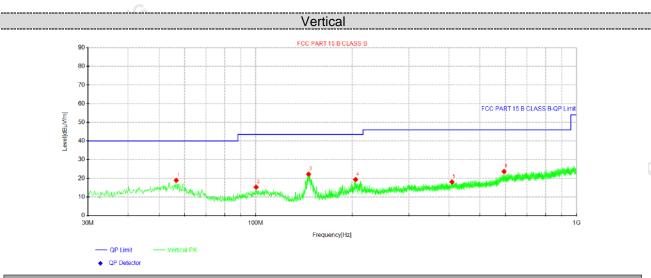
TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs High channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. CTATESTING except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected	d Data List


NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	46.6112	27.43	16.08	-11.35	40.00	23.92	100	161	Horizontal
2	109.782	27.27	13.94	-13.33	43.50	29.56	100	161	Horizontal
3	148.34	30.88	15.43	-15.45	43.50	28.07	100	102	Horizontal
4	206.297	34.70	21.94	-12.76	43.50	21.56	100	21	Horizontal
5	447.463	29.27	19.48	-9.79	46.00	26.52	100	255	Horizontal
6	628.49	29.24	23.55	-5.69	46.00	22.45	100	0	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

TATE

Suspected Data List

CTATE

NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	56.5538	30.83	18.91	-11.92	40.00	21.09	100	50	Vertical
2	100.325	28.21	15.26	-12.95	43.50	28.24	100	71	Vertical
3	146.157	37.71	22.20	-15.51	43.50	21.30	100	38	Vertical
4	204.721	32.10	19.33	-12.77	43.50	24.17	100	1	Vertical
5	408.906	28.15	18.04	-10.11	46.00	27.96	100	222	Vertical
6	594.055	29.83	23.65	-6.18	46.00	22.35	100	187	Vertical

CTAT

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 18 of 36

For 1GHz to 25GHz

	GFSK (above 1GHz)											
Freque	Frequency(MHz):			02	Pola	arity:	н	ORIZONTA	L			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)			
4804.00	61.77	PK	74	12.23	66.04	32.33	5.12	41.72	-4.27			
4804.00	45.27	AV	54	8.73	49.54	32.33	5.12	41.72	-4.27			
7206.00	53.71	PK	74	20.29	54.23	36.6	6.49	43.61	-0.52			
7206.00	43.24	AV	54	10.76	43.76	36.6	6.49	43.61	-0.52			

Freque	Frequency(MHz):		24	02	Pola	arity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.62	PK	74	14.38	63.89	32.33	5.12	41.72	-4.27
4804.00	43.42	AV	54	10.58	47.69	32.33	5.12	41.72	-4.27
7206.00	52.19	PK	74	21.81	52.71	36.6	6.49	43.61	-0.52
7206.00	41.66	AV	54	12.34	42.18	36.6	6.49	43.61	-0.52

Frequency(MHz):			24	40	Pola	arity:	н	IORIZONT	AL.
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.17	PK	74	12.83	65.05	32.6	5.34	41.82	-3.88
4880.00	44.40	AV	54	9.60	48.28	32.6	5.34	41.82	-3.88
7320.00	53.03	PK	74	20.97	53.14	36.8	6.81	43.72	-0.11
7320.00	42.39	AV	54	11.61	42.50	36.8	6.81	43.72	-0.11
The second s						•	-IN	G	

Freque	Frequency(MHz):		24	40	Pola	arity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.26	PK	74	14.74	63.14	32.6	5.34	41.82	-3.88
4880.00	42.16	AV	54	11.84	46.04	32.6	5.34	41.82	-3.88
7320.00	51.42	PK	74	22.58	51.53	36.8	6.81	43.72	-0.11
7320.00	40.50	AV	54	13.50	40.61	36.8	6.81	43.72	-0.11
			GTIN						

Freque	Frequency(MHz):			80	Pola	arity:	F	IORIZONTA	L
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.40	PK	74	13.60	63.48	32.73	5.66	41.47	-3.08
4960.00	43.67	AV	54	10.33	46.75	32.73	5.66	41.47	-3.08
7440.00	52.46	PK	74	21.54	52.01	37.04	7.25	43.84	0.45
7440.00	41.58	AV	54	12.42	41.13	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		24	80	Pola	arity:		VERTICAL	VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	58.37	PK	74	15.63	61.45	32.73	5.66	41.47	-3.08		
4960.00	41.66	AV	54	12.34	44.74	32.73	5.66	41.47	-3.08		
7440.00	50.14	PK	74	23.86	49.69	37.04	7.25	43.84	0.45		
7440.00	39.78	AV	54	14.22	39.33	37.04	7.25	43.84	0.45		
REMARKS	:					Constant of the second					
			Shenzhen	CTA Testing	Technology	Co., Ltd.					

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ency(MHz)	:	24	GFS 02		arity:	Н		Pre- mplifier (dB)Correction Factor 		
Frequency (MHz)	Emis Lev (dBu)	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	amplifier	Factor		
2390.00	62.09	PK	74	11.91	72.51	27.42	4.31	42.15	-10.42		
2390.00	43.84	AV	54	10.16	54.26	27.42	4.31	42.15	-10.42		
Freque	ency(MHz)	:	24	02	Pola	arity:	VERTICAL		•		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	amplifier	Factor		
2390.00	59.87	PK	74	14.13	70.29	27.42	4.31	42.15	-10.42		
2390.00	41.79	AV	54	12.21	52.21	27.42	4.31	42.15	-10.42		
Freque	Frequency(MHz):		24	80	Pola	arity:	н	ORIZONTA	(dB) (dB/m) 42.15 -10.42 42.15 -10.42 ORIZONTAL Pre-		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	amplifier	Factor		
2483.50	61.25	PK	74	12.75	71.36	27.7	4.47	42.28	-10.11		
2483.50	43.27	AV	54	10.73	53.38	27.7	4.47	42.28	-10.11		
	ency(MHz)	:	24	B0	Pola	arity:		VERTICAL	•		
Freque	1	aian	Lingit	Margin	Raw	Antenna Factor	Cable Factor	Pre- amplifier			
Freque Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	(dB)	Value (dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
Frequency	Lev	vel							(dB/m) -10.11		

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

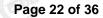
			ATESTIN
Channel	Output power (dBm)	Limit (dBm)	Result
00	0.39		
19	0.11	30.00	Pass
39	0.15		
sults including the c	able lose.	TESTING	
	00 19 39	Channel (dBm) 00 0.39 19 0.11 39 0.15	Channel (dBm) Limit (dBm) 00 0.39

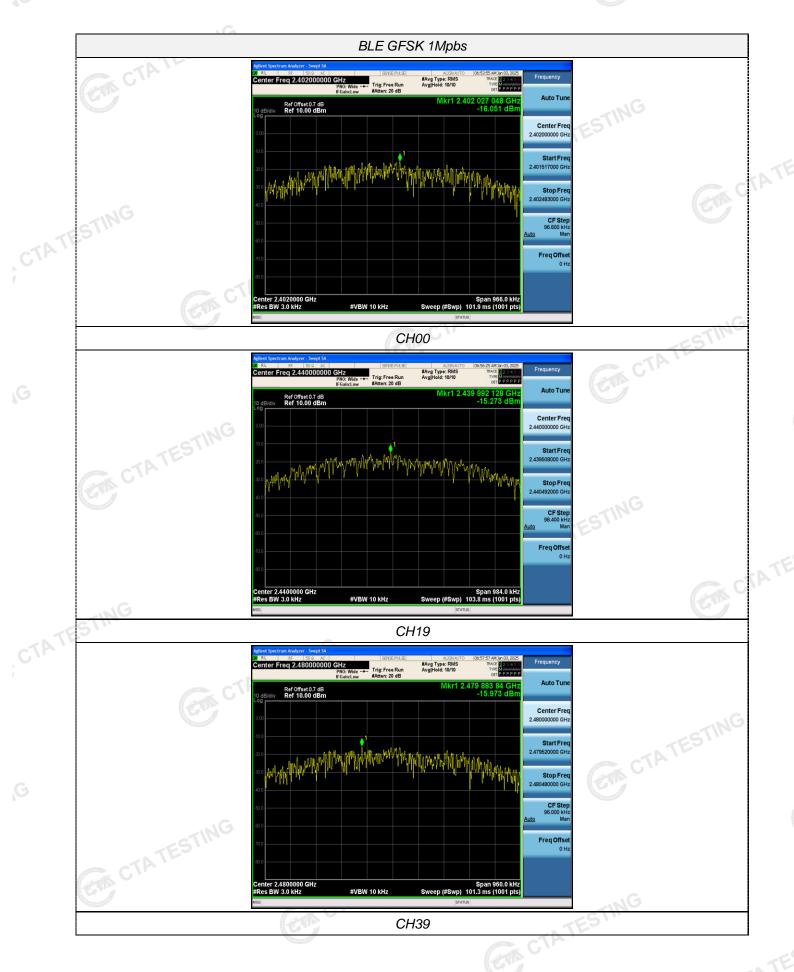
4.4 **Power Spectral Density**

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

CTATESTING EUT SPECTRUM ANALYZER

Test Results

		Power Spectral Density		
Туре	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	Jefe -16.05		
GFSK 1Mbps	19_5	-15.27	8.00	Pass
	39	-15.97	. G	

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

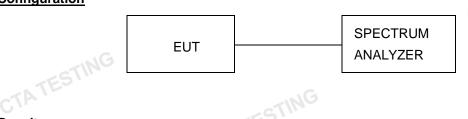
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ	FR	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
-CTINC	00	0.644		
GFSK 1Mbps	19	0.656	≥500	Pass
C'lr	39	0.640		
Test plot as follows:	CAN C	TATES	CTATESTIN	G

4.6 **Out-of-band Emissions**

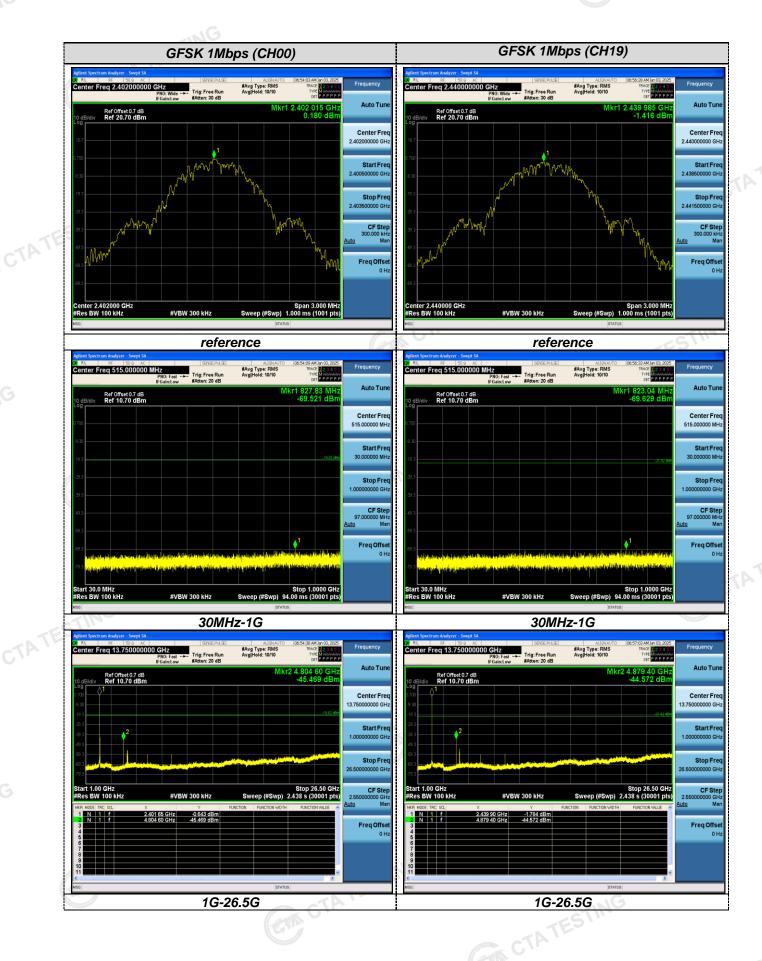

Limit

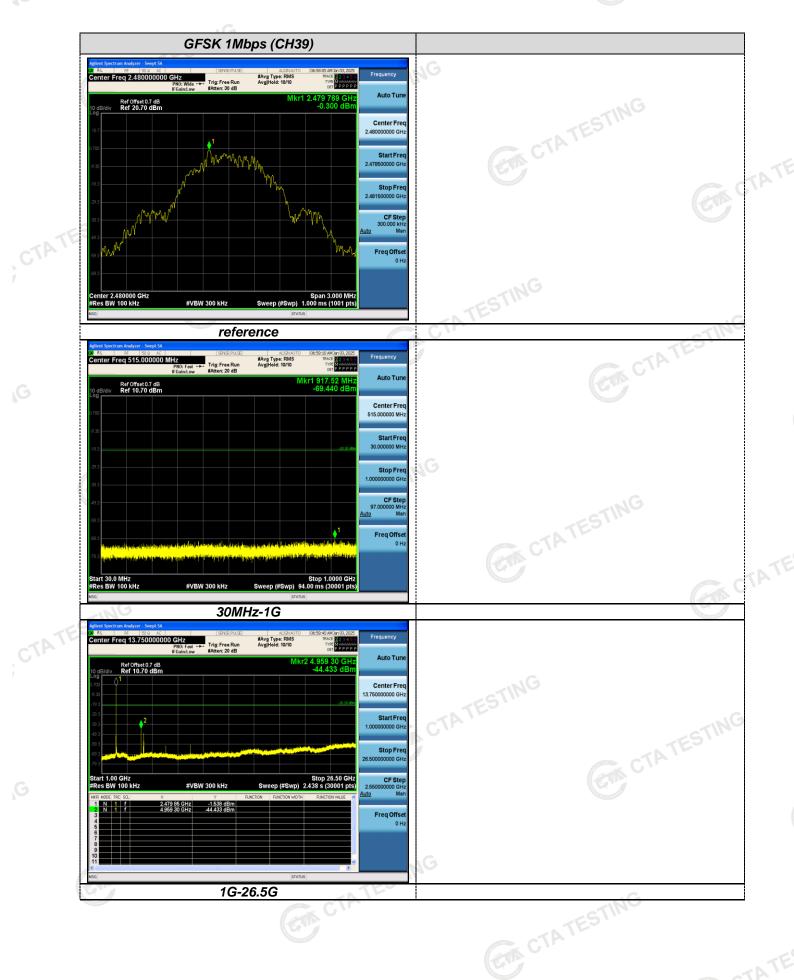
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GAN CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

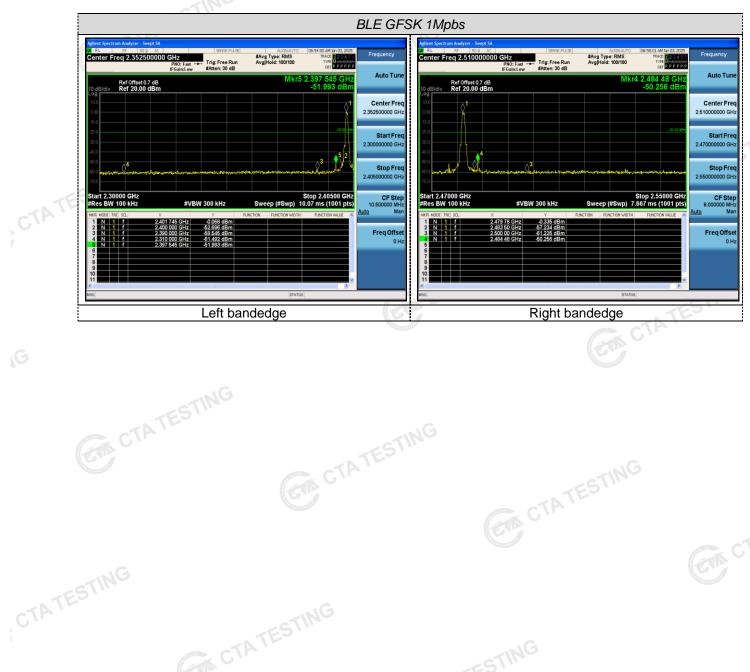
Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:


Page 26 of 36

Page 28 of 36

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

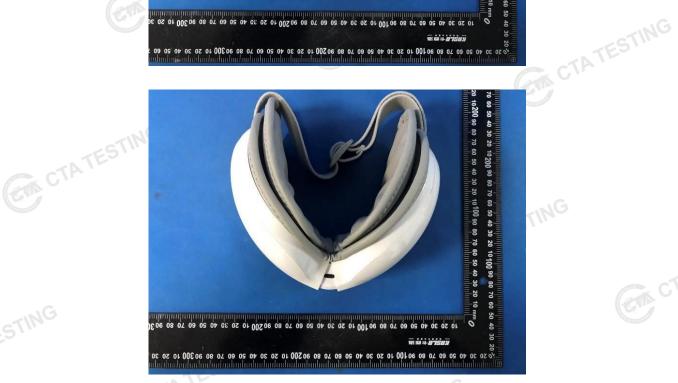
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was -0.68 dBi.

Remark:The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT


TING

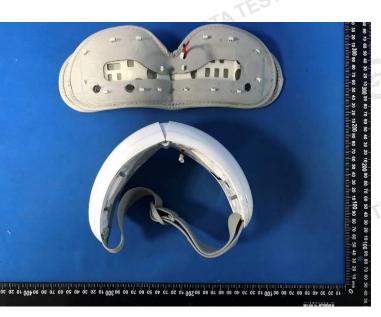
CTA TESTING

rING

Photos of the EUT 6

CTA TESTIN

Page 32 of 36


Sim + 0750X

CTA TESTIN

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

G

Page 34 of 36

10 20 30 40 20 60 10 80 90 100 0

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

rING

CTATE

Page 36 of 36

05 05 01 005 06 08 07 09 05 04 05 05 01 002 06 08 07 09 05 04 05 05 01 001 06 08 07 09 05 05 01 05 05 01

Ì

CTA TESTING

ring